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Abstract

Protein-protein interfaces hold the key to understanding protein-protein interactions. In this paper we investigated local
interaction network patterns beyond pair-wise contact sites by considering interfaces as contact networks among residues.
A contact site was defined as any residue on the surface of one protein which was in contact with a residue on the surface
of another protein. We labeled the sub-graphs of these contact networks by their amino acid types. The observed
distributions of these labeled sub-graphs were compared with the corresponding background distributions and the results
suggested that there were preferred chemical patterns of closely packed residues at the interface. These preferred patterns
point to biological constraints on physical proximity between those residues on one protein which were involved in binding
to residues which were close on the interacting partner. Interaction interfaces were far from random and contain
information beyond pairs and triangles. To illustrate the possible application of the local network patterns observed, we
introduced a signature method, called iScore, based on these local patterns to assess interface predictions. On our data sets
iScore achieved 83.6% specificity with 82% sensitivity.
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Introduction

Protein interactions are mediated by multiple physicochemical

contacts at the interfaces between proteins. A considerable amount

of research has focused on understanding the nature of such

interactions [1–5].

The interfaces between proteins have been investigated in terms

of the structural motifs they contain. In [6], the authors

investigated the structural motifs (structural patterns that are

observed more often than random patterns) in protein-protein

interfaces in terms of helix, strand and coil. They found that the

architectural motifs in protein cores and at protein interfaces share

similar global features. Similarly, surprisingly few differences

between the structural motifs in protein-peptide interfaces and

those observed within monomeric proteins were found in [7].

These observations suggest that structural motifs alone are not

enough to understand the unique properties of the protein-protein

interfaces.

Many studies have also shown that amino acids with particular

physicochemical properties tend to be in contact with comple-

mentary amino acids in the interface, for example via hydrogen

bonds, electrostatic interactions, and aromatic ring stacking [8–

11]. A contact map of a protein can be constructed by considering

amino acids as nodes and the interactions between them as edges.

Physicochemical properties (hydrophobicity, polarity, van der

Waals volume etc.) can then be overlaid onto such contact maps.

For example, by assigning weights to contact maps according to

interaction properties, motifs were defined at interface by a

clustering method in [12]. The authors divided a protein-protein

interface into several clusters of residues from both proteins, and

clusters which are structurally proximal are called neighboring

clusters. The physicochemical characteristics between and within

clusters had been investigated, and it was found that the structural

and energetic properties as well as the evolutionary conservation of

the residues in one cluster have significant effects on those

properties of the residues in the same cluster but have little effects

on the residues located in the neighboring clusters [13]. Many

significant network motifs with 6 nodes, other than a-helices and

b-sheets, have been identified, which in turn have been used to

produce a method to compare protein structures [14]. Recently,

there has been rich interest in the details of different types of

interactions at interfaces. In [15], the authors investigated the

geometry of interactions between catalytic residues and their

substrates, and found that there is no significant difference

between residues involved in proton transfer and those engaged

in hydrogen bonding, either in terms of distances or angles. New

insights [16,17] into the energetics at protein interfaces also

suggest that the detailed computational and physical models for

different types of contacts should be differentially weighted due to

their different energetic contributions to complex formation, such

as electrostatic interactions and hydrogen bonding interactions etc.

In [18], the authors successfully identified 79% of the energetically

important interactions (hot spots) by employing explicit geometry-

dependent hydrogen bonding potentials.

In [19], the authors built a pair-to-pair substitution matrix for

the intra-protein contact residues that are not next to one other in
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the amino acid sequence of the protein, and achieved relatively

accurate prediction of residue-residue contacts in the protein cores

from sequence information alone. The physicochemical charac-

teristics of surface patches which were defined as a surface residue

and its n nearest structural neighbors were analyzed in [20]. The

authors also applied these findings to prediction of protein-protein

contact sites. They achieved 66% accuracy on a database of 59
protein complexes [21]. In [22], the k-th nearest structural

neighbors of the protein sites were used to form surface patches.

Examining the complementarity between patches, the authors

developed the SCOTCH algorithm to help protein docking

methods to score candidate conformations of complexes.

In this paper we combine structural motifs, residue information

and the patch idea to detect preferred patterns of interacting

residues, and we illustrate our findings by providing a new scoring

method for assessing interface predictions. The idea for this paper

arose from our previous paper [23] where we defined an inter-

protein contact site as a surface exposed residue if it is v4:5A
away from another surface-exposed residue on a different protein

(taking all atoms into account). A contact pair consists of two

residues in contact, one from each protein in a pair of binding

partners, while a contact triangle has an inter-protein contact pair

plus a third site with an intra-protein edge to one of the other two

residues. We classified the 20 amino acids into 7 categories

according to their physicochemical properties and their propen-

sities to be in contact at protein-protein interface: Small (S,G,A,P),

Hydrophobic (V,M,I,L,C), Negatively charged (D, E), Aromatic

(F,Y,W), Polar (Q,T,N), Favored Positively-charged (R,H) and

Disfavored Positively-charged (K). Using this reduced alphabet we

counted the frequency of each type of the contact pairs and the

contact triangles to establish a propensity score for contact sites.

The propensity score improved the accuracy of the prediction for

contact sites, but we did not investigate the details of either the

patterns of the contact pairs or that of the contact triangles for the

interfaces.

In this paper, we build on this work to investigate the small local

network patterns termed labeled 4-tuples (pair-to-pair interactions)

by considering both the structural information, the way a 4-tuple is

wired, and the physicochemical properties, the amino acid

composition of a 4-tuple. Four nodes can be wired as a connected

graph in 6 different ways. If two contact sites from one protein and

two contact sites from the other protein are connected in one of

these 6 ways (for more details see Materials and Methods), these

four contact sites form an inter-protein pair-to-pair interaction,

called a 4-tuple. Each 4-tuple can be labeled by the amino acid

types of its 4 nodes. Out of 7 amino acid categories, we have 210
different labels for 4-tuples. In this paper, we report statistical

evidence for local network patterns at interfaces, including favored

and disfavored patterns of contact pairs, contact triangles, and

contact 4-tuples, and show that interfaces do contain significant

information beyond pairs and triangles. There are geometric and

physicochemical constraints for amino acids on proteins to be able

to be in contact, and ideally we would like to use these constraints

to predict the interface or to assess interface predictions. While we

do not know the exact constraints, they are reflected in the local

pattern contents, and hence we suggest the use of the local pattern

contents to predict the interface or to detect incorrect interface

predictions. Exceptionality of a local pattern is judged by

comparison with its surface background relative frequency, which

is established under independence assumptions.

As reported in [23], the constraints imposed on each other by

the residues in contact pairs and contact triangles at interfaces can

significantly improve the accuracy of interface prediction in

comparison to popular correlated mutation algorithms. We build a

similar score as the iPatch score in [23] by using the information

provided by the contact 4-tuples instead of the contact triangles.

This score has advantages over previously published correlated

mutation scores, but using the pattern of the contact 4-tuples did

not improve the performance of iPatch for predicting the contact

sites at interface (see File S1 for more details). Therefore, we

conjecture that for single residue contact predictions, information

from 4-tuples does not add to the information from triangles. The

situation is very different for joint residue contact prediction. To

illustrate the possible application of the reported local network

pattern of the contact 4-tuples, we built a simple score, called

iScore, based on the pattern of contact 4-tuples to select the near-

native interfaces given by a docking algorithm. To filter out

incorrect predictions of interfaces, a profile is established by

comparing the observed local network patterns in an interface of

interest with the discovered local network patterns for the

interfaces in this paper. By calculating the profiles for the complex

1KU6 and its decoys reported in a docking decoy set [24], we

found that the profile constructed by the labeled 4-tuples was

better able to identify the correct interface in 1KU6 than either the

contact pairs or the contact triangles. On a data set of 15

complexes from DOCKGROUND, with 100 decoys each and 1–

10 near-native complexes each, iScore achieved 83.6% specificity

with 82% sensitivity. Although we do not intend to propose an

advanced scoring function for protein docking, the result given by

this simple iScore also suggests that the local network patterns

established in this paper capture some unique features of

interfaces, and these patterns can be helpful in filtering out

incorrect interface predictions. More advanced scoring function

combining the local network pattern revealed in this paper with

other characteristics of the interface can be expected. We

conjecture that while for single residue contact predictions

information from 4-tuples do not add to the information from

triangles, when predicting whole protein complexes 4-tuples

contain important information about co-ordinated patterns of

residues from two proteins.

The background distribution depends on the database. In this

paper we used three data sets, of homodimer, heterodimer, and

domain-domain interfaces. For each of these data sets, we

investigated the local network patterns of the interfaces in this

paper, and found that the differences between these three data sets

of interfaces are statistically significant. However, the profile based

method gives very similar results across these three databases (see

File S3 for more details). In the following, unless otherwise stated,

we concentrate on domain-domain interfaces.

Results and Discussion

Contact sites, pairs, and triangles
Interactions between proteins are maintained by patches rather

than pairs of single residues. We say that two sites at the interface

are independent of each other, if the amino acid type at one site

does not impose any constraint on the amino acid type at the other

site. Under this assumption of independence, the relative

frequency of occurrence of a pair of amino acids at the interface

can be estimated by the relative frequency of one amino acid

multiplied by that of the other; we call this the background relative

frequency. However, since we know that certain amino acids are in

contact with each other, in a pair of interacting residues the type of

one amino acid should impose some constraints, either geomet-

rical or physicochemical constraints, on the type of the other.

Therefore, we expect to see some significant differences between

the observed relative frequencies of the contact pairs or triangles

and their background relative frequencies.

Local Network Patterns

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57031



As described in [23], we classified the 20 amino acids into 7

categories according to their physicochemical properties: Small

(S,G,A,P), Hydrophobic (V,M,I,L,C), Negatively charged (D, E),

Aromatic (F,Y,W), Polar (Q,T,N), Favored Positively-charged

(R,H) and Disfavored Positively-charged (K). These categories are

abbreviated by S, H, N, A, P, fP and dfP. We showed that this 7-

category-grouping is useful for predicting the contact sites between

proteins, which suggests that it can capture the main features of

the amino acids in each category. Figure 1 shows the results of

both the distribution of the 20 standard amino acids and the

distribution of the 7 categories in the interfaces on our data set. We

find that the hydrophobic and small residues are preferred at the

interface. This is consistent with the observation of hydrophobic

patches in interfaces [25]. We classify lysine (K) as an interface

Disfavored Positively-charged residue because its observed relative

frequency of occurring as an interface residue is low compared

with its observed relative frequency of occurring as a surface

residue. The relative propensity of lysine being in the interface

against on the surface, which is calculated as the ratio of the

propensity for interface over the propensity for surface [23], is

0:66, compared to the relative propensities of the other positively

charged residues arginine (R) and histidine (H) which are 1:05 and

1:11 respectively. The relative frequency of cysteine (C) being

found at the interface is low, but compared with its relative rarity

on the protein surface, it is likely to be at the interface [23].

For the rest of this paper, we focus on our 7 categories instead of

the standard 20 amino acids. Out of 7 categories, we can form 28
different category-category pairs and 84 category-category-cate-

gory triangles if the order of the categories does not matter. As

shown in Figure 2A, some pairs of amino acid categories are found

more frequently at the interface than others. For example, the

most favored pairs are found among small, hydrophobic and

aromatic residues. Burying the hydrophobic patches on the

protein surfaces is often thought to provide the driving force for

binding between proteins. Small residues as suggested by [9] can

easily pack with other residues. However, the observed relative

frequency also reflects the properties of protein surfaces, since the

high probability for the pair, for example, of a hydrophobic

residue (H) and a small residue (S) may be due to the high

frequency of small residues on the protein surfaces. The under-

representation of charged-charged pairs may be result from the

rarity of charged residues on the surface. To help discriminate the

nature of the interface from that of the surface, the ratios are

calculated of the observed relative frequencies of the contact pairs

in the interfaces over their background relative frequencies on the

surfaces (Figure 2B). Comparing Figure 2B with Figure 2A, we see

the nature of the interface when not confounded by the properties

of the surface. In [9], the authors noted that the couplings of

charged-charged residues are under-represented at interfaces.

From our results, this under-representation is due to the

particularly low ratio of the dfP-N, since dfP-N has a ratio of

about 0:7000 and fP-N has a ratio of 1:2086. It is also interesting

to see that the observed relative frequency of the pair fP-fP

occurring at the interface is 1:2779 times of its surface background

relative frequency. Small residues (S) do not seem to be very

important for interfaces when the surface background has been

excluded, and the most favored amino acid category is the

aromatic (A) residue. In fact, except for Negatively charged

residues (N) and Disfavored Positively-charged residues (dfP),

interactions between Aromatic residues (A) and any other residue

are favored at the interface, and the coupling of A–A is the most

preferred. From this observation, we could infer that if we find an

aromatic residue on the protein surface, it is likely to be involved in

an interface.

To see how significant the coupling of, or dependency between,

the residues in the interface is, we compare the background

relative frequencies with the observed relative frequencies of the

contact pairs and triangles. The greater the difference the more

significant the coupling. These two relative frequencies are plotted

against each other in Figure 3. The dots off the diagonal line

suggest that the interface has favored and disfavored interactions

between different amino acid categories, i.e. if a dot is lower than

the diagonal line it is favored by the interface. In contrast, if a dot

is above the diagonal line it is disfavored by the interface. Instead

of using the absolute distance of the dot to the diagonal line, we

use the angle between the diagonal line and the vector defined by

both the dot and the origin, since our interest is in the relative

difference (See Methods for more details about the relationship

between the angle and the ratio). As shown in Figure 3A, the

observed relative frequencies of three pairs of amino acid

categories, A-A (ratio = 3.7509), H-H (ratio = 3.0240), and H-

A (ratio = 2.9116), have the greatest divergences from the

diagonal line. In Figure 3B, the greatest divergences come from

the triangles, A-A-A (ratio = 8.1842), H-H-H (ratio = 6.6022),

and H-A-A (ratio = 6.2720).

Figure 1. The observed relative frequencies of amino acids in interfaces. A. 20 amino acids; B. 7 amino acid categories.
doi:10.1371/journal.pone.0057031.g001

Local Network Patterns
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4-tuples of inter-protein contact sites
There are 6 different ways to form a connected graph on 4

nodes; these can be found in Figure 4. Here we think of 4-tuples

with nodes being inter-protein contact sites. We have counted the

different types of 4-tuples at interfaces (two residues on one protein

in contact with two residues on another protein) as well as the 4-

tuples composed of intra-protein interactions (four residues in

‘‘contact’’ within the same protein). Figure 4 shows the relative

frequencies of 4-tuples in the protein interior and at the protein-

protein interface. For intra-protein interactions, we have a larger

number of counts for subgraph ‘F’:0:0134, than ‘C’:0:0055; while

for inter-protein interactions, it the converse is seen as the relative

frequency of ‘F’ is 0:0025 less than the relative frequency 0:0043 of

‘C’. This is probably due to the rigidity requirement being

different between intra- and inter- protein interactions. From

subgraph ‘A’ to ‘F’, the rigidity of the local network is increasing,

while the flexibility is decreasing. There are many more counts of

subgraph ‘A’ at protein-protein interfaces than in protein interiors,

and fewer counts of subgraphs ‘D’, ‘E’, ‘F’ suggesting that the

protein-protein interface is more flexible than the protein interior.

This is understandable as the protein interior needs to have

enough rigidity to maintain the protein structure.

Figure 5 shows the relative frequencies of contact 4-tuples at

inter-protein interfaces in our data sets (See File S2 for the count

results of labeled 4-tuples at interfaces). According to [26], the high

frequency of the subgraph ‘B’ and low frequency of subgraph ‘F’

usually indicate that the structure of the underlying systems is too

complicated to be described with only a few parameters. Figure 5A

lists the observed relative frequencies of these 4-node-subgraphs.

Compared with subversion C1, A2 requires only that two contact

sites on one protein surface are also intra-protein neighbors, while

C1 asks for intra-protein contacts on both proteins. Subversion A2

is the most frequent 4-node-subgraph at interface, while C1 is even

less frequent than E1. The abundance of A2 and the rarity of C1

suggest that many inter-protein interactions are formed by the

contacts between one patch on one protein and two patches on the

Figure 2. Relative frequencies of contact pairs. A. Observed relative frequencies of different types of contact pairs at the interface. B. Ratios
between the observed relative frequencies of pair types at the interface and their background relative frequencies on the surface.
doi:10.1371/journal.pone.0057031.g002

Figure 3. Scatter plots of observed relative frequencies and their background relative frequencies. A. Contact pairs; B. Contact triangles.
The label ‘HA’ means the contact pair which consists of hydrophobic residue and aromatic residue, and the label ‘HAA’ is hydrophobic-aromatic-
aromatic triangle type.
doi:10.1371/journal.pone.0057031.g003

Local Network Patterns
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other. It is interesting to see that C1 is almost as rare as F1 at

interfaces; another observation is that while E1 requires more

contacts than C1 does, it is more frequent than C1. This

observation suggests that if the inter-protein interactions are

maintained between only two patches across an interface, A1 is the

most frequent contact 4-tuple; and if this interaction is tight, then it

tends to be as tight as E1. Finding more occurrences of F1 than of

E2 at an interface also suggests a tendency of clustering in binding.

When both intra-protein contacts are present, which is the case

for A1, C1, D1, E1, F1, one would assume that the more inter-

protein contacts, the less frequent the subgraph. However, this is

not always the case: E1 is more frequent than C1 despite more

contacts; C1 and D1 have the same number of inter-protein

contacts, yet D1 is far more frequent. When only one intra-protein

contact is present, as in A2, B1, D2 and E2, then D2 is more

frequent than B1 despite requiring one more inter-protein contact.

This indicates that there is a tendency to complete the ‘‘triangle’’

which is hidden in B1. These observations could be viewed as a

‘‘tendency to create triangles’’ at interface. When neither of the

intra-protein contacts are present, as in A3 and C2, then we see

that C2 is extremely rare, so that should rule out some inter-

protein contacts in the prediction: if we predict C2 then we are

most likely wrong. Since every site in our 4-tuples is an inter-

protein contact site, subversion A2 only asks for an extra intra-

protein interaction among those four sites, while A1 requires two

of them. Each of those two sites in A1 with only intra-protein edge

must have at least one inter-protein edge shared with some site

other than those ones in this subgraph. This explains why we

observed the A2 as the most frequent pattern at interface.

Furthermore we considered labeled 4-node-subgraphs, with the

label referring to the 7 categories. We note that there are

C1
7zC1

7C1
6zC2

7zC2
7C1

5zC4
7~210 different types of labeled 4-

tuples using our 7 amino acid categories; here

Cb
a~a(a{1) � � � (a{bz1)=(b(b{1) � � � 2:1). Similarly to contact

pairs and contact triangles, the comparison of background relative

frequencies and the observed relative frequencies for different

types of 4-tuples is shown in Figure 6. We calculated the ratios of

the observed relative frequencies of the labeled 4-tuples over the

corresponding background relative frequencies on the surfaces.

The 4-tuples of H-H-S-A and S-H-H-H have the highest relative

frequency to be contact 4-tuples, while S-H-N-P is expected to be

the most frequent at the interface according to the background

frequencies of S, H, N, and P on the surface. Against the

background of the surfaces, the most significant 4-tuple in the

interfaces is A-A-A-A.

We also counted the motif of ‘1-to-k’ with 1 residue on one

protein and k residues on the other protein in out data set. As

expected, the results suggest the similar conclusion that the larger

residues, aromatic residues and hydrophobic residues, tends to be

the residue in contact with many residues from the other protein.

The chi-square goodness-of-fit test [27] is applied to assess

whether the observed pairs, triangles, and 4-tuples can be

explained by the relative frequencies of different types of amino

acid categories occurring in the interfaces. We tested the null

hypothesis that the observed contact triangles and contact 4-tuples

can be given by the observed relative frequencies of different types

of contact pairs. All the tests for contact pairs, triangles, 4-tuples

reject the null hypothesis with the p-value far less than 0.0001.

Therefore, there is evidence that the observed local network

patterns at the interfaces cannot be explained by the relative

frequency of the observed amino acid types at the interfaces. The

triangles and the 4-tuples do contain significantly more informa-

tion than the contact pairs, suggesting that various constraints

have been introduced by the physicochemical properties of the

amino acid categories to its neighborhood at interface.

Screening the predicted interfaces by the local network
patterns.

Local network patterns were summarized using iScore (defined

in the materials and methods), and iScore was used to screen

protein-protein interfaces. Among the 15 complexes in DOCK-

GROUND which have an interface given by only two chains and

100 decoys and 1-10 near native structures, the lowest iScore was a

decoy for all 15 complexes; the highest iScore was a near-native

Figure 4. Comparison of distributions of intra-protein 4-tuples and inter-protein 4-tuples. From the left to right the 4-tuples are named
from ‘A’ to ‘F’ respectively. The relative frequencies for intra-protein 4-tuples are relative to the total number of the occurrences of all types of 4-tuples
in the protein interior. The relative frequencies for inter-protein 4-tuple are relative to the total number of the occurrences of all types of 4-tuples in
the protein-protein interface.
doi:10.1371/journal.pone.0057031.g004
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structure for 10 of the complexes; the top 5 highest iScore’s

contained at least one near-native structure for 13 of the 15

complexes. The power of the method for selecting near-native

structures can be measured by the average specificity and the

average sensitivity for all 15 complexes. Table 1 shows that iScore

achieves up to 83.6% specificity with 82% sensitivity, with similar

levels across the three data sets. Figure 7 gives the average PROC

curves across the 15 complexes; across the three data sets, iScore

achieves around 60% precision at 20% recall.

To see how this score works, we take 1KU6 as an example. In

DOCKGROUND, there are 100 decoys for 1KU6 numbered

from r-l_1 to r-l_100, and 10 near-native structures named as ‘r-

l_30133’, ‘r-l_30306’, ‘r-l_31538’, ‘r-l_49723’, ‘r-l_71222’, ‘r-

l_81617’, ‘r-l_94327’, ‘r-l_161170’, ‘r-l_182529’ and ‘r-

l_207655’. The structure with the highest iScore was a near-

native structure, r-l_182529, the structure with the lowest iScore

was a decoy, r-l_51, and the true interface in 1KU6 was ranked

within top 17. Figure 8 shows the 3D structures of the interfaces in

the complexes 1KU6, r-l_51, and r-l_182529. The RMSD of the

backbone atoms of the ligand after the receptor was optimally

superimposed is denoted by l_rmsd in DOCKGROUND, and the

l_rmsd’s of r-l_51 and r-l_182529 are 54:45 and 4:90, respectively.

The chi-square signal was calculated as described in the Method

section for the contact pairs, triangles, and 4-tuples, respectively,

and the results are reported in Figure 9. The chi-square scores are

calculated for 28 types of contact pairs (upper graph in Figure 9),

84 types of contact triangles (middle graph in Figure 9) and 210

types of contact 4-tuples (lower graph in Figure 9). The pair-type

signature is not very informative, the triangle-type signature is

somewhat informative; it is the 4-tuple signature which most

clearly indicates that the decoy r-l_51 deviates from the

background, whereas r-l_182529 is a near-native interface. As

shown in Figure 10, the results suggest that the near-native

structures as well as the real structure generally have higher

iScores than the decoys. We observed that 6 out of 100 decoys

exhibit a score at least as large as 1KU6. If we were thinking about

the classification problem as a hypothesis test, then the probability

that 1KU6 would be classified incorrectly was 7%. The figures of

iScore against l_rmsd for all 15 complexes in the data set have

been presented as Figure S7 in the File S3.

In this paper, we investigated the interactions of up to 4 residues

in the interfaces between proteins from a statistical viewpoint.

Considering the interfaces as networks with nodes of residues and

edges of contacts, we examined labeled contact pairs, triangles,

and 4-tuples. On our data set, the difference between the observed

relative frequencies of those labeled subgraphs across the interfaces

and the corresponding background relative frequencies gives an

idea of how significant the existence of such preferred patterns is.

These preferred patterns point to biological constraints on physical

proximity between those residues on one protein which are

involved in binding to residues which are close on the interacting

partner (C2 is extremely rare). The statistical tests suggest that

higher order labeled motifs have significantly more information

than what can be inferred by lower order motifs. Computationally,

Figure 5. 4-tuples of inter-protein contact sites. In the 4-tuples, the dotted edges stand for inter-protein contacts, while the solid edges are the
intra-protein contacts. The subversion k of category X is named Xk. e.g the sub-version 1 of type A is named A1. A. The observed relative frequencies.
B. Relative frequencies of 4-tuple subversions at interfaces.
doi:10.1371/journal.pone.0057031.g005

Local Network Patterns
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we find that interaction interfaces are far from random and

contain information beyond pairs and triangles. We exploited this

fact by providing a signature method for interfaces. A chi-square

score, called iScore, was calculated by comparing the profiles of

the local network patterns built in this paper with those patterns in

the predicted interfaces. The results suggest that the signal for the

decoy established by the profile of the contact 4-tuples is stronger

than that established by either the contact pairs or the contact

triangles. When based on the contact 4-tuples the score achieves

high specificity and sensitivity. The score demonstrates that the

local network patterns studied in this paper do capture some

characteristics of protein-protein interfaces. Future work will

investigate alternative scoring methods.

Materials and Methods

Data sets
The main data sets used in this study were built as described in

[23]; here is a brief review. Three data sets of 1150 two domain

proteins, 583 homodimers, and 94 heterodimers were used in this

paper to discover the local network patterns at interfaces. Each

entry in the database has a 3-D structure with a resolution better

than 2.5Å. The interface residues were identified as residues which

are 4.5Å or less away from a residue on the other protein or

domain. Domain annotations were collected from SCOP [28],

while the complexes were gathered by querying the PDB [29].

Sequence identity in the database is less than 70%, the change in

the accessible surface area (ASA) on binding for all proteins is

greater than 175Å2, and the sequence length of each chain is more

than 100. Notably, the crystal contacts are difficult to be excluded

completely from the database since a crystal contact may bury as

much as 800Å2 of the surface area [30]. However, in this paper,

the possible crystal contacts in the protein complexes can only be a

small portion of the whole data set of interfaces since we have

chosen the oligomeric state of 2 in PDB for the complexes. The set

of two-domain proteins comes from SCOP and will not have

crystal contacts. While the count numbers of different types 4-

cliques at interfaces of the combined database including all three

types of interfaces and the corresponding numbers counted at the

domain-domain interfaces have a correlation coefficient of 0.9988,

a chi-square test rejects the hypothesis that the distributions are the

same across the three databases. The domain-domain interfaces

being the largest of our three data sets, we first use the data set of

the domain-domain interfaces to discover the local network

patterns for interfaces, and then compare the findings to that of the

homodimer interfaces and heterodimer interfaces to reveal more

subtle characteristics for the interfaces. In the results section, unless

specified explicitly the data set mentioned in the Result section

means the data set of the domain-domain interfaces.

To assess the relevance of the preferred patterns, we proposed a

scoring method for selecting the near-native structures from

docking decoys. We selected all complexes with the interface given

by only two chains, A and B, from DOCKGROUND yielding 15

complexes, which are listed in Table 2. For each complex, the set

contains the top 100 nonnear-native structures with the highest

surface complementarity scores [24]. In DOCKGROUND, the

near-native structure is defined as the docking solution with l_rmsd

less than 5:0, where l_rmsd is defined as the RMSD of the

Figure 6. Counting of inter-protein 4-tuples in contact. Scatter
plot for observed relative frequencies and their background relative
frequencies for 4-tuples. The insert is an enlargement of a particular
area of the graph, and the corresponding dots are marked with red
circles. ‘AAAA’ is short for the aromatic-aromatic-aromatic-aromatic 4-
tuple type. ‘SHNP’ stands for the small-hydrophobic-negative-polar 4-
tuple type. ‘SHHH’ and ‘HHSA’ are the small-hydrophobic-hydrophobic-
hydrophobic and hydrophobic-hydrophobic-small-aromatic 4-tuple
types, respectively. The 4-tuples of ‘HHSA’ and ‘SHHH’ have the highest
relative frequency to be contact 4-tuples, while ‘SHNP’ is expected to be
the most frequent one at interface according to the background
frequencies of S, H, N, and P on the surface. ‘AAAA’ is the type of
contact 4-tuples with the largest divergence angle from the diagonal
line.
doi:10.1371/journal.pone.0057031.g006

Table 1. Comparison of the best performance achieved by
iScore on three datasets.

Data set Top N Specificity Sensitivity

Domain-domain interfaces 23 83.60% 82.00%

Homodimer interfaces 24 82.67% 82.67%

Heterodimer interfaces 28 78.87% 84.67%

The best performance was defined by selecting the top N scored structures to
reach the highest possible specificity and sensitivity at the same time.
doi:10.1371/journal.pone.0057031.t001

Figure 7. PROC for iScore based on different data sets. The
precision and recall for the scores based on each data set were
averaged over the results on 15 complexes from DOCKGROUND.
doi:10.1371/journal.pone.0057031.g007

Local Network Patterns

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e57031



backbone atoms of the ligand after the receptor was optimally

superimposed. The number of near-native structures or hits

included in each set ranges from 1-10 is listed in Table 2.

Analysis
We defined a contact pair at the interface as two surface

residues within 4.5Å of each other on different proteins, i.e one

residue from each protein. The observed relative frequency of a

contact pair of amino acid categories is defined as the ratio

between the counts of this pair of amino acid categories occurring

as a contact pair in our data set and the total number of all 28
different pairs of amino acid categories occurring as contact pairs

in our data set. The background relative frequency of an amino

acid category was calculated as the ratio between the counts of this

amino acid category occurring as an surface exposed residue in

our data set and the total number of the occurrences of all 7
different amino acid categories locating as surface residues in our

data set. The background relative frequency of a contact pair of

amino acid categories was established by the product of the

background relative frequencies of these two amino acid categories

in this pair. Mathematically, the observed relative frequency of a

contact pair of amino acid categories is denoted as

fpair(C1,C2)~
#(C1,C2)P

(D1,D2)[ (28 category�category pairs) #(D1,D2)
:

The number of occurrences, #(C1,C2), of the pair (C1,C2)
occurring as contact pair was calculated by counting the number

of contact pairs of amino acids (a1,a2) in our data set, where a1

belongs to the category C1 and a2 belongs to the category C2. The

corresponding background relative frequency of the pair, (C1,C2),
on the protein surface is given by g(C1)g(C2), where g(C) is the

relative frequency of the amino acid category C occurring on the

protein surfaces, i.e.

g(C)~
#(C)P

D[ (7 categories) #(D)
:

The number of occurrences #(C) of amino acid category C

occurring on the protein surfaces was established by counting the

number of surface residue a locating on the protein surfaces in our

data set, where a belongs to the category of C. Note that for the

relative frequency of a pair of amino acid categories, the ordering

of the amino acid categories in a contact pair does not matter.

For three surface exposed sites, two of which come from one

protein and one from the other protein, contact triangles are

defined when the distance between each pair of sites in the triangle

is less than 4.5Å. The observed relative frequency of a contact

triangle of amino acid categories is

Figure 8. Structures of the interfaces. The structures have two chains, chain A and chain B, marked in green and red, respectively. In the
interface, the contact sites on chain A are highlighted in blue, while those on chain B are in magenta. (A)r-l_51; (B)1KU6;(C)r-l_182529.
doi:10.1371/journal.pone.0057031.g008

Figure 9. Comparing the signatures of the correct 1KU6
interface with that of decoys. The signature of a complex is the
vector of chi-square scores calculated by comparing the local network
patterns in the predicted interface with the profiles of those patterns
revealed in this paper. The 4-tuple signature reveals most clearly that
the non-near-native decoy r-l_51 deviates from the background,
whereas r-l_182529 is closer to the background and has a near-native
interface.
doi:10.1371/journal.pone.0057031.g009
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ftriangle(C1,C2,C3)

~
#(C1,C2,C3)P

(D1,D2,D3)[ (84 category�category�category triangles) #(D1,D2,D3)
:

The counts, #(C1,C2,C3), of the triangle (C1,C2,C3) occurring

as contact triangle was calculated by counting the number of

contact triangle of amino acids (a1,a2,a3) on our data set, where

ai(i~1,2,3) belongs to the category Ci(i~1,2,3) respectively. The

background relative frequency of the triangle C1,C2,C3 on the

protein surface was calculated as g(C1)g(C2)g(C3), where g(C)
uses the same definition as described in the last paragraph. Again,

Figure 10. Scores against l_rmsd. Scores established by the profiles of the local network patterns given by heterodimer interfaces. l_rmsd: the
RMSD of the backbone atoms of the interface residues after they have been optimally superimposed. r-1_182529 has a near-native interface and has
the highest iScore, and r-1_51 is a poor decoy and has the lowest iScore.
doi:10.1371/journal.pone.0057031.g010

Table 2. Complex list.

ID Complex Class. Rec. Chain RMSD Res. Lig. Chain RMSD Res. RMSD Hits

1 1e96_A_B 0 1mh1 A:A 0.73 1.38 1hh8 A:B 0.62 1.80 2.82 10

2 1gpw_A_B 0 1thf D:A 3.56 1.45 1k9v F:B 0.69 2.40 2.59 10

3 1he8_A_B 0 1e8y A:A 2.31 2.00 2evw X:B 1.20 1.05 4.93 1

4 1ma9_A_B 0 1kw2 A:A 0.99 2.15 2fxu A:B 9.53 1.35 2.86 10

5 1s6v_A_B 0 2eut A:A 0.96 1.12 1ycc A:B 1.97 1.23 3.18 4

6 1xd3_A_B 0 1uch A:A 2.45 1.80 1yj1 A:B 2.73 1.30 3.64 10

7 2a5t_A_B 0 1pb7 A:A 2.73 1.35 2a5s A:B 2.31 1.70 4.95 1

8 2ckh_A_B 0 2ckg A:A 0.82 2.45 1wm3 A:B 0.76 1.20 2.47 10

9 3fap_A_B 0 1bkf A:A 0.63 1.60 1aue A:B 0.69 2.33 3.67 10

10 1avw_A_B 1 2a31 A:A 0.78 1.25 1avu A:B 0.76 2.30 2.92 10

11 1ku6_A_B 1 2c0q A:A 4.06 2.50 1fas A:B 0.71 1.80 4.37 10

12 1oph_A_B 1 1qlp A:A 3.12 2.00 1hj9 A:B 2.53 0.95 1.28 10

13 1tmq_A_B 1 1jae A:A 0.77 1.65 1b1u A:B 1.42 2.20 2.07 10

14 2bkr_A_B 1 2bkq A:A 2.33 2.00 1ndd A:B 1.02 1.60 1.58 10

15 1u7f_A_B 0 1mjs A:A 2.26 1.91 1ygs A:B 1.29 2.10 1.19 10

Complexes selected from DOCKGROUND to demonstrate the use of the observed local network pattern at the interface.
Class.: (1) enzyme/inhitor, (0) others.
Rec.: pdb code of unbound structure of protein 1; Lig.: pdb code of unbound structure of protein 2.
Chains before colon are in unbound structure; chains after colon are in co-crystallized structure.
RMSD: C_alpha rmsd of unbound and co-crystallized structure.
Res.: crystal structure resolution.
Hits: the number of near-native solution kept in each decoy set.
doi:10.1371/journal.pone.0057031.t002
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the ordering of the three amino acids within a triangle does not

affect the relative frequencies of the triangles. Therefore, the ratios

of the contact pairs and triangles are given by

r(C1,C2)~fpair(C1,C2)=g(C1)g(C2),

and

r(C1,C2,C3)~ftrangle(C1,C2,C3)=g(C1)g(C2)g(C3):

For four surface exposed sites on two proteins, two sites from

each protein, 4-tuples are defined if these 4 sites are connected in

one of the ways listed in Figure 4, where two sites are said to be

‘‘connected’’ if the distance between any two atoms in the two

residues is less than 4.5Å. The inter-protein 4-tuples must include

at least one inter-protein interaction, while the intra-protein 4-

tuples consist of intra-protein interactions only. If we distinguish

the inter-protein interactions from the intra-protein interactions in

a 4-tuple, the connecting patterns of 4-tuples can be further

divided into 11 types as presented in Figure 5A. Again, since

protein A binding to protein B is the same as the protein B binding

to protein A, for a 4-tuple we specified that two of the sites are on

protein A and two are on protein B, but we did not distinguish

which two are on which protein. Therefore, the order of the amino

acid categories in a labeled 4-tuple does not affect the relative

frequencies of labeled 4-tuples. Mathematically, for different

labeled 4-tuples, the ratios were calculated by dividing the

observed relative frequency of a labeled 4-tuple occurring as a

contact 4-tuple by the corresponding background relative

frequency of this type of 4-tuple presenting on protein surfaces.

Mathematically, for labeled 4-tuple (C1,C2,C3,C4), the observed

relative frequency is defined as

f4{tuple(C1,C2,C3,C4)

~
#(C1,C2,C3,C4)P

(D1,D2,D3,D4)[ (210 category�category�category�category 4�tuples) #(D1,D2,D3,D4)
:

The counts, #(C1,C2,C3,C4), of the 4-tuple (C1,C2,C3,C4)
occurring as 4-tuple were calculated by counting the number of 4-

tuples of amino acids (a1,a2,a3,a4) on our data set, where

ai(i~1,2,3,4) belongs to the category Ci(i~1,2,3,4) respectively.

Similarly, its background relative frequency is defined as the

product of the relative frequencies of amino acid categories

occurring on the protein surfaces. Therefore, the ratio of a 4-tuple

is given by

r(C1,C2,C3,C4)~f4{tuple(C1,C2,C3,C4)=g(C1)g(C2)g(C3)g(C4): ð1Þ

In a plot of observed relative frequency against background

relative frequency, we note that the

ratio~
observed relative frequency

background relative frequency

can be viewed as cot (a), where a is the angle between the point

(observed relative frequency; background relative frequency) and

the x-axis. Therefore, the larger the ratio, the more significant the

difference.

The chi-square goodness-of-fit test [27] was applied to assess

whether the observed pairs, triangles, and 4-tuples can be

explained by the relative frequencies of different types of amino

acid categories occurring in the interfaces as follows

x2~
Xk

i~1

(Oi{Ei)
2=Ei,

where Oi is the observed frequency for category i and Ei is the

expected frequency for category i. The degrees of freedom of this

chi-square test is k{c, where k is the number of non zero cells and

c is the number of estimated parameters.

The probability of 7 types of amino acid categories occurring at

interface are denoted as pi , i~1,2, � � � ,7. The null model for the

probability pij of seeing a pair (i,j) is

pij~
p2

i if i~j,

2pipj if ivj:

(

The number of estimated parameters is 6, since there are 7
categories of amino acids, and the number of non zero cells is 28 as

there are 28 different types of contact pairs without considering the

order of the amino acid types in a pair. The number of degrees of

freedom for the chi-squared distribution is 28{6~22. For a

triangle (i,j,k), its probability given by the null model is

pijk~

p3
i if i~j~k,

3pip
2
j if ivj~k,

6pipjpk if ivjvk:

8><
>:

The number of estimated parameters is also 6, and the number

of non zero cells is 84. The number of degrees of freedom for the

chi-squared distribution is 84{6~78. For a 4-tuple (i,j,k,l), its

probability under the null hypothesis of independent categories

can be calculated as

pijkl~

p4
i if i~j~k,

4pip
3
j if ivj~k~l,

6p2
i p2

k if i~jvk~l,

12pipjp
2
k if ivjvk~l,

24pipjpkpl if ivjvkvl:

8>>>>>><
>>>>>>:

The number of non zero cells is 210, and the number of degrees

of freedom for the chi-squared distribution is 210{6~204.

Similarly, the test was carried out for edges to see whether the

null hypothesis of contact triangles and contact 4-tuples at the

interfaces can be explained by the frequency of contact pairs

occurring at the interfaces can be rejected. As described above we

have 28 different types of contact pairs. For a triangle (i,j,k), its

probability pi,j,k given by the null model of independent pairs is

pijk~
1

p

p3
ii if i~j~k,

3p2
ijpjj if ivj~k,

6pijpjkpik if ivjvk,

8><
>:
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where p~
P

iƒjƒk pijpjkpik. The number of estimated parameters

is 27, the number of non-zero cells is 84, so the number of degrees

of freedom is 84{27~57.

For a 4-tuple (i,j,k,l), its probability given by the null model of

independent pairs was calculated as

pijkl~
1

p

p4
ii if i~j~k,

4pijp
3
jj if ivj~k~l,

6p2
iip

2
kk if i~jvk~l,

12piipjjp
2
kk if ivjvk~l,

24pijpjkpklpil if ivjvkvl:

8>>>>>><
>>>>>>:

where p~
P

iƒjƒkƒl pijpjkpklpil . The number of degrees of

freedom is 210{27~183.

By comparing the observed local network patters in the

interface of a protein complex with the local network profiles

established on our data set, a chi-square score can be calculated for

this interface. Taking the coordinates of the residues in the

interface of interest as the input, we built its contact map as

described before; and then, we counted different types of the

contact pairs, the contact triangles, and the contact 4-tuples on this

contact map. For example, for the contact 4-tuple (i,j,k,l), the

counting results form the observation, O(i,j,k,l) for one predicted

complex, while the profiles established on our data set give the

expectation, E(i,j,k,l)~p̂p(i,j,k,l)

P
O(i,j,k,l), where p̂p(i,j,k,l) is the

observed relative frequency of the contact 4-tuple, (i,j,k,l), on

our data set of protein-protein interfaces. Since there are 210 types

of contact 4-tuples in total, the chi-square score for the t-th type of

the contact 4-tuples for this interface is given by

St~
(Ot{Et)

2

Et

:

The chi-square scores for all types of contact 4-tuples establish a

chi-square signature for the interface of interest, and we also carried

out the chi-square goodness-of-fit between the observed pattern in

the interface of interest and the profile pattern established in this

paper. The protein-protein interface established by a docking

algorithm was scored in terms of the above chi-square scores for all

types of contact 4-tuples at the interface as follows:

iScore~{
X210

t~1

St:

Since the near-native structures form only 7.75% of all

structures in the decoy set, the PROC (Precision Recall Operating

Characteristic) curve [31] will be more informative than a

traditional ROC (Receiver Operating Characteristic) curve [32],

especially when the score cut-off is high. Let TP stand for the

number of true positives, FP for the number of false positives, TN

for the number of true negatives and FN for the number of false

negatives, and then

Sensitivity~
TP

TPzFN
,Specificity~

TN

TNzFP
;

Precision~
TP

TPzFP
,Recall~

TP

TPzFN
:

The ROC curve plots sensitivity versus specificity, while the

PROC curve plots precision against recall.
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