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Abstract

This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits’ essential oils, against E. coli.
The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being
more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not
modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-
limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-
plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important
targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed
identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: b-sheet
proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E.
coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered b-
sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The
study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the
inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food
preservation, either acting alone or in combination with lethal heat treatments.
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Introduction

The compound (+)-limonene is the major constituent of citrus

fruits’ essential oils (EOs) [1,2]. Because of its citrus-like flavor, (+)-

limonene is employed as a flavoring agent in perfumes, creams,

soaps, household cleaning products and in some food products

such as fruit beverages and ice creams [3]. In addition, (+)-

limonene has been found to possess antifungal [4,5], bacteriostatic

[6,7] and bactericidal [8] properties. Therefore, its use as a food

preservative has also been proposed [9].

Antimicrobial compounds have been successfully combined

with other preservation technologies in order to achieve a

synergistic effect in the inactivation of the target pathogens,

following the hurdle theory proposed by Leistner and Gorris [10].

For example, exposure of Escherichia coli or Cronobacter sakazakii to

citral combined with high hydrostatic pressure (HHP), pulsed

electric fields (PEF) or heat treatments, respectively, increased the

inactivation degree achieved for each hurdle acting alone

[11,12,13]. Similarly, plenty of other compounds present in EOs

were found to be effective in combination with heat in the

inactivation of E. coli and Listeria monocytogenes [14]. Combinations

of (+)-limonene with heat or non-thermal technologies could

likewise yield a similar synergistic effect in the inactivation of the

target pathogens while preserving the organoleptic properties of

the fresh food product.

The use of (+)-limonene in the design of food preservation

processes requires a proper understanding of its mechanism of

inactivation and of the influence of environmental factors that

might affect it. (+)-Limonene belongs to the cyclic monoterpene

hydrocarbon family, which are considered to accumulate in the

microbial plasma membrane and thus cause a loss of membrane

integrity and dissipation of the proton motive force [15]. Previous

studies on the inactivation of E. coli by other terpenes and

terpenoids (such as carvacrol or citral) have demonstrated the

occurrence of sub-lethal injury in the outer and cytoplasmic

membranes [13,14], pointing out the membrane disruption as a

mechanism of inactivation by these compounds. However, the

precise targets of terpenes and terpenoids are not yet completely

understood.

Description of cellular target of antimicrobial compounds could

be assisted by the use of Fourier transform-infrared (FT-IR)

spectroscopy [16]. FT-IR spectroscopy is a physico–chemical

analytical technique based on measurement of vibration of a

molecule excited by IR radiation at a specific wavelength range.

Specially, attenuated total reflectance infrared microspectroscopy

(ATR-IRMS) provides bands from all the cellular components of
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microorganisms (e.g. cell membrane and wall components,

proteins and nucleic acids), giving spectral signatures or ‘‘finger-

prints’’ that permit the classification of a microorganism at the

strain and serovar level [17].

Regulation of gene expression by alternative sigma factors,

which are proteins that act as transcription initiation factors

through specific binding of RNA polymerase to gene promoters is

key in bacterial resistance to food preservation technologies [18].

In many Gram-negative and Gram-positive genera, sigma factors,

sS (encoded by rpoS gene) and sB (encoded by sigB gene),

respectively, are responsible for the transcription of specific

stationary-phase genes [19]. Besides, these sigma factors could

also be responsible for cell protection under environmental stresses

such as acid, cold, heat or osmotic shocks [19,20,21]. Since

previous work showed that the expression of RpoS contributed to

the higher resistance of E. coli to the terpene aldehyde citral [13], a

similar regulation could be expected for other chemical com-

pounds such as (+)-limonene.

The aims of this work were: (a) to study the inactivation of

Escherichia coli BJ4 by (+)-limonene, describing the effect of the pH

of the treatment medium, deletion of sigma factor sS and sub-

lethal shocks; (b) to study the occurrence of lethal and sub-lethal

injuries caused by (+)-limonene in bacterial envelopes of E. coli BJ4

and MC4100; (c) to identify the E. coli BJ4 structures affected by

(+)-limonene through ATR-IRMS spectroscopy, and (d) to

determine the synergistic lethal effect obtained when combining

(+)-limonene with heat and PEF treatments to inactivate E. coli

O157:H7.

To accomplish these objectives we used different E. coli strains.

In the first part, dedicated to describing the mechanism of

inactivation by (+)-limonene the strains E. coli BJ4 and its DrpoS

mutant [22] were used to study the influence of this alternative

sigma factor in the bacterial resistance to (+)-limonene, and E. coli

K-12 MC4100 and its DlptD4213 mutant [23] to study the role of

the outer membrane in this resistance. In the second part,

dedicated to demonstrating that knowledge of the mechanism of

inactivation by (+)-limonene may have an applied interest to

develop food preservation combined processes. Thus, we evalu-

ated the efficacy of a combined process using (+)-limonene to

inactivate the foodborne bacterium E. coli O157:H7 in fruit juices

in which this pathogen uses to cause food safety problems.

Materials and Methods

Micro-organisms and growth conditions
The strains used were Escherichia coli BJ4 and its DrpoS null

mutant BJ4L1 [22], E. coli K-12 MC4100 and its DlptD4213

mutant [23] and E. coli O157:H7 VTEC - (Phage type 34) [24].

The cultures were maintained in cryovials at -80 uC prior to use.

Broth subcultures were prepared by inoculating one single colony

from a plate, a test tube containing 5 mL of sterile tryptic soy

broth (Biolife, Milan, Italy) with 0.6% yeast extract added (Biolife)

(TSBYE). After inoculation, the tubes were incubated overnight at

37 uC. With these subcultures, 250 mL Erlenmeyer flasks

containing 50 mL of TSBYE were inoculated to a final

concentration of 104 CFU/mL. These flasks were incubated with

agitation (130 rpm; Selecta, mod. Rotabit, Barcelona, Spain) at

37u C until the stationary growth phase was reached.

Bacterial treatment with (+)-limonene
(+)-Limonene (97% purum) was purchased from Sigma-Aldrich

(Sigma-Aldrich Chemie, Steinheim, Germany). This compound is

practically immiscible in water, so a vigorous shaking method was

used to prepare suspensions. (+)-Limonene was added at a final

concentration of 200 mL/L to tubes containing 10 mL of citrate-

phosphate buffer of pH 4.0 (23.85 g/L) and 7.0 (27.09 g/L).

Before treatments, bacterial cultures were centrifuged at 6,000Ng
for 5 min and resuspended in the same buffer that of each

treatment. Microorganisms were added at a final concentration of

3?107 CFU/mL and maintained under constant agitation

(130 rpm) at 20 uC. Samples were taken at regular intervals, and

survivors were enumerated. According to previous studies [13,14],

treatment time and temperature; and initial concentrations of (+)-

limonene and bacteria were chosen to detect 5 log10 cycles of cell

inactivation (i.e. from 3?107 to 3?102 CFU/mL). Minimal

inhibitory concentration (MIC) of (+)-limonene determined using

the tube dilution method [25] for E. coli BJ4 and O157:H7 was

5 mL/mL (data not shown).

Previous experiments showed that native E. coli was insensitive

to incubation in citrate–phosphate buffer at pH 7.0 or pH 4.0 for

24 h at 20 uC.

Sub-lethal heat, cold and acid shock treatments
One 1-mL aliquot of bacterial suspensions was centrifuged at

10,000Ng for 5 min and resuspended in 1 mL of TSBYE at 45uC or

0uC (sub-lethal heat and cold shocks, respectively) or in TSBYE

acidified to pH 4.5 with HCl at 20 uC (sub-lethal acid shock). Sub-

lethal heat shock was performed by immersing the bacterial

suspensions in a thermostatic water bath (Bunsen, mod. BTG,

Madrid, Spain) and holding at 45 uC for 2 h. Suspensions were

kept on ice for 4.5 h (sub-lethal cold shock) or at 20uC (sub-lethal

acid shock) for 1 h. Microbial resistance to (+)-limonene was

assessed as explained above. These conditions were chosen from

previous published work [26,27].

Cell permeabilization by (+)-limonene
Permanent cell permeabilization of E. coli BJ4 was evaluated

after the treatment with 200 mL/L of (+)-limonene (initial cell

concentration: 3?107 CFU/mL) for different treatment times

(10 min, 25 min, 1 h, 6 h, 24 h) at pH 4.0 and 7.0 at 20u C. Cells

were centrifuged, supernatant was removed, and propidium iodide

(PI) (Sigma – Aldrich, Madrid, Spain) was added to a final

concentration of 0.08 mmol/L [28]. Cell suspensions were

incubated for 15 min at 20u C, centrifuged at 10,000?g for

5 min, and washed three times until no extracellular PI remained

in the buffer. Cell permeabilization was analyzed using a

fluorescence microscope (Nikon, Mod. L-Kc, Nippon Kogaku

KK, Japan).

Attenuated total reflectance infrared microspectroscopy
(ATR-IRMS) with multivariate analysis

An aliquot of cell suspensions was centrifuged at 6,000?g for

10 min at 4u C. Pellets were washed three times with 1 mL of

0.9% NaCl and centrifuged at 6,000?g for 10 min. Pellets were

placed onto grids of hydrophobic membrane (HGM; ISO-GRID,

Neogen Corporation, Lansing, MI, USA) and dried out under

laminar flow at room temperature for 1 h. Samples were analyzed

by IR equipment (Illuminate IR, Smiths detection, The Genesis

Centre Science Park South Birchwood Warrington, United

Kingdom) interfaced with mercury-cadmium-telluride photocon-

ductive detector and equipped with a microscope with a motorized

x-y stage, 20x and 50x objectives, and slide-on attenuated total

reflection (ATR) diamond objective (Smiths detection, United

Kingdom). The hydrophobic membranes were placed on the stage

of the microscope and a specific position of the microbial pellet

was selected with the assistance of the microscope and live camera

(Leica OM 2,500, Module FT-IR, Renishaw plc, New Mills,
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Wotton-under-Edge, Gloucestershire, United Kingdom). The

microscope was software-controlled using Wire 3.2 version

software (Renishaw plc, United Kingdom). Spectra were collected

from 4,000 to 800 cm21 with a resolution of 4 cm21. The

spectrum of each sample was obtained by taking the average of

128 scans. Spectra were displayed in terms of absorbance obtained

by rationing the single beam spectrum against that of the air

background. The spectrometer was completely software controlled

by synchronize IR basic version 1.1 software (SensIR Technolo-

gies, Smiths detection, United Kingdom). PirouetteH multivariate

analysis software (version 4.0, InfoMetrix, Inc., Woodville, WA)

was used to analyze the raw spectra of bacterial cells. The IR

spectral data were mean-centred, transformed to their second

derivative using a 15-point Savitzky-Golay polynomial filter, and

vector-length normalized; sample residuals and Mahalanobis

distance were used to determine outliers [29,30]. Soft independent

modeling of class analogy (SIMCA) was used to build a predictive

model based on the construction of separate principal component

analysis (PCA) models for each class. SIMCA class models were

interpreted based on class projections, misclassifications and

discriminating power. Class projections were visible through

three-dimensional graphics of clustered samples. Probability

clouds (95%) are built around the clusters based on PCA scores,

allowing SIMCA to be used as a predictive modeling system. Total

misclassifications were analyzed and interpreted for the input data.

Variable importance, also known as discriminating power, was

used to define the variables (wavenumbers) that have a predom-

inant effect on bacterial classification, minimizing the difference

between samples within a cluster, and maximizing differences

between samples from different clusters. SIMCA analysis assesses

itself by predicting each sample included in the training set

comparing that prediction to its assigned class; this assessment is

referred to as misclassifications. Zero misclassifications typify a

model in which all samples were correctly predicted to the pre-

assigned class. Compared samples were E. coli BJ4 (initial

concentration: 3?107 CFU/mL) after being incubated for 24 h at

20u C in absence or presence of 200 mL/L of (+)-limonene in

citrate-phosphate buffer of pH 4.0 or 7.0.

Duration of lag phase in untreated and (+)-limonene-
treated cells

E. coli BJ4 at an initial concentration of 3?107 CFU/mL were

treated for 20 min with 200 mL/L of (+)-limonene in citrate –

phosphate buffer of pH 4.0 so that 1 log10 cycle of inactivation was

reached. At this moment, cells were centrifuged and resuspended

in TSBYE without (+)-limonene. Non-treated cells were also

centrifuged, resuspended in TSBYE without (+)-limonene and

adjusted at the same final concentration of live cells (3?106 CFU/

mL). Optical absorbance was measured at 590 nm during growth

for 14 h of both samples at 37 uC with a spectrophotometer

(GENios, Tecan, Austria).

Microbial inactivation by the combination of a lethal heat
treatment and (+)-limonene

Tubes containing 5 mL of apple juice or orange juice in absence

or presence of (+)-limonene added to a final concentration of

200 mL/L were placed in a shaking thermostatic bath at 54 uC
(Bunsen, mod. BTG, Madrid, Spain). Before treatments, bacterial

suspensions of E. coli O157:H7 were centrifuged at 10,000?g for

5 min and resuspended in apple or orange juice. Once the

treatment temperature was reached, the microbial suspension was

added to a final concentration of 3?107 CFU/mL. Samples were

taken after 10 min and survivors were enumerated. These

treatment conditions were chosen to make these data comparable

with previously published data obtained under the same conditions

[1,12,14,31].

Microbial inactivation by the combination of pulsed
electric fields and (+)-limonene

PEF treatments were carried out in an equipment that delivered

an exponential-decay pulse previously described by Garcı́a et al.

[32], provided with a parallel-electrode treatment chamber with a

distance of 0.25 cm between electrodes and an area of 2.01 cm2.

Before treatments, bacterial suspensions of E. coli O157:H7 were

centrifuged at 10,000?g for 5 min and resuspended in shelf-stable

apple juice (pH 3.6) or orange juice (pH 3.8) (Don Simón, Murcia,

Spain). Bacterial cultures were added to tubes containing 5 mL of

each of these media with or without 200 mL/L of (+)-limonene,

and 0.5 mL of these suspensions were placed into the treatment

chamber with a sterile syringe. Exponential waveform pulses at an

electrical field strength of 30 kV/cm and a pulse repetition rate of

1 Hz were used in this study. Experiments started at room

temperature and after the application of 25 pulses the temperature

of the samples was below 35u C. After treatment, samples were

taken and survivors were evaluated.

Survival counts
After treatments, samples were adequately diluted in 0.1% w/v

Peptone Water (Biolife), containing 1% v/v Tween 80 (Biolife) as a

neutralizer. 0.1 ml aliquots from the neutralized samples were

pour-plated onto Tryptic Soy Agar with 0.6% Yeast Extract added

(TSAYE) as non-selective medium. Plates were incubated at 37uC
for 24 h. Previous experiments showed that longer incubation

times did not influence the survival counts. In order to determine

bacterial cell injury, treated samples were also plated onto selective

media: TSAYE with 4% (E. coli BJ4 and MC4100) or 3% (E. coli

BJ4L1, O157:H7 and MC4100 DlptD4213) sodium chloride

(Sigma-Aldrich, Madrid, Spain) added (TSAYE-SC) to evaluate

cytoplasmic membrane damage; and onto TSAYE with 0.35% (E.

coli O157:H7) or 0.2% (E. coli BJ4 and BJ4L1) bile salts (Biolife)

added (TSAYE-BS) to evaluate outer membrane damage. These

levels of sodium chloride and bile salts were determined as the

maximum non-inhibitory concentrations for native cells. Plates

containing selective media were incubated for 48 h at 37uC.

Previous experiments showed that longer incubation times did not

influence survival counts.

After incubation of plates, colonies were counted with an

improved image analyzer automatic counter (Protos; Analytical

Measuring Systems, Cambridge, United Kingdom) as described

by Condón et al. [33]. The extent of sub-lethal injury was

expressed as the difference between the log10 count (CFU) on non-

selective medium (TSAYE) and the log10 count on selective media

(TSAYE-SC and TSAYE-BS) after treatments. According to this

representation, ‘‘2 log10 cycles of injured cells’’ means a 2-log10

difference in the count on selective and non-selective media or that

99% of survivors were sub-lethally injured.

Statistical analysis
Experiments were carried out in triplicate on different working

days. Inactivation was expressed in terms of the extent of reduction

in log10 counts after every treatment. The error bars in the figures

indicate the mean 6 standard error from the data obtained from

at least three independent experiments. Analyses of variance

(p = 0.05) were performed using SPSS software (SPSS, Chicago,

IL, USA).
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To characterize the growth kinetics, the absorbance values were

fit using nonlinear regression with the Gompertz model [34],

which in this case can be described by the equation:

A tð Þ~C|exp {exp {B| t{Mð Þð Þð Þ

where A(t) is the absorbance value in time t, C is the absorbance

value in the stationary phase, B is the relative growth rate in point

M, and M is the time in which the cells reach their maximum

growth rate. The lag phase duration was calculated as M{ 1=Bð Þ.

Results

Inactivation of Escherichia coli BJ4 by (+)-limonene: effect
of treatment medium pH, deletion of rpoS and sub-lethal
shocks

The antimicrobial activity of 200 mL/L of (+)-limonene on the

survival of 3?107 CFU/ml of E. coli BJ4 and its rpoS mutant BJ4L1

was tested at pH 4.0 and 7.0 for 10 min, 6 h and 24 h (Figure 1).

Both E. coli strains were less resistant at pH 4.0 than at pH 7.0:

after 24 h of treatment less than 2 log10 cycles of the initial

populations were inactivated at pH 7.0 (Figure 1B), while a

treatment of 6 h at pH 4.0 was able to inactivate more than 3

log10 cycles of both strains, and about 5 log10 cycles of inactivation

were achieved after 24 h of storage (Figure 1A).

Regarding the comparison between the wild and the mutant

strain, both wild type and rpoS mutants showed a similar (+)-

limonene resistance for all the treatments assayed (p.0.05).

Development of cross-resistance to (+)-limonene as a conse-

quence of sub-lethal shocks was studied. On the one hand,

exposure to a previous sub-lethal heat or acid shock did not affect

the final inactivation reached by (+)-limonene in E. coli, since no

statistically significant differences were found when compared to

the control treatment (p.0.05). On the other hand, exposure to a

sub-lethal cold shock significantly decreased (p,0.05) the resis-

tance of both strains to (+)-limonene (Table 1).

Bacterial counts were not modified (p.0.05) by incubation in

citrate–phosphate buffer at pH 7.0 or pH 4.0 without (+)-

limonene for 24 h at 20 uC (data not shown).

Occurrence of sub-lethal damage after (+)-limonene
treatments in E. coli BJ4

The enumeration of the survivors on the selective medium

TSAYE-SC (with sodium chloride) and TSAYE-BS (with bile salts)

(Figure 2) revealed that storage for 6 h with 200 mL/L of (+)-

limonene caused sub-lethal damages neither to the cytoplasmic

nor to the outer membrane of E. coli BJ4, since the levels of

inactivation in these media were similar to those detected in

TSAYE for each pH (p.0.05, Fig. 1). The same conclusion was

drawn from the survival counts after 10 min and 24 h of treatment

(data not shown).

Bacterial counts in selective or non-selective media were not

modified (p.0.05) by incubation in citrate–phosphate buffer at

pH 7.0 or pH 4.0 without (+)-limonene for 24 h at 20 uC (data not

shown).

Moreover, we evaluated the growth of treated and non-treated

cells after exposure/non-exposure to (+)-limonene. Since expo-

nential phase started after 2 h post-inoculation in both populations

(2.1960.19 h) no lag phase delay was detected in treated cells

(p.0.05) (data not shown).

Figure 1. Study of the effect of time, pH and rpoS deletion on
Escherichia coli BJ4 inactivation by (+)-limonene. Log10 of survival
counts of Escherichia coli BJ4 (wild type: %) and BJ4L1 (DrpoS: ) after
10 min, 6 h and 24 h with 200 mL/L of (+)-limonene in citrate-
phosphate buffer of pH 4.0 (A) or 7.0 (B) at 20u C. Cells were recovered
in TSAYE. Discontinuous line indicates initial cell concentration (3?107

CFU/mL). Arrow indicates survival counts under detection limit. Error
bars indicate standard error.
doi:10.1371/journal.pone.0056769.g001

Table 1. Influence of previous sub-lethal heat, cold and acid
treatments on Escherichia coli BJ4 resistance to (+)-limonene.

Escherichia coli BJ4 Escherichia coli BJ4L1

Control 4.24a60.24 4.16a60.21

Heat-shock 4.00a60.18 3.72a60.33

Cold-shock 3.00b60.41 ,2.18c

Acid-shock 4.89a60.21 4.55a60.23

a, b, c: same letters indicate non-significant differences among mean values;
p.0.05.
Log10 of survival counts (CFU/mL) of Escherichia coli BJ4 (wild type) and BJ4L1
(DrpoS) (initial concentration: 3?107 CFU/mL) by a treatment with 200 mL/L of
(+)-limonene in citrate-phosphate buffer of pH 4.0. Table includes data from
non-stressed cells (control) and cells exposed to different sub-lethal shocks
before (+)-limonene treatments (mean 6 standard error). Sub-lethal heat shock:
45 uC/2 h; sub-lethal cold shock: ice/4.5 h; sub-lethal acid shock: pH 4.5/1 h.
doi:10.1371/journal.pone.0056769.t001
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Membrane permeabilization of E. coli BJ4 by (+)-
limonene

Permanent membrane permeabilization of E. coli BJ4 was

demonstrated by the uptake of the fluorescent probe PI. As can be

seen in Figure 3, a direct correlation (R2 = 0.96) was found

between the percentage of inactivated cells and the percentage of

permeabilized cells after adding 200 mL/L of (+)-limonene for

different treatment times. Furthermore, as seen with cell inacti-

vation, the percentage of permeabilized cells after 10 min of

exposure to (+)-limonene was influenced by pH: after 1 h, E. coli

showed maximum cell permeabilization (.90%) at pH 4.0,

corresponding to more than 2 log10 cycles of cell inactivation,

while at pH 7.0 only about 50% of cells were permeabilized and

inactivated. After incubation in the presence of (+)-limonene for

24 h, maximum cell permeabilization (.90%) was observed at

both pHs.

No membrane permeabilization (p.0.05) was detected after

incubation in citrate–phosphate buffer at pH 7.0 or pH 4.0

without (+)-limonene for 24 h at 20 uC (data not shown).

Attenuated total reflectance infrared microspectroscopy
of E. coli BJ4 cells after (+)-limonene treatments

Typical spectra of E. coli BJ4 with the presence or absence of (+)-

limonene at pH 4.0 and 7.0 are shown in Figures 4A and 4D,

respectively. Class projections illustrate the ability of SIMCA to

differentiate IR data based on the first 3 principal components.

Since the range of 4000 to 2000 cm21 was not significant to

describe the biochemical differences among our samples

Figures 4B, 4C, 4E and 4F only includes data obtained from the

range 1,900–800 cm21. Our classification models obtained from

derivatized infrared spectra (1900–800 cm21) of E. coli BJ4 cells

(Figures 4B and 4E) allowed for the tight clustering and clear

differentiation of E. coli BJ4 samples according to the presence or

absence of (+)-limonene for each pH. Discriminating power of

SIMCA is a measure of variable importance in infrared frequency

and contributes to the development of the classification model

[30]. Figures 4C and 4F show the wavenumbers that had a

predominant effect on discrimination of (+)-limonene-treated and

untreated cells at pH 4.0 and 7.0, respectively. As can be seen, the

discriminating power of non-treated and (+)-limonene treated

samples at pH 4.0 (Figure 4C) showed two spectral bands at 1,624

and 1,395 cm21, corresponding to changes in the amide I

absorption band of b-sheet proteins [35,36]; and in the symmetric

stretching of COO- groups in amino acids and/or fatty acids

[37,38,39]. At pH 7.0 (Figure 4F), comparison of (+)-limonene

treated and non-treated cells showed that the major discriminating

bands were those located at 1,083, 1,250 and 992 cm21,

corresponding to the symmetric and asymmetric stretching of

P = O groups in phosphodiester bonds and ring vibrations of

carbohydrates [16,37,40]. ATR-IRMS spectra of (+)-limonene

treated E. coli O157:H7 allowed us obtaining similar conclusions

(data not shown).

Role of E. coli MC4100 outer membrane in (+)-limonene
resistance

For this study we used an E. coli MC4100 DlptD4213 strain. This

mutation disrupts the outer membrane permeability barrier,

making E. coli sensitive to antimicrobial compounds that are not

normally effective against Gram-negative bacteria [41].

The lptD4213 mutant was less resistant to (+)-limonene at

pH 4.0 than its wild type strain (Figure 5A). For example, after

30 min more than 5 log10 cycles (.99.999%) of the initial

lptD4213 population were dead, whereas less than 2.5 log10 cycles

(99.7%) of the wild strain population were inactivated. Surviving

counts in Figure 5A indicate that (+)-limonene did not induce sub-

lethal injuries in the cytoplasmic membrane of the wild type strain

MC4100. However, a high proportion (.2.5 log10 cycles or 99.7%

of survivors) of lptD4213 cells had sub-lethal damages in their

cytoplasmic membrane after (+)-limonene treatment at pH 4.0.

On the contrary, the lptD4213 mutants treated by (+)-limonene at

pH 7.0 showed the same resistance as wild type cells and sub-

lethal injuries in the cytoplasmic membrane were not detected

(Figure 5B).

Bacterial counts in selective or non-selective media were not

modified (p.0.05) by incubation in citrate–phosphate buffer at

pH 7.0 or pH 4.0 without (+)-limonene for 60 min at 20 uC (data

not shown).

Figure 2. Study of sub-lethal injury caused by (+)-limonene on
Escherichia coli BJ4 determined using selective plating tech-
nique. Log10 of survival counts of Escherichia coli BJ4 after 6 h with
200 mL/L of (+)-limonene in citrate-phosphate buffer of pH 4.0 or 7.0 at
20u C. Cells were recovered in TSAYE (%), TSAYE-SC (sodium chloride:
vertical stripes) or TSAYE-BS (bile salts: horizontal stripes). Discontinu-
ous line indicates initial cell concentration (3?107 CFU/mL). Error bars
indicate standard error.
doi:10.1371/journal.pone.0056769.g002

Figure 3. Correlation between permeabilized and inactivated
Escherichia coli BJ4 cells. Correlation between the percentage of
inactivated Escherichia coli BJ4 and the percentage of cells stained with
propidium iodide (permeabilized cells) after different treatment times
(10 min, 25 min, 1 h, 6 h, 24 h) with 200 mL/L of (+)-limonene (initial cell
concentration: 3?107 CFU/mL) at pH 4.0 (N) or 7.0 (&).
doi:10.1371/journal.pone.0056769.g003
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Combined preservation processes: lethal heat treatment
of E. coli O157:H7 in presence of (+)-limonene

To study a combined process of (+)-limonene with a lethal heat

treatment, a pathogenic E. coli serotype, E. coli O157:H7, and acid

fruit juices as treatment medium were chosen. Preliminary results

showed that E. coli O157:H7 (+)-limonene resistance at 20uC was

similar (data not shown).

Figure 6A shows the inactivation of E. coli O157:H7 by a lethal

heat treatment (54uC for 10 min) alone or in combination with

200 mL/L of (+)-limonene in apple or orange juice. A lethal heat

treatment alone inactivated 0.5 log10 cycles of the initial

population of E. coli O157:H7; and caused sub-lethal damages in

the cytoplasmic membrane in about 2 and 0.5 log10 cycles of

survivors (as seen by the difference in log10 counts between

recovery in TSAYE and TSAYE with sodium chloride) when cells

Figure 4. ATR-IRMS spectra of (+)-limonene treated Escherichia coli BJ4 cells. Typical raw spectra (A, D) and soft independent modeling class
analogy (SIMCA) of class projections (B, E) and discriminating power (C, F) of non-treated and (+)-limonene treated (200 mL/L) Escherichia coli BJ4
(initial concentration: 3?107 CFU/mL) at pH 4.0 (A, B, C) or 7.0 (D, E, F) of transformed attenuated total reflectance infrared micro spectroscopy (ATR-
IRMS) spectra. Black and gray lines and symbols represent non-treated (+)-limonene treated cells, respectively. Spectra were obtained from three
independent samples.
doi:10.1371/journal.pone.0056769.g004
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were treated in apple and orange juice, respectively. Moreover, 4.5

and 2 log10 cycles of survivors showed sub-lethal damages in their

outer membrane (as seen by the difference in log10 counts between

recovery in TSAYE and TSAYE with bile salts) after lethal heat

treatments in apple or orange juice, respectively.

The combined process of lethal heat and (+)-limonene in both

juices caused the inactivation of more than 4 extra log10 cycles as

compared with application of separate treatments. Hence, this

combination in juices resulted in a synergistic effect on the final

inactivation. A synergistic effect between (+)-limonene and lethal

heat treatments under the same treatment conditions was also

observed in citrate-phosphate buffer at pH 7.0. As observed at

pH 4.0, simultaneous application of both treatments at pH 7.0

allowed the inactivation of more than 4 extra log10 cycles (data not

shown).

Bacterial counts in selective or non-selective media were not

modified (p.0.05) by incubation in apple or orange juice without

(+)-limonene for 60 min at 20 uC (data not shown).

Combined preservation processes: Pulsed Electric Fields
treatment of E. coli O157:H7 combined with (+)-limonene

Figure 6B shows the inactivation of E. coli O157:H7 by a mild

PEF treatment (25 pulses at 30 kV/cm) alone or in combination

with 200 mL/L of (+)-limonene in apple or orange juice.

On the one hand, a separate treatment of 200 mL/L (+)-

limonene at 20uC against 3?107 CFU/mL of E. coli O157:H7

when suspended in these juices for 10 min inactivated less than 0.5

log10 cycles of the initial population (data not shown). On the other

hand, a separate PEF treatment in absence of (+)-limonene

inactivated less than 0.5 log10 cycles of the initial E. coli O157:H7

population, and caused sub-lethal injury in the outer membrane in

less than 1 log10 cycle of surviving cells.

The final level of inactivation resulting from the combined

process (PEF with (+)-limonene) was additive, i.e. was equal to the

sum of the levels of inactivation of both treatments applied

separately, not observing any extra inactivation because of the

simultaneous application of a lethal heat treatment in presence of

(+)-limonene.

Figure 5. Effect of increased outer membrane permeability on
Escherichia coli MC4100 resistance to (+)-limonene. Survival
curves of Escherichia coli MC4100 (N) and its defective mutant
DlptD4213 (&) after exposure to 200 mL/L of (+)-limonene in citrate-
phosphate buffer of pH 4.0 (A) and pH 7.0 (B). Cells were recovered in
TSAYE (N, &) and TSAYE-SC (sodium chloride: #, %). Arrows indicate
survival counts under detection limit. Error bars indicate standard error.
doi:10.1371/journal.pone.0056769.g005

Figure 6. Inactivation of Escherichia coli O157:H7 by combined
processes of heat and Pulsed Electric Treatments with (+)-
limonene. Log10 of survival counts of Escherichia coli O157:H7 after
lethal heat treatments (54u C for 10 min) (A) or Pulsed Electric Fields
treatments (30 kV/cm and 25 pulses) (B) in absence (%) or presence of
200 mL/L of (+)-limonene (&) and recovery onto TSAYE. Cells after heat
and PEF treatments without (+)-limonene were also recovered onto
TSAYE-SC (sodium chloride: vertical stripes) or TSAYE-BS (bile salts:
horizontal stripes). Discontinuous line indicates initial cell concentration
(3?107 CFU/mL). Arrows indicate survival counts under detection limit.
Error bars indicate standard error.
doi:10.1371/journal.pone.0056769.g006
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Bacterial counts in selective or non-selective media were not

modified (p.0.05) by incubation in apple or orange juice without

(+)-limonene for 60 min at 20 uC (data not shown).

Discussion

Previous research on the antibacterial activity of (+)-limonene

has been mostly focused on its bacteriostatic activity [7,42], but

little is known about its activity as a bactericidal agent in food

preservation. In this respect, an important aspect to consider is the

pH of the treatment medium (or the food matrix), since the final

inactivation achieved by (+)-limonene was considerably higher in

acid conditions (Figure 1). It is generally considered that the

bacterial resistance to essential oils (EO) and their components

decreases with lowering pH values because of the increase in EO

hydrophobicity at low pH. As a consequence, there is an easier EO

dissolution in the lipids of the cell membrane [43].

Our research was divided into two well-differentiated parts. The

first part is focused on the study of mechanism of bacterial

inactivation by (+)-limonene for which two wild-type and mutant

strains (BJ4 and its rpoS mutant, and MC4100 and its lptD4213

mutant) were used. The second part of our study is dedicated to a

practical application in fruit juices of the knowledge obtained in

the first part in order to demonstrate the key role of the outer

membrane in microbial protection against (+)-limonene. For this

objective, E. coli O157:H7 was used owing to its importance in

food safety of fruit juices.

The expression of RpoS has been reported to cause physiolog-

ical and morphological modifications that increase microbial

resistance to various stresses [44]. Since deletion of rpoS did not

decrease E. coli BJ4 resistance to (+)-limonene (Figure 1), probably

the expression of sS-controlled genes under stationary-phase

conditions, such as dps (a stress response DNA-binding protein) or

uspB (universal stress protein B) [19,20,21] did not play a role in

cell resistance to (+)-limonene. This finding would suggest different

mechanisms of inactivation and microbial resistance for (+)-

limonene in relation to other antimicrobial compounds such as

citral [13] and food preservation technologies [44].

The application of a sub-lethal heat, cold or acid shock has been

demonstrated to induce cross resistance to multiple stresses (see

review [45]) in E. coli. In this study, we have shown that a previous

sub-lethal heat or acid shock did not influence subsequent E. coli

BJ4 resistance to (+)-limonene (Table 1). Interestingly, rpoS deletion

did not modify (+)-limonene resistance of sub-lethally heat- and

acid-shocked cells. However, a previous sub-lethal cold-shock

decreased the resistance of both wild type and rpoS mutant cells to

(+)-limonene (Table 1). Exposure to cold temperatures leads to a

decrease in the membrane fluidity which triggers an increase in the

ratio of unsaturated fatty acids [46,47], that could be responsible

of the decreased resistance to (+)-limonene (Table 1).

The occurrence of sub-lethal injuries after food preservation

treatments can be evaluated using different techniques, such as

different survival counts obtained between plating treated cells in

non-selective and selective media [48], and delay in lag phase

before starting growth in treated with regards non-treated cells

[49,50]. At the conditions assayed in this study no sub-lethal

damage in the cell envelopes was detected after exposure of E. coli

BJ4 to (+)-limonene by the selective media plating technique

(Figure 2). Furthermore, the same duration of lag phase was

observed for treated and untreated E. coli BJ4 cells, suggesting that

neither the cell envelopes nor other cell structures were sub-

lethally injured. Therefore, the action of (+)-limonene could be

catalogued under the ‘‘quantal’’ effect, a response which can be

expressed in binary terms: it is either present or absent (‘‘all or

nothing’’) [51] in which bacteria are either killed or intact after the

treatment. Occurrence of sub-lethal damage in E. coli BJ4 cell

envelopes by other EO compounds, such as citral or carvacrol

[13,14], would suggest a different mechanism of inactivation

between these compounds and (+)-limonene.

Food preservation technologies, such as heat, pulsed electric

fields (PEF), high hydrostatic pressure (HHP) and essential oils

(EOs) normally target cell envelopes [52,53,54]. Thus, we

evaluated membrane permeabilization in E. coli BJ4 using

propidium iodide. A direct correlation between the percentage

of cell inactivation and the percentage of membrane permeabiliza-

tion was obtained (Figure 3). The simultaneous occurrence of both

phenomena identifies the cell envelopes as an important target in

the mechanism of E. coli BJ4 inactivation by (+)-limonene.

To further study the damages caused by (+)-limonene, we

included an analysis by ATR-IRMS. We used this technique that

evaluates the biochemical composition of the bacterial cell

constituents [16], such as water, proteins, nucleic acids, fatty

acids and polysaccharides, to describe the changes caused by (+)-

limonene. ATR-IRMS results allowed selecting two major

discriminating bands at both pH 4.0 (Figure 4C) and pH 7.0

(Figure 4F) as the main responsible for the differences between

untreated and (+)-limonene-treated E. coli BJ4 cells. At pH 4.0, the

1,624 cm21 band corresponding to the amide I absorption band

of b-sheet proteins [35,36]; and the band at 1,395 cm21 reflecting

the symmetric stretching of COO- groups in amino acids and/or

fatty acids [37,38,39]. Since b-barrel membrane proteins occur in

the outer membranes of Gram-negative bacteria [55], the main

contribution to the discrimination between untreated and (+)-

limonene-treated cells at pH 4.0 could come from affected outer

membrane proteins that form membrane-spanning b-barrels.

However, at pH 7.0, the discriminating bands for (+)-limonene

treatments were found at 1,083, 1,250 and 992 cm21, corre-

sponding to the symmetric (1,083 cm21) and asymmetric

(1,250 cm21) stretching of P = O groups in phosphodiester bonds

and ring vibrations of carbohydrates (992 cm21) [16,37,40].

Phosphodiester bonds are present in phospholipids of the

cytoplasmic membrane and of the inner leaflet of the outer

membrane [56], while carbohydrates are found in the lipopoly-

saccharide (LPS) fraction of the cell wall [57]. In consequence, (+)-

limonene would target phospholipids and LPS cell fraction at

pH 7.0, and the protein fraction at pH 4.0 in E. coli BJ4.

It should be noted that these conclusions related to the

mechanism of bacterial inactivation by (+)-limonene were drawn

from experiments using the Gram-negative strains E. coli BJ4 and

its DrpoS mutant. Further experiments using different microor-

ganisms are needed to extrapolate these conclusions to other

Gram-negative strains.

Once we confirmed the role of cell envelopes in the (+)-

limonene antimicrobial activity, we used the mutant strain

DlptD4213 (formerly known as Dimp4213) to evaluate the role of

outer membrane in the mechanism of inactivation by (+)-limonene

(Figure 5). LptD is an essential b-barrel protein of the outer

membrane [58] which is implicated in lipopolysaccharide (LPS)

assembly [59]. Depletion of this protein results in increased outer

membrane permeability to lipophilic compounds, such as novo-

biocin or rifampin [24]. In effect, at pH 4.0 lptD4213 mutants

showed a decreased (+)-limonene resistance, and occurrence of

sub-lethal damage in the cytoplasmic membrane was demonstrat-

ed after (+)-limonene treatments. This finding, together with ATR-

IRMS observations, could indicate that, at pH 4.0, (+)-limonene

should damage the outer membrane in order to gain access to the

periplasmic space and cytoplasmic membrane and inactivate the

bacterial cell. Once outer membrane permeability to (+)-limonene
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is increased, there would be an enhanced interaction of (+)-

limonene molecules at pH 4.0 with the components in the

cytoplasmic membrane. However, the bactericidal action of (+)-

limonene at pH 7.0 was not enhanced by higher outer membrane

permeability in lptD4213 mutants, indicating that facilitation of

(+)-limonene access to the periplasmic space and cytoplasmic

membrane would not be required at pH 7.0. Furthermore, results

shown by ATR-IRMS would indicate that LPS damage was

related to mechanism of inactivation by (+)-limonene at pH 7.0.

Therefore, mechanism of E. coli BJ4 and MC4100 inactivation by

(+)-limonene was different as a function of the pH of the treatment

medium. In spite of differences between E. coli BJ4 and MC4100,

(+)-limonene resistance shown by both strains was similar (Figures 1

and 5). However, further research using other microorganisms is

needed in order to increase the knowledge on the mechanism of

bacterial inactivation by (+)-limonene and to use this compound in

practical applications.

From the study of the mechanism of inactivation by (+)-

limonene in E. coli BJ4 and MC4100 we could expect that

application of a food preservation technology causing sub-lethal

damages in outer membrane would increase the lethal effect

induced by (+)-limonene, leading to an advantageous combined

process. In order to prove this hypothesis and to provide a

practical application of this knowledge we studied the effect of (+)-

limonene in a combined process with heat or PEF in E. coli

O157:H7 because of the presence of an outer membrane in this

pathogenic serotype and its importance in food safety of fruit juices

[60,61]. We determined that combinations of a lethal heat

treatment that damaged outer membrane with (+)-limonene also

achieved a synergistic effect to inactivate E. coli O157:H7 in juice.

Thus, a facilitated access of (+)-limonene to the periplasmic space

and cytoplasmic membrane would cause the inactivation of these

sub-lethally damaged cells (Fig. 6A). On the contrary, since PEF

did not cause sub-lethal damage to the outer membrane of E. coli

O157:H7 the combination of (+)-limonene and PEF did not yield

any extra inactivation when compared to the inactivation by PEF

alone at the assayed conditions (Figure 6B). Since E. coli O157:H7

is a virulent strain whose genome has a significant number of

differences from other E. coli strains, such as the presence of more

than 1,300 new genes [62,63], transfer of the knowledge on

mechanism of microbial inactivation by (+)-limonene from E. coli

BJ4 and MC4100 to E. coli O157:H7 would require further studies

on the influence of the factors investigated in this research.

Although preliminary results indicate that (+)-limonene concen-

trations used in this study were accepted by consumers, sensory

analysis of apple juice with (+)-limonene should be performed to

evaluate commercial viability. Previous work with citral and PEF

in E. coli BJ4 reached a similar conclusion [13], as well as

combined processes between PEF and different antimicrobials

against E. coli O157:H7 in apple and orange juices [14].

Conclusion

The study of the mechanism of bacterial inactivation by (+)-

limonene showed that the lethality of this compound was higher at

pH 4.0 than at neutral pH. Contrary to other food preservation

treatments, deletion of rpoS did not modify E. coli BJ4 resistance to

(+)-limonene. Furthermore, a previous sub-lethal heat or acid

shock did not change E. coli BJ4 resistance to (+)-limonene,

independently of rpoS deletion. However, a previous sub-lethal

cold shock decreased the resistance of wild-type E. coli BJ4 and

even more the resistance of rpoS mutant to (+)-limonene.

Assessment of E. coli BJ4 permeabilization with propidium iodide

showed that this phenomenon occurred simultaneously with

bacterial inactivation, identifying the cell envelopes as important

(+)-limonene targets. In contrast to other essential oils compounds,

(+)-limonene did not cause sub-lethal injuries in any E. coli BJ4

structure, cataloguing its lethal action under the ‘‘quantal’’ effect

(‘‘all or nothing’’). Different resistance pattern of lptD4213 mutants

and ATR-IRMS results showed the importance of outer

membrane in the mechanism of inactivation by (+)-limonene at

pH 4.0. At pH 7.0, increased outer membrane permeability did

not lead to a decreased (+)-limonene resistance and ATR-IRMS

spectra demonstrated the importance of LPS in the mechanism of

E. coli BJ4 inactivation at this pH. Considering the orange-like

flavor of (+)-limonene and its consideration as a GRAS (Generally

Recognized As Safe) substance [64,65], we propose the simulta-

neous application of (+)-limonene with other preservation tech-

nologies that damage outer membrane, such as heat treatments, in

order to design combined food preservation processes with a

synergistic lethal effect, as demonstrated for E. coli O157:H7 in this

study. Although bacterial resistance of the studied E. coli strains

was similar, further research is needed in order to increase the

knowledge on the mechanism of inactivation by (+)-limonene in

other bacteria and to use this compound in practical applications.
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54. Mañas P, Pagán R (2005) Microbial inactivation by new technologies of food

preservation. J Appl Microbiol 98: 1387–1399.
55. Tamm LK, Hong H, Liang B (2004) Folding and assembly of b-barrel

membrane proteins. BBA-Biomembranes 1666: 250–263.

56. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring
Harb Perspect Biol 2.

57. Gmeiner J, Schlecht S (1980) Molecular composition of the outer membrane of
Escherichia coli and the importance of protein-lipopolysaccharide interactions.

Arch Microbiol 127: 81–86.

58. Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis in
Escherichia coli. Mol Microbiol 45: 1289–1302.

59. Wu T, McCandlish AC, Gronenberg LS, Chng S-S, Silhavy TJ, et al. (2006)
Identification of a protein complex that assembles lipopolysaccharide in the

outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 103: 11754–11759.
60. Food and Drug Administration (2001) Hazard analysis and critical control point

(HACCP): procedures for the safe and sanitary processing and importing of

juice: final rule (21 CFR Part 120). Fed. Regist., vol. 66. Washington, D. C., :
U.S. Food and Drug Administration.pp. 6137–6202.

61. Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL (2005)
Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002.

Emerg Infect Dis 11: 603–609.

62. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, et al. (2001) Complete
genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic

comparison with a laboratory strain K-12. DNA Res 8: 11–22.
63. Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, et al. (2001) Genome

sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533.

64. Food and Drug Administration (Revised 2011) GRAS – Essential oils, oleoresins
(solvent-free), and natural extractives (including distillates). 21CFR182.20.

65. Food and Drug Administration (Revised 2012) GRAS – Synthetic flavoring
substances and adjuvants. 21CFR182.60.

Bacterial Inactivation by Limonene

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e56769


