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Sánchez Jiménez1,2, Miguel Angel Medina1,2*

1 Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Málaga, Spain, 2 CIBER de Enfermedades Raras (CIBERER), Málaga, Spain

Abstract

The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules.
For this purpose, many disease network models have been created and analyzed. We highlight two of them, ‘‘the human
diseases networks’’ (HDN) and ‘‘the orphan disease networks’’ (ODN). However, in these models, each single node
represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces
the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define
pathophenotypic connections between disease-causing genes improve our understanding of the molecular events
originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and
compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network
models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic
similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in
the ‘‘Human Phenotype Ontology’’. The resulting network contains 1075 genes (nodes) and 26197 significant
pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing
significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between
genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential
genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities
and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a
coherent pathological module. Our results indicate that pathophenotypes contribute to identify underlying co-
dependencies among disease-causing genes that are useful to describe disease modularity.
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Introduction

Phenotypes are the result of the expression of specific genetic

backgrounds submitted to the influence of changing environmen-

tal conditions [1]. Thus, both the development and resulting

symptoms of a given pathology are conditioned by interacting

elements at multiple interconnected levels (from molecular to

social levels) [2]. These complex interactions can be represented as

networks to be analyzed using the principles of Network Theory

[3–6]. In this sense, Network Medicine emerged as a new field to

study the relationships among diseases and disease-causing genes

[7]. Generally, data from genetic association studies establish the

basic information for these analyses. Most of these data are

available from different public repositories, for instance, Online

Mendelian Inheritance in Man (OMIM) [8] and Orphanet [9].

This information can be projected onto networks also known as

diseasomes (i.e. ‘‘the human disease network’’ and ‘‘the orphan

disease networks’’) [10,11]. These diseasomes open the possibility

to work on different types of network projections, treating

networks as graphs, which can be used to detect emergent

information. For instance, disease-to-gene associations represent

bipartite edges (two different types of nodes in every edge) and

conform a bipartite graph (as shown in the schematic represen-

tation in Figure 1A). On the other hand, projections of gene-to-

gene edges and disease-to-disease edges can be inferred from the

initial bipartite graph as two different ‘‘unipartite’’ graphs (each

with only one type of node). Hence, edges in both inferred

unipartite graphs represent either genes associated by a same

disease (Figure 1A) or diseases associated through a same gene

(these edges were not considered in this study), respectively. The

first type of projections (gene-to-gene) are disease-causing gene
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networks and the second ones (disease-to-disease edges) are

generally known as disease networks [10,11]. Network-based

methods enable us to find disease modules that may be understood

as all molecular relationships involving disease-causing genes and

other genes related to the same pathological processes [7]. In fact,

several different biomolecular interactomes based on physical,

metabolic or functional interactions have been used to capture

some frames of the biological complexity associated with

pathologies [12–17]. In this case, one of the most direct

applications of network medicine approaches lies in the systematic

exploration of the molecular mechanism shared by ‘‘apparently’’

distinct diseases [7]. The emergence of relationships among genes

and diseases contribute to obtain more holistic views of the disease

origin and environment, to predict new disease-causing genes [17],

and possibly to locate new targets for disease diagnosis and/or

intervention. All these challenges take part in a wider emergent

discipline known as Systems Medicine [18].

However, current pathognomonic classifications are influenced

by the traditional clinical procedures used during the 19th century

following Oslers principles [19]. These traditional procedures

often tend to overvalue the most evident manifested abnormalities

(pathophenotypes), causing a direct impact on how pathopheno-

typic profiles of patients are registered in the clinic [19]. Although

it could help the diagnosis, many others pathophenotypes will go

unnoticed. As a consequence, most genetic diseases are described

as conceptual entities, pathologies, with certain specific clinical

features. The disregard of pathophenotypes implies a considerable

technical problem for network medicine based methods, since they

can be primary consequences of the genetic disturbances. At

present, to solve this problem standard phenotypic platforms are

required to explore the underlying molecular and cellular

mechanisms related to genetic predisposition in developing

diseases [20]. Nevertheless, some previous works have claimed

that the systematic phenotyping procedure requires ontologies to

improve biomedical insights on functional gene communities [21–

23]. In this case, the use of ontologies can be an interesting

advance in the biomedical integration of this information. The

Human Phenotype Ontology (HPO) represents a formalization of

the semantic relationships [21,24] among different clinical features

described in OMIM (abbreviations used throughout the manu-

script are reported in Table 1). Although HPO was initially

developed to study the phenotypic associations in order to achieve

a potential diagnostic use [25], this standardized biomedical

knowledge on human abnormalities allows the identification of

Figure 1. Schematic representation of distinct disease-to-gene relationships. Different disease associations between genes using (A) the
data from genetic disease databases or (B) their associated pathological phenotypes. (A) The co-associations of genes in disease/s allow the inference
of gene-to-gene projection (unipartite) from the disease-to-gene projection (bipartite). In this case Gene B and Gene C are co-associated with Disease
C. (B) The HPO annotations of genetic diseases allow the description of pathophenotypic space for genes and calculation of the semantic similarity
(pathophenotypic similarity) between them. In this case, novel relationships emerge as occur between Gene A and Gene B or Gene A and Gene C. (C)
The proposed classification in this work: monogenic disease and monotropic genes (MD-MG), monogenic disease and pleiotropic genes (MD-PG),
polygenic disease and monotropic gene (PD-MG), polygenic disease and pleiotropic gene (PD-PG). It is noteworthy that genes present in the MD-PG
subset can also be present in the PD-PG subset (dashed line linked to monogenic disease in grey).
doi:10.1371/journal.pone.0056653.g001
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functional gene-to-gene relationships involved in similar patho-

logical processes [26]. Recent studies conclude that the phenotypic

similarity measurement proposed by Robinson and co-workers

[25] has a significant contribution to the biological coherence

compared to text-mining methods [27]. Therefore, on the one

hand, the study of the similarity among pathologies requires

representing them as a set of pathophenotypes instead of a

pathological entity. On the other side, pathophenotypic informa-

tion can be used to reinterpret the relationships among diseases

identifying a new pathological phenotypic space that makes it

possible the study of novel gene-to-gene associations (as can be

seen in the schematic representation in Figure 1B). Zhang et al.

[11] have recently stressed some limitations of network-based

methods suggesting that the relationships between rare diseases

cannot be fully captured by gene-to-gene projections alone.

Therefore, the efforts to characterize the genetic and functional

environment of given diseases (disease modules) can contribute to

enrich the usefulness of disease network analyses.

In this work, network medicine approaches have been used to

study the pathological relationships among genes using semantic

similarities (that in this case are pathophenotypic similarities)

instead of inferred unipartite edges (gene-to-gene) from bipartite

edges (disease-to-gene associations). For instance, a classification of

four distinct disease-to-gene associations is proposed (Figure 1C) to

illustrate possible limitations of the current disease-to-gene

network models [10,11]. These classes provide four different

subsets of genes in agreement with the number of genes associated

with a disease (monogenic or polygenic) and the number of

diseases associated with a gene (monotropic and pleiotropic). We

have also built a pathophenotypic similarity gene network (PSGN)

using semantic similarity [25] between genes that are annotated in

HPO. The topological features of gene subsets obtained from

inferred pathological networks have been analyzed and compared

in PSGN. Additionally, the representation of PSGN in three

different human biomolecular interactomes based on physical

interactions, metabolic flux coupling and functional interactions

were also evaluated. For this, a network comparison analysis [28]

and a subsequent performance validation have been used to study

the degree of contribution of each biomolecular interactome to the

biological consistency of gene-to-gene pathophenotypic similari-

ties. In addition, this biological coherence can be used to

incorporate novel components in disease-causing gene modules,

as we demonstrate for maple syrup urine disease (MSUD), an

inborn error of the metabolism of branched-chain amino acids.

Summarizing, this work provides evidence that a standard

phenotypic profiling expands the genetic disease associations using

a specific ontology for human abnormalities. These pathologic

relationships among genes were not obvious and, consequently,

disregarded in previous disease network analyses.

Methods

Unipartite Projections of Current Diseasomes
Human disease causing gene network. In the present

study, we worked on an updated version of the ‘‘Human Diseases

Network’’ (HDN) [10] using Morbid Map from OMIM (http://

www.omim.org/). HDN represents a bipartite projection of edges

with two types of nodes, genes (MIM genes) and diseases (MIM

phenotypes and genes/phenotypes) as described in OMIM. We

followed a similar methodology to the one described by Goh et al.

[10]. We retrieved all disease-to-gene associations where molec-

ular bases are known and we discarded those phenotypes without

MIM numbers. However, unlike previous works [10] we have not

grouped diseases according to the similarity between their names.

Here, each MIM phenotype or MIM gene/phenotype was

considered as a pathological entity and each MIM gene was

transformed to its respective Entrez Gene ID. This new version of

the HDN consists of 2525 genes (Entrez Gene IDs) associated with

3132 OMIM entries (MIM numbers) generating a network of

5657 nodes and 3862 edges (HDN in Table S1). Hence, we built

the respective unipartite projections based on inferred gene-to-

gene relationships, named as human disease causing gene network

(HDGN). This inference provides emergent gene-to-gene edges if

genes are sharing at least one disease.

Orphan disease causing gene network. An updated

version of the ‘‘Orphan Disease Networks’’ (ODN) [11] was built

using Orphanet data. We used Orphanet because it is focused on

genetic and low prevalent diseases; this database is actively

updated and continuously reviewed by clinical experts. ODN is

the bipartite projection of edges with two types of nodes, genes

(Orpha numbers for genes) and orphan diseases (also in Orpha

numbers for diseases). All those genes identified with Orpha

numbers were transformed to Entrez Gene IDs. This new version

of ODN consists of 2331 genes (Entrez Gene IDs) associated with

2125 genetic orphan diseases (ORPHA numbers) generating a

network of 4456 nodes and 3657 edges (ODN in Table S2). In a

similar procedure to that used for HDN (mentioned above), we

built the unipartite projections based on gene-to-gene inferred

relationships for ODN, named orphan disease-causing genes

network (ODGN).

Classification of Disease-to-gene Associations in
Diseasomes

Both HDN and ODN were decomposed into four subclasses,

based on the classification of the different types of disease-to-gene

associations (Figure 1C): monogenic diseases associated with

monotropic genes (MD-MG), monogenic diseases associated with

pleiotropic genes (MD-PG), polygenic diseases associated with

monotropic genes (PD-MG) and polygenic diseases associated with

pleiotropic genes (PD-PG). In the context of the present study, we

use the expression ‘‘monotropic genes’’ to refer to genes that have

been previously related to only one disease and the expression

‘‘pleiotropic genes’’ to refer to genes that have been previously

Table 1. List of abbreviations used throughout the paper.

Abbreviation Description

HPO Human Phenotype Ontology

OMIM Online Mendelian Inheritance in Man

HDN Human Disease Network (bipartite projection)

ODN Orphan Disease Network (bipartite projection)

HDGN Human Disease Gene Network (unipartite projection)

ODGN Orphan Disease Gene Network (unipartite projection)

MD-MG Monogenic Disease and Monotropic Genes

MD-PG Monogenic Disease and Pleiotropic Genes

PD-MG Polygenic Disease and Monotropic Genes

PD-PG Polygenic Disease and Pleiotropic Genes

PSGN Pathophenotypic Similarity Gene Network

PIN Physical Interaction Network

MGN Metabolic Gene Network

FSGN Functional Similarity Gene Network

doi:10.1371/journal.pone.0056653.t001
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related to two or more diseases. Each subclass contains a subset of

genes (Tables S3 and S4 Supplementary material).

Pathophenotypic Similarity Gene Network (PSGN)
The pathophenotype gene network was built using pre-

calculated values of semantic similarities between genes through

the Human Phenotype Ontology (HPO). Previously, we had to

describe the pathophenotypic space for genes as the set of

clinical features (HPO terms) associated with each gene.

Altogether 4669 diseases and 258 genes have direct annotations

of their clinical features in HPO, so these diseases and genes

have a list of HPO terms describing their phenotypic space.

However, the lack of specific HPO terms regarding phenotypic

abnormalities for many disease-causing genes hinders the

explanation of their semantic relationships in the ontology.

Many genes are annotated in the ontology with the sum of all

HPO terms that describe their associated diseases in Morbid

Map. In these cases, we used the file ‘‘gene_to_phenotype.txt’’

(available on HPO website) to link HPO terms and genes. This

file was generated using Morbid Map associations between

genes and diseases. Therefore, clinical features described in

OMIM were translated in a standardized vocabulary of HPO

terms (phenotypic abnormalities) that have been used to define

a pathophenotypic space. As mentioned above, this pathophe-

notypic space for a gene can be directly annotated in HPO or

indirectly annotated by the diseases associated with the gene in

Morbid Map. We used the phenotypic space of genes to

calculate their pathophenotypic semantic similarities with other

genes. Only HPO terms with maximal information were used in

agreement with the ontology properties and distribution of

terms (see semantic similarity calculations section below). We

discarded those branches of the ontology without an explicit

description of phenotypic abnormalities such as ‘‘mode of

inheritance’’ and ‘‘onset and clinical course’’. We obtained a

large pathophenotype gene network based on all semantic

similarities between genes sharing HPO terms annotated in the

phenotypic abnormality branch of the HPO. Despite an

extensive literature review we could not detect a systematic

methodology to calculate a cut-off score distinguishing between

relevant or non-specific semantic similarities. Previous works

used the semantic similarity to validate predictions or to

evaluate shared biological features between highly specific subset

of genes. However, in this case, we needed an optimal statistical

threshold from which the signals, pathophenotypic similarities,

should be out of the background noise. The cut-off will

predetermine the topology of the network, so it could affect

arguments and discussion about the ‘‘expansion’’ of pathophe-

notypic relationships respect to current unipartite projections

(HDGN and ODGN). If we select a low similarity score we will

introduce exponentially nonspecific relationships. In contrast, a

very high score will constraint the model to already known

pathological relationships. Therefore, we used the subset of

known pathophenotypic similarities (gene pairs) in a binary

classification system to estimate the optimal statistical threshold

(see supplemental methods and discussion in Methods S1).

Finally, the number of unspecific similarities was reduced by

selecting the cut-off at the 98th percentile that corresponds to

the top 2% of significant gene pairs with higher semantic

similarity values. To assess this clustering process of PSGN in

the top 2% of phenotypic similarity, we plotted a kernel density

distribution of probability of the pathophenotypic similarity for

gene pairs (Figure 2).

Biomolecular Interactomes
Physical interaction network (PIN). We used the CRG

Human Interactome as the reference for physical interaction

network (PIN). This network of protein-to-protein physical

interactions contains 10299 genes (Ensembl gene IDs) and

80922 interactions supported by evidence from at least one

experiment [29]. The topological analysis of the largest connected

component of the CRG Human Interactome was carried out

under a similar procedure to that described in previous published

works [30,31]. However, all Ensembl gene IDs were transformed

to Entrez Gene IDs to enable a node degree correlation and

network comparison analysis with PSGN.
Metabolic gene network (MGN) based on metabolic flux

correlations. Metabolic networks are usually based on different

metabolic coupling approaches such as metabolite sharing (for

instance, shared metabolites between enzymes) [15,32,33] and

metabolic flux correlations (for instance, correlated metabolic

enzymes by flux balance analysis) [34]. In this work, we used the

flux-coupling metabolic network built by Veeramani et al. [34].

This network is based on the results of a flux balance analysis [34]

of an updated version of the Human Metabolic network Recon 1

[35]. We built MGN using only these gene-to-gene interactions

exceeding a metabolic flux correlation value of 0.1 and a

‘‘metscore’’ of 0 from the original network (Table S5, supplemen-

tary material).
Functional similarity gene network (FSGN) based on

biological processes. The FSGN was built by using the

measurement of the semantic similarity between genes described

in the branch of biological processes of the Gene Ontology (GO).

The functional space of a gene is represented by the set of GO

annotations about the biological context where the gene is

involved. Thanks to these annotations, genes are directly linked

to biological processes describing all the functional features direct

or indirectly related to genes. Classical semantic similarity

measurements were used to calculate functional similarities

between genes according to their functional space. In a similar

procedure used for PSGN we removed unspecific functional

associations in FSGN generated by irrelevant semantic relation-

ships. However, there are great differences in the number of

annotations between HPO and the branch of biological processes

of GO. In this case, the main concern is that it resulted in huge size

of this dataset. Therefore, we preferred to be quite more restrictive

for this threshold, by taking as cut-off the 99.5th percentile instead

of the 98th. Thus we selected the top 0.5% of gene pairs with

higher functional similarities (Figure S1).

Semantic Similarity Score Calculations (Gene-to-gene)
The way to assign terms to objects is to add annotations. In the

present case, the objects represent genes and terms corresponding

to phenotypes (HPO terms) or biological processes (GO terms).

The specificity of the terms associated with genes allows us to

calculate the most significant relationships between them, which

use to be related to its proximity to the root. The method we have

chosen to calculate the semantic similarity between objects

annotated is mainly based on the classical Resnik’s measurement

[36]. This approach uses the information content (IC) concept that

is a way to estimate the specificity of a term [25] and can be

defined as the negative natural logarithm of the probability of a

term

IC tð Þ~{logp tð Þ ð1Þ

where p(t) is defined on the basis of its frequency (number of term

annotated) and the total of terms annotated in the ontology.

Using Pathological Phenotypes for Human Diseasomes
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p tð Þ~ annotations tð Þ
total annotations

ð2Þ

If the probability decreases then the information content increases

and consequently the specificity and the informativeness increase

too. Thus, the IC tends to increase as we move away from the root

to more specific terms.

For t1 and t2 terms in the ontology, the semantic similarity

proposed by Resnik is defined as:

sim t1,t2ð Þ~ max
p[S t1, t2ð Þ

IC pð Þ ð3Þ

where S(t1,t2) is the set of the shared parents of t1 and t2. In other

words, the semantic similarity between two terms corresponds with

the information content of the most informative common ancestor

(MICA) [36].

Functional Semantic Similarity. Many studies so far have

made a comparison between semantic similarity measurements

using the Gene Ontology, but it seems that there is not a gold

standard for semantic similarity measures between set of GO

terms. In this work we use:

sim g1,g2ð Þ~ max
ti[g1tj[g2

sim ti,tjð Þ ð4Þ

a measurement that has been successfully used in some previously

published works [37,38]. In (4) g1 and g2 represent genes, where

each one is related with a set of ontological terms. The semantic

similarity value between sets of terms is calculated by comparing

each pair of terms (3), one term of each set, and determined from

the maximum value of all pair comparisons.

Pathophenotypic Semantic Similarity. Human Phenotype

Ontology is still a novel tool and there are not many works related

to the calculation of semantic similarity for this data structure. We

have chosen the method proposed by the HPO creators for the

comparisons between phenotypic profiles [25]. For g1 and g2 two

genes; their semantic similarity is defined as:

sim g1,g2ð Þ~ 1

Dg1D

X
ti[g1

max
tj[g2

sim ti,tjð Þ
" #

ð5Þ

where firstly is calculated the maximum value of IC, using the

equation (3), between each term of g1 and the terms of g2. Finally,

a set of values |g1| are used to work out their average.

The previous equation does not provide a symmetric matrix,

since the calculated semantic similarity between g1 and g2 will not

be the same as semantic similarity between g2 and g1, so Robinson

and co-workers [25] suggest a symmetric version:

simsymmetric g1,g2ð Þ~ 1

2
sim g1,g2ð Þz 1

2
sim g2,g1ð Þ ð6Þ

Figure 2. Probability density function for pathophenotypic similarities among pairs of genes in HPO. Densities of the pathophenotypic
similarity values for all annotated genes in HPO (outer plot) and for the top 2% of gene pairs with the highest pathophenotypic similarities (inner
plot). The bandwidth used was 0.01 and the pathophenotypic similarity value for the cut-off at the top 2% was 1.8179.
doi:10.1371/journal.pone.0056653.g002
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Statistical Computing and Network Based Methods
All statistical computing, data management and graphics were

performed in R, a free software environment. Network visualiza-

tions and their metadata analyses were performed in Cytoscape

[39] and iGraph software, an R package (http://igraph.

sourceforge.net/). Due to the large number of subsequent analysis

of all built network, we provided a schematic workflow of all the

essential steps followed for this study (Figure S1).

Network comparison analysis. Once all networks were

built, we carried out a network analysis comparison to compute

the nodal and edge intersection between PSGN and the rest of the

built networks (HDGN, ODGN, PIN, MGN and FSGN). In the

case of disease-causing gene networks (HDGN and ODGN

unipartite projections of diseasomes), the intersection could

provide a broad view of the similarity of these networks and the

PSGN. Previously, we also calculated the intersection of edges

between HDGN and ODGN to assess their mutual similarity. For

biomolecular interactomes (PIN, MGN and FSGN) the nodal and

edge intersection can be useful to explore the underlying

molecular events of pathophenotypic similarities. However,

biomolecular interactomes require two steps before the intersec-

tion analysis. First, we filter networks to ensure that both

compared networks have only intersected nodes to minimize their

differences in sizes (see schematic diagram of the process in Figure

S1). All biomolecular interactomes were filtered to have genes with

pathophenotypic data. Hence, we generated three biomolecular

sub-networks that contain uniquely genes (nodes) participating in

PSGN (Figure S1 and Table S6). This first step was essential for a

more accurate value of the significance in the mutual coverage and

to reduce the noise in the intersected edges. Moreover, this

problem is bidirectional, so we used three different filters for

PSGN (one for each cellular network). It will merge in three PSGN

sub-networks (Figure S1 and Table S6). To evaluate the

significance of the network comparison, we compared PSGN

sub-networks with their respective randomized biomolecular

interactome, treated and filtered exactly as the original networks.

These randomizations were carried out preserving the node

connectivity distribution in the respective cellular networks.

Subsequently, we used NeAT [28] to compare networks treated

as undirected ones. We used different metrics to identify the

significance of the intersection: Maximal number of edges in the

union, Jaccard coefficient and hypergeometric probability (p-

value) [28,40].

Network topological analysis. All gene (node) degrees were

calculated for each pathological network and biomolecular

interactome, using the iGraph software. Subsequently, a non-

parametric test was used to study in each subset of genes the

distributions of the node (gene) degree, the number of associated

pathophenotypes per gene and the mean value of pathophenotypic

similarity per gene. More precisely, a Mann-Whitney test was used

to assess the significance of these distributions for gene subsets with

the distributions of all genes in PSGN and their respective disease-

causing gene network. This non-parametric test was run 1000

times for every subset of genes using a different random sample in

each test. These random samples conserved the same size (number

of genes) as their respective subset in the correspondent network.

Subsequently, we calculated the mean p-value of all runs for every

subset. Additionally, a Spearman’s rank correlation test (a= 0.05)

was used to analyze the degree of genes in HDGN, ODGN, PIN,

MGN and FSGN with respect to the number of pathophenotypic

relationships in PSGN.

Performance validation and ROC calculations. A binary

classification system was used to analyze the performance of

intersected interactions between different cellular networks (PIN,

MGN, FSGN) and phenotypic interactions in PSGN. This binary

classification is based on signal detection theory, using a receiver

operating characteristic (ROC) analysis [41]. We compared

biomolecular interactomes and their respective randomized

versions (similar to those ones used in the network comparison

analysis) with the PSGN using phenotypic similarities as the value

of the signal (Figure S1). ROC curves were obtained considering

the intersected interactions of PSGN with biomolecular inter-

actomes as True Positives and those of PSGN with random

biomolecular interactions as False Positives (Figure S1). We used

randomizations to generate a dataset of False Positives propor-

tional to the number of obtained True Positives for each

biomolecular interactome. This procedure was useful to increase

the confidence of the ROC analysis. In addition, we calculated the

average area under the curve (AUC) for each interactome,

calculating about 20 ROC curves following this same procedure.

Results and Discussion

Comprehensive Classification of Disease-to-gene
Associations Contained in Currently Available
Diseasomes

The projection in networks of the genetic associations data,

available in OMIM and Orphanet, shows different patterns of

connectivity among diseases and mutated genes (Figure 1A). Thus,

we proceeded to build updated versions of existing models of

disease networks, the ‘‘human disease network’’ (HDN) [10] and

the ‘‘orphan disease network’’ (ODN) [11]. Subsequently, we

classified all disease-gene associations of HDN and ODN in order

to get an insight regarding their global distribution. For this

purpose, we retrieved a total of 2525 and 2331 genes from HDN

and ODN, respectively. Each gene dataset was subdivided in four

different classes (Tables S3 and S4 for HDN and ODN

respectively) according to our proposed criteria (Figure 1C): two

monotropic classes (MD-MG and PD-MG) and two pleiotropic

classes (MD-PG and PD-PG). Monotropic subsets are exclusive

because their relationship with the disease is unique so genes take

part in only one subset and they represent 72% and 69% of the

total genes in HDN and ODN, respectively. In contrast,

pleiotropic genes can be related to monogenic as well as to

polygenic diseases so they can be present in both pleiotropic

subsets.

The abundance of genes in each subset indicates how genetic

association studies tend to distribute genes with different degrees of

specificity for pathologies. In both networks, monotropic genes are

found to be the most abundant ones, irrespective of the actual

number of genes involved in the diseases (Table 2). For instance,

‘‘biunivocal’’ genes (MD-MG subset genes) represent over 56%

and 30% of HDN and ODN genes respectively (Table 2). Even

more, genes included in the PD-MG class are the most abundant

ones in orphan disease network reaching 39% of the total genes.

Many PD-MG associations could involve highly co-regulated

genes (i.e. coding genes for different subunits of multi-protein

complexes), so these genes can be considered a whole functional

unit. In this case, we suspect that biunivocal relationships might be

underestimated.

The ratios of diseases per gene agree with a pathological

convergence (exclusive associations) and divergence (non exclusive

associations) for monotropic and pleiotropic genes respectively

(Table 2). These results are obvious taking into account our

classification criteria. However, they provide a panoramic view of

how a set of clinical features (pathophenotypes) observed in

patients reach consensus and are attributed to a disease. These
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results seem to show a human annotation bias that can affect the

current disease classifications.

Features of Disease Causing Gene Networks (Unipartite
Projections)

From the bipartite projections (disease-to-gene) of HDN and

ODN, we built their corresponding unipartite projections (gene-to-

gene) (as can be seen in Figure 1A), named as ‘‘human disease

causing gene network’’ (HDGN) and ‘‘orphan disease causing gene

network’’ (ODGN) respectively (Figures 3A and 3B). Both

unipartite projections are based on the emergence of gene-to-

gene relationships (edges) inferred from pair of genes co-associated

with at least one disease (Figure 1A). Accordingly, all genes in the

MD-MG subsets and those uniquely associated with monogenic

diseases in MD-PG will appear as unconnected genes in unipartite

projections (HDGN and ODGN).

HDGN include 749 genes (nodes) and 2654 inferred gene-gene

relationships (edges) among them (Figure 3A and Table S1).

However, ODGN is twice as larger as HDGN with 1492 genes

and 6380 inferred gene-gene relationships (Figure 3B and Table

S2). At first glance, the topological structures of unipartite

networks (HDGN and ODGN) are quite similar (Figures 3A and

3B) although an enrichment of unconnected nodes in HDGN is

clear when compared to ODGN (1776 and 839 for HDGN and

ODGN respectively). This enrichment is mainly due to the higher

number of biunivocal relationships (MD-MG) in HDGN (Table 2).

Therefore, this is the reason why HDGN shows fewer inferred

relationships (2654) than ODGN (6380).

We carried out an analysis of the intersection between both

unipartite networks (HDGN and ODGN) to assess an estimation

of their similarity. But first we removed all unconnected nodes

because they were not considered structural components of these

networks. The resulting intersection was 481 genes (intersected

nodes) and 662 inferred gene-gene relationships (intersected edges)

corresponding to 24% and 10% of edges in HDGN and ODGN

respectively (Table 3). Both networks show a Jaccard coefficient of

similarity (number of edges in the intersection divided by the

number of edges in the union) of 7.9% (Table 3). Surprisingly, the

similarity is lower than expected a priori which indicates strong

differences between the two data sources (OMIM and Orphanet).

These results reinforce the hypothesis that the absence of a

systematic procedure in the phenotypically characterization of

genetic diseases will affect the utility of network medicine methods.

In particular, it leads to the isolation of genes and diseases from

their real pathological processes, making it practically impossible

to identify groups or subgroups of related pathologies. This

observed tendency to the exclusiveness (that is to say, the

abundance of monotropic gene-disease relationships) considerably

increases the disease-gene association specificity that may be of

interest for genetic testing.

Features of Pathophenotypic Similarity Gene Network
(PSGN)

The exclusiveness mentioned above could affect pathological

processes with many disease variants. In the case of these diseases,

Table 2. Distribution of disease-to-gene associations on
proposed classification.

Human Diseases Network Orphan Disease Networks

Subset Diseases per geneGenes (%) Diseases per geneGenes (%)

MD-MG 1.00 1431 (56.7) 1.00 717 (30.8)

MD-PG 2.57 639 (25.3) 2.71 435 (18.7)

PD-MG 0.46 379 (15.0) 0.40 908 (39.0)

PD-PGa 2.13 371 (14.7) 1.68 584 (25.1)

All genesb 1.24 2525 (100) 0.91 2331 (100)

aPleiotropic genes associated with at least one polygenic diseases.
bAll genes in HDN and ODN respectively.
doi:10.1371/journal.pone.0056653.t002

Figure 3. Unipartite gene-to-gene projections of the disease networks and the pathophenotypic similarity gene network. Human
diseases genetic network (HDGN in panel A), Orphan diseases genetic network (ODGN in Panel B) and Human pathophenotype similarity gene
network (PSGN in panel C). PSGN consists of one connected component (with a few unconnected genes), in contrast to HDGN and ODGN that show a
great variety of isolated patterns of association. All unconnected genes (nodes) correspond to those uniquely associated with monogenic diseases, all
of them were excluded in unipartite projections.
doi:10.1371/journal.pone.0056653.g003
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some genes play a primary role in the progression of the pathology

but others modulate the phenotypic variability.

To tackle this problem, HPO offers possibilities for a formal

study of the pathophenotypic relationships among genes on the

bases of their semantic similarities (pathophenotypic similarities).

Therefore, we defined the pathophenotypic space of each gene,

consisting of the set of HPO terms associated with the gene (as

shown in Figure 1B). These spaces were described using only

specific HPO terms, those farthest terms from the root of the

ontology, to calculate the semantic similarity value between every

two given genes (see methods, Table S7). Higher values of

semantic similarity indicate greater specificity in the common

pathophenotypic space between a pair of genes. It is known that

ontology-based phenotypic similarity methods can also contribute

to improve disease-causing gene networks based on phenotypic

information built with text-mining analysis [42] or random-walk

trajectories between genes considering the ontology as a simple

graph [43].

From all calculated pathophenotypic similarities greater than

zero, we selected the top 2% of more significant pairs of genes.

This selection provides the pathophenotypic similarity gene

network (PSGN) with 1075 genes and 26197 gene-to-gene

pathophenotypic similarities (Figure 3C and Table S7). Disease-

causing gene networks (HDGN and ODGN) exhibit explicit

structural differences when they are compared to PSGN (Figure 3);

for instance, PSGN consists of only one giant connected

component (Figure 3C), which is not the case for HDGN and

ODGN.

Almost all the pathophenotypic gene annotations used in HPO

originally come from OMIM and they represent the sum of all

clinical features of diseases associated with a gene. Accordingly,

the pathophenotypic similarity for a gene is somehow dependent

on the number of diseases associated with this gene (see methods

section). Hence, we proceed with a comprehensive study to assess

whether the pathophenotypic similarity can be used to reinterpret

the pathological relationships between genes (see supplementary

methods and discussion in Methods S1).

Pathophenotypic Similarity Reveals a New
Understanding of Pathological Relationships

The survey of the mutual coverage between PSGN and each

unipartite projection (HDGN and ODGN) was carried out with an

analysis of their intersections.

The resulting intersections of PSGN with each unipartite

projection proved 528 shared nodes and 1055 shared edges for

HDGN and 931 and 1669 for ODGN (Table 4). Therefore, 39%

and 26% of inferred pathological relationships intersect with

pathophenotypic similarities of PSGN, even improving the

intersection between disease causing gene networks (mentioned

above). The Jaccard coefficient of similarity of the intersection of

PSGN with each pathological network was 3.8% and 5.4% for

HDGN and ODGN respectively (Table 4). This can be considered

an interesting performance value if we take into account the

dependence on the Jaccard coefficient on the different sizes of

compared networks (the number of edges in the union are 27796

for HDGN and 30908 for ODGN). Furthermore, there are about

25000 new pathophenotypic similarities, excluding inferred

pathological relationships, to be used for the discovery of new

underlying pathological relationships among genes.

Topological analysis exhibits the emergence of unnoticed

pathological relationships. We have also studied how genes

in PSGN are distributed in comparison to HDGN and ODGN.

Subsequently, we analyzed the degree distribution of genes for

each network (HDGN, ODGN and PSGN), as well as for their

respective gene subsets (MD-MG, MD-PG, PD-MG and PD-PG

of HDN and ODN). We carried out a Mann-Whitney test to assess

the significance of the difference of the degree distribution of each

subset in their respective disease-causing gene network and in

PSGN (Figure 4, a boxplot was used in all the cases). In agreement

with our classification criteria, MD-MG genes (bi-univocal) have

null connectivity in their respective disease-causing gene networks

(Figure 4A). By contrast, MD-MG genes are phenotypically linked

to a mean of 25 genes in PSGN indicating an expansion of

pathophenotypic relationships between disease-causing genes in

PSGN (Figure 4B). In pathological networks, degree distributions

are significantly different for ODGN subsets (PD-MG and PD-PG)

but not for HDGN subsets (see their correspondent p-values in

Figure 4A). On the other hand, degree distributions in PSGN are

quite similar when compared to the equivalent subsets of HDGN

and ODGN, where higher node degree for pleiotropic genes and

lower for monotropic genes can be appreciated (Figure 4B). In

addition, Spearman’s rank correlation test was used to explore

degree correlations between the pathophenotypic similarity

(PSGN) and disease-causing gene networks (HDGN and ODGN)

(Table S8). Weak (but statistically significant) positive correlations

were found between gene pathological and pathophenotypical

relationships (Table S8). These results, as shown in Figure 4 and

Table 3. Network intersection analysis between HDGN and
ODGN.

Network features Values

Number of nodes in HDGN 749

Number of nodes in ODGN 1492

Number of edges in HDGN 2654

Number of edges in ODGN 6380

Observed nodes in the intersection 481

Observed edges in the intersection 662

Percentage of edges in HDGN 24.94

Percentage of edges in ODGN 10.38

Jaccard coefficient of similarity 0.079a

aFraction of edges in the intersection respect to the total edges in the union.
doi:10.1371/journal.pone.0056653.t003

Table 4. Network intersection analysis between PSGN and
HDGN or ODGN.

Network features HDGN values ODGN values

Number of nodes in PSGN 1705 1705

Number of nodes in pahtological network 749 1492

Number of edges in PSGN 26197 26197

Number of edges in pahtological network 2654 6380

Observed nodes in the intersection 528 931

Observed edges in the intersection 1055 1669

Percentage of edges in PSGN 4.03 6.37

Percentage of edges in pahtological network 39.75 26.16

Jaccard coefficient of similarity 0.038a 0.054a

aFraction of edges in the intersection respect to the total edges in the union.
doi:10.1371/journal.pone.0056653.t004
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Table S8, clearly show that gene degrees in pathological networks

differ from those calculated using pathophenotypic similarities.

The (apparently) most striking observation is that genes

uniquely associated with monogenic diseases (genes in MD-MG

and many of MD-PG) are present in PSGN. The vast majority of

these genes appeared as unconnected genes in the unipartite

projections of HDN and ODN (as shown in Figure 3). This means

that pathophenotypic similarities lead to the emergence of novel

relationships that remained hidden in the gene-to-gene projections

of current diseasomes.

Specific contribution of gene subsets to gene-to-gene

pathophenotypic similarities. In light of the result discussed

above, we consider it necessary to prove the contribution of each

type of gene subset to the gene-to-gene similarities of PSGN. This

could help to unveil the relationship between the pathological

convergences or divergences and the pathophenotypic similarities

[30]. Therefore, we analyzed the abundance of pathological

phenotypes and the average pathophenotypic similarity per gene.

Figure 5 (panels A and B) represents the distribution of the

abundance of pathophenotypes (HPO terms) in genes for HDN

and ODN subsets. Pleiotropic genes show distributions signifi-

cantly different to the distribution of all genes included in PSGN

using a Mann-Whitney test (see their correspondent low p-values

for MD-PG and PD-PG, Figure 5 panels A and B). On the other

hand, monotropic genes seem to be well represented in the

pathophenome (whole genes of PSGN) showing only slight

differences in the distribution of PD-MG subset for ODN (see

the p-value for PD-MG in Figure 5B). Consequently, we can be

confident that the phenotypic descriptions used for monotropic

genes are not underestimated and they are enough to calculate

their pathophenotypic similarities to other genes. By contrast, as

expected, pleiotropic genes tend to be annotated in the ontology

with more clinical features compared to the whole gene

annotations. For an overall estimation of how each subset

contributes to the pathophenotypic co-dependence between genes,

we calculated the average of pathophenotypic similarity values

associated with each gene in the PSGN in order to compare their

distributions in different subsets (Figures 5C and 5D). The

monotropic subsets contain genes with the highest specific

relationships to diseases. Nevertheless, monotropic subsets show

very different behavior compared to all genes of the PSGN in the

distribution of the average pathophenotypic similarities related to

genes within HDN and ODN subsets (see the low p-values for

MD-MG and PD-MG in Figures 5C and 5D). MD-MG subsets

show lower average pathophenotypic similarity values (Figures 5C

and 5D). As a result, these distributions also reveal pathopheno-

typic relationships among genes that remained lost in the gene-to-

gene unipartite projections of HDN and ODN. The distributions

of PD-MG subsets show higher average phenotypic similarities

between genes (observe that the green curves in Figures 5C and

5D are displaced to the right when compared to the respective red

curves, as well as to the rest of curves). This observation could be

mainly due to the fact that they are sharing similar sets of

annotations, and in many cases they are functional units or

strongly co-regulated molecular complexes. With regards to

pleiotropic subsets, they seem to be slightly affected by the

number of genes involved in the disease (monogenic and

polygenic). Nonetheless, their abundance of pathophenotypes

could increase the number of non-specific relationships between

genes. In this case, non-specific relationships will tend to show low

values of similarities decreasing the average value associated with

genes. In fact, this agrees with the higher connectivity observed for

pleiotropic subsets in both HDN and ODN (Figure 4). For this

reason, we analyzed the degree of association between the

abundance of pathophenotype per gene and the average similarity

value per gene. A weak Spearman correlation was obtained (p-

value 1.8E226 and rs = 20.25, Figure S2) so we can ensure no

clear dependence between both parameters. However, there is a

tendency to decrease the mean value of pathophenotypic similarity

for genes with abundant HPO terms annotations.

Apparently, the use of semantic similarity measurements

produces a rearrangement in the pathophenotypic co-dependence

between genes overcoming the bias that can be introduced from

the original source of data, the Morbid Map. However, the gene

pleiotropy dampens their average pathophenotypic similarity

values indicating a rise of unspecific relationships with other genes

compared to monotropic genes. This observation reinforces our

suggestion that the representation of diseasomes as unipartite

projections is insufficient to study other underlying (and not

necessarily obvious) pathophenotypic relationships.

Overview of the Relationship between Metabolic or
Essential Genes and Pathophenotypic Similarity

Taking into account that metabolic and essential disease genes

represent about 18% and 34% respectively of the total disease-

causing genes, we also studied how they are represented in each

subset of genes in our classification (Table 5). The subsequent

study of cumulative frequencies per gene of the associated

pathopenotypes (Figure 6A) and the average pathophenotypic

similarity values (Figure 6B) suggest that gene subsets tend to be

associated with different biological properties.

Enrichment of metabolic genes in the MD-MG

subclass. Biunivocal classes (MD-MG) are markedly enriched

in metabolic coding genes with respect to the other classes; on the

contrary, PD-MG is underrepresented by metabolic enzymes. On

the other hand, the pathophenotypes corresponding to metabolic

genes do not differ from those of the whole pathophenome (see

non-significant p value in Figure 6A). However, the mean value of

phenotypic similarity is lower for metabolic genes than for the

whole pathophenome (Figure 6B). For instance, metabolic genes

tend to be involved in more specific pathological processes and

exclusively related to pathophenotypes recognized as genetic

diseases. It seems relevant that metabolic genes are mainly

enriched in the MD-MG subset: 67% and 49% of the whole set

of genes in MGN are MD-MG for HDGN and ODGN,

respectively. In addition, metabolic genes show a lower distribu-

tion of the mean values of pathophenotypes compared to the

whole pathophenome (Figure 6). Therefore, dysfunctions in

metabolic genes prove a functional bias in disease and gene

association studies toward the pathophenotypic specificity

(Figure 6). At least two factors could contribute to explain this

observation: first, the molecular basis of metabolic dysfunctions

can be more precisely identified in these diseases; second, these

diseases exhibit pathophenotypes with highly distinguishable

features. In any case, both factors can be influenced by the

application of routine biochemical analysis in the clinical setup,

which allows an easier detection of abnormal concentrations of

metabolites in blood or urine.

Figure 4. Degree distribution of subset genes in pathological and pathophenotypic gene-to-gene networks. Box plots of the degree of
subset genes in HDGN (blue) and ODGN (red). Box plots of the degree of subset genes in PSGN for ODN subsets (blue) and for ODN subsets (red). In
bold and red, significant p-values. (*) Mean values. (#) Subsets of completely unconnected genes.
doi:10.1371/journal.pone.0056653.g004
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Enrichment of essential genes in the pleiotropic

subsets. Zhang et al. [11] have reported an enrichment of

essential genes in ODN with respect to HDN but our results

suggest that both networks show a similar proportion of essential

genes (Table 5). In particular, the results shown in Table 5 also

indicate that an enrichment of essential genes is produced in

pleiotropic gene subclasses. The number of pathophenotypes

associated with essential genes is significantly higher than that

obtained when using all genes in the PSGN (Figure 6A). But their

distribution of mean values of phenotypic similarities is statistically

indistinguishable from that of the whole pathophenome

(Figure 6B). Some previous network medicine works have

discussed how essential genes are represented in different

diseaseomes [10,11,30]. Barabasi and co-workers concluded that

disease-causing genes are not essential genes because their

associated lethality could have severe consequences [10]. Chavali

et al. [30] proposed two different topological features for

phenotypically divergent genes and essential disease genes, inter-

modular and intra-modular hubs respectively. Zhang et al. [11] in

their analysis of the orphan disease network found that ODs are

enriched in essential genes as compared with the whole set of

diseases. In contrast, when we compared the same essential gene

dataset used by these authors in the updated versions of HDN and

ODN, no detectable differences were found (Table 5). Our

observation differs from that of Zhang et al. [11], maybe due to

the use an updated version of both disease-causing gene networks

and the same dataset of essential genes. In any case, our results do

not support the idea that there could be a negative correlation

between gene essentiality and disease prevalence. Nonetheless, it

seems that there is a certain enrichment of essential genes in the

Figure 5. Distributions of the number of pathophenotypes and pathophenotypic similarities in each subset. MD-MG (red line), MD-PG
(orange line), PD-MG (green line), PD-PG (blue line) and PSGN (Black line). Upper panels represent the cumulative frequency of the number of specific
pathophenotypes annotated for genes in HDN (C) and ODN (D) subsets, the whole set of genes in HPO (PSGN) was used as the reference distribution.
Lower panels represent the cumulative frequency of the average pathophenotypic similarity associated with genes in HDN (C) and ODN (D) subsets,
the whole set of genes in HPO (PSGN) was used as the reference distribution. The p-values, included in each legend, represent the mean of the
resulting p-values after 1000 non-parametric tests (Mann-Whitney test) where each subset was compared, each time, with a random sample of the
pathophenome of the same size of the subset (see methods).
doi:10.1371/journal.pone.0056653.g005
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Figure 6. Distributions of the number of pathophenotypes and the pathophenotypic similarities for metabolic and essential genes.
Metabolic genes (orange line), essential genes (orange line) and the PSGN (Black line). Upper panel (A) represents the cumulative frequency of the
number of specific pathophenotypes annotated for genes, the whole set of genes in HPO (PSGN) was used as the reference distribution. Lower panel
(B) represents the cumulative frequency of the average pathophenotypic similarity associated with genes, the whole set of genes in HPO (PSGN) was
used as the reference distribution. The p-values, included in each legend, represent the mean of the resulting p-values after 1000 non-parametric
tests (Mann-Whitney test) where every set of metabolic and essential genes was compared, each time, with a random sample of genes in PSGN of the
same size of their respective set (see methods).
doi:10.1371/journal.pone.0056653.g006
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subsets of ‘‘pleoiotropic’’ genes, that is, those associated with more

than one disease (Table 5). This result agrees with observed by

Chavali et al. in the dataset of shared genes by diseases [30]. The

dataset of essential genes used in these works [10,11,30] are

human orthologous of lethal mouse genes catalogued in the Mouse

Genome database [44].

From our point of view, the enrichment of essential genes in

pleiotropic disease-causing genes leads to interesting evolutionary

questions on how mutations in these genes are related to their

lethality for other mammals and might be involved in the limits of

human evolvability [45,46].

Integrative Analysis of PSGN
Built biomolecular interactomes (PIN, MGN and

FSGN). The heterogeneity of the cellular interactions among

genes affects (either directly or indirectly) the progression of the

diseases [13]. Thus, the disturbances caused by genetic mutations

can be transmitted in biological systems in several distinct ways.

Three different biomolecular interactomes were built to study the

association between the pathophenotypic similarity and each type

of biological interaction (physical, metabolic and functional

interactions). PIN results in 9580 genes connected through

74657 physical interactions (Table S5). MGN contains 535

enzyme-coding genes interconnected by 9812 flux correlations

(Table S5). The top 0.5% of functional similarities in the branch of

biological processes in the Gene Ontology corresponds to FSGN.

FSGN results in 9157 genes and 496973 significant functional

similarities (Table S5). For each biomolecular interactome, we

evaluated their coverage in PSGN and the contribution of each

type of biological interaction to the score of pathophenotypic

similarity.
Network comparison analysis between biomolecular

interactomes and PSGN. ‘A network intersection analysis

was carried out using the PSGN as reference and the biomolecular

interactomes (PIN, MGN or FSGN) as queries. Nevertheless, the

observed differences in size and density of the studied networks

could be the cause that the direct network comparison analysis

would provide no useful significance values. Therefore, we decided

to standardize the contents of the networks by using the

intersection of nodes (see methods section) to minimize differences

between the reference (PSGN) and the rest of the networks (PIN,

MGN or FSGN). This step (Figure S1) provoked a strong

structural decomposition from all the original networks that

resulted in sub-networks (Table S6). Although we reduced the size

differences between the intersected networks, other features are

still preserved like the density of edges, which are inherent to the

nature of each network (Table 6).

The network comparison results show statistically significant

intersections of edges for all biomolecular interactome sub-

networks compared to their respective PSGN sub-network

(Table 7). This was not the case for randomized networks used

as negative controls. The hypergeometric test shows a lower

significance of the pathophenotypic similarities resulting in the

intersection between PSGN and MGN when compared to PIN

and FSGN (Table 7). Nevertheless, the Jaccard coefficient of

similarity between biomolecular interactomes and their respective

PSGN sub-network was higher for MGN and FSGN (9.8% and

5.4% respectively) than for PIN (2.5%). In this sense, both the

percentage of edges remaining in the reference sub-network and

the Jaccard coefficient of similarity seem to be good indicators of

the size of the phenotypic space covered by the intersection

(Table 7). The 23.7% of physical interactions between diseases-

causing genes match with pathophenotypic similarities, 11.7% and

8.1% for metabolic flux correlation and functional interactions

respectively. FSGN showed the largest and most significant

coverage in PSGN (Table 7), which means that the functional

relationships of genes based on biological processes define the

broadest context of the molecular mechanisms associated with

disease-causing genes. Concerning biochemical interactomes (PIN

and MGN), PIN exhibits a greater coverage of genes at the

intersection than MGN, although the latter presents the highest

Jaccard coefficient of similarity (Table 7).

Specific contribution of biomolecular interactions to

pathophenotypic similarities. Most of the published network

biology studies have made use of the degree of a node (number of

connections with other nodes) to assess its relevance in a network.

In fact, node degree has been extensively used in physical

interaction networks [10,11,30,31] but also in metabolic networks

[15,32]. In this work, a topological analysis was carried out in

different biomolecular interactomes to calculate the degree of

genes (based on gene-to-gene interactions).

To estimate whether the abundance of biological interactions

for genes is correlated with the number of phatophenotypic

similarities in PSGN, we carried out a Spearman’s rank

correlation test of gene degrees. This test showed weak, but

statistically significant, positive correlations between gene degrees

for the whole set of genes (p-value = 2.0E207, r = 0.15 for HDN;

p-value = 3.2E208, r = 0.16 for ODN) when PIN was compared

to PSGN. No significant correlations were found when either

MGN or FSGN were compared to PSGN (Table S9). The values

Table 5. Distribution of essential and metabolic genes in current diseases network.

HDN ODN

Essential Metabolic Essential Metabolic

Subset genes (% in class) genes (% in class) genes (% in class) genes (% in class)

MD-MG 409 (28.6) 308 (21.5) 219 (30.5) 202 (28.2)

MD-PG 315 (49.2) 79 (12.4) 228 (52.4) 64 (14.7)

PD-MG 106 (28.0) 65 (17.2) 245 (27.0) 105 (11.6)

PD-PGa 189 (50.9) 34 (9.2) 286 (49.0) 73 (12.5)

All genesb 856 (33.9c) 458 (18.1) 802 (34.4c) 409 (17.6)

We determined for each class the percentage of genes considered as essentials and metabolic coding genes included in the built metabolic network (MGN).
aPleiotropic genes associated with at least one polygenic diseases.
bAll genes in HDN and ODN respectively.
cMinimal changes are seen compared to Zhang et al.(2011) [11], these differences are due to updating of data Orphanet.
doi:10.1371/journal.pone.0056653.t005
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for the different subsets obtained in this analysis clearly show that

only physical interactions bear some relation with the abundance

of pathophenotypic similarities in pleiotropic genes associated with

monogenic diseases (MD-PG). Accordingly, mutations in MD-PG

genes seem to ‘‘diverge’’ disturbances more efficiently by protein-

protein interactions that determine a pathophenotypic and

functional relationship between genes. This result suggests that

these genes co-participate in different variants of a given disease

and there are functional co-dependencies among them. Thus, we

proceeded to assess whether the specificity of the pathophenotypic

similarity between genes depends on their type of biological

interaction. For that reason, we performed a validation analysis

through receiver operating characteristic (ROC) curves to prove

the signal in pathophenotypic similarities produced by each

biomolecular interactome in PSGN (Figure 7). PIN and MGN

showed higher average areas under the ROC curves (AUC values

of 0.77 and 0.76, respectively) than functional interactions with an

average AUC of 0.66 (Figure 7). Both biochemical interactomes

have a strong signal, as depicted by ROC far from the straight line

representing randomness (Figure 7). This observation reinforces

the idea that strong synergies occur between genes involved in

biochemical interactions. The functional network (Figure 7) also

shows a signal clearly departed from the straight line representing

randomness that is consistent with previous works [27]. However,

one should be aware that there is always some degree of

nonspecific relationships that can introduce noise in this kind of

analysis.
Merging modular components of MSUD using

pathophenotypic similarity. We analyzed a metabolic disor-

der named as maple syrup urine disease (MSUD, MIM 248600).

MSUD is a genetic disease grouped into aminoacidurias and

caused by a decreased activity of the branched-chain alpha-

ketoacid dehydrogenase (BCKD) complex. It catalyzes the first

steps for the degradation of branched-chain amino acids (valine,

leucine and isoleucine). This enzymatic complex has three subunits

(E1, E2, and E3) encoded by four different genes BCKDHA-E1A

(Entrez GeneID 593), BCKDHB-E1B (Entrez GeneID 594),

DBT-E2 (Entrez GeneID 1629), and DLD-E3 (Entrez GeneID

1738). This inborn error of metabolism is genetically and

phenotypically well characterized [47]. The classical clinical

features associated with MSDU are: maple syrup odor in cerumen

(hours after birth), increased levels of branched -chain amino-acids

(valine, leucine and isoleucine), ketonuria, signs of deepening

encephalopathy, coma and central respiratory failure. We

retrieved a map of all pathophenotypes annotated for MSUD-

causing genes (Figure S3). From PSGN, we retrieved all gene pairs

including at least one of the MSUD causing genes, but before we

removed a dense cluster linked to DLD due to Leigh syndrome

(Figure 8 A). Some of the resulting genes also present direct or

non-direct metabolic flux correlations with BCKDHA, BCKDHB,

DBT or DLD (Figure 8 A) and most of them take part in different

reactions of the valine, leucine and isoleucine degradation pathway

Table 6. Counts of nodes and edges in the comparison of PSGN and biomolecular interactomes.

PIN MGN FSGN

Symbol Description Nodes Edges Nodes Edges Nodes Edges

R Reference (PSGN) 1233 15550 131 321 1381 17233

Q Query (biomolecular interactome) 903 1779 154 1060 1376 30318

QvR Union 1240 16907 158 1257 1387 45078

Q̂R Intersection 896 422 127 124 1370 2473

Q!R Query not reference 7 1357 27 936 6 27845

R!Q Reference not query 337 15128 4 197 11 14760

All calculations were performed using NeAT [28]. The query is PSGN and used reference corresponds to each biomolecular interactomes.
doi:10.1371/journal.pone.0056653.t006

Table 7. Significance of the number of edges at the resulting intersection in the network analysis comparison.

PIN MGN FSGN

Symbol Description Formula Network Random Network Random Network Random

N Nodes in the union – 1240 1238 158 158 1387 1387

M Max number of edges in the union M = N*(N21)/2 768180 765703 12403 12403 961191 961191

E(Q̂R) Expected edges in the intersection E(Q̂R) = Q*R/M 36.01 27.96 27.43 24.33 543.57 196.95

Q̂R Observed edges in the intersection – 422 35 124 17 2473 194

Q (%) Percentage of query edges perc_Q = 100*Q̂R/Q 23.72 2.54 11.70 1.81 8.16 1.77

R (%) Percentage of reference edges perc_R = 100*Q̂R/R 2.71 0.23 38.63 5.30 14.35 1.13

Jac_sim Jaccard coefficient of similarity Jac_sim = Q̂R/(QvR) 0.0250 0.0021 0.0986 0.0137 0.0549 0.0069

P value P-value of the intersection Pval = P(X. = Q̂R) 4.0E2308 1.1E201 2.7E251 9.6E201 1E2321a 5.9E-01

All calculations were performed using NeAT [28]. The query is PSGN and used reference corresponds to each biomolecular interactomes. In bold, those significant p-
values.
aThe limit of precision for the hypergeometric test.
doi:10.1371/journal.pone.0056653.t007
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(Figure 8 B). This evidence that integrating functional co-

dependencies and pathophenotypic similarities merge apparently

non-related genes into a module of the molecular pathobiology.

Furthermore, we can breakdown the module relationships to map

shared pathophenotypes between genes (Figure 8 C). For instance,

IVD and ACADM are genes included in MD-MG subsets for both

HDN and ODN. However, in this sub-network (Figure 8 A) we

detect that they are sharing pathophenotypes with MSUD genes

(Figure 8 C). It is possible to identify the set of the most specific

pathophenotypes for MSUD, elevated plasma branched chain

aminoacids or hallucinations. In addition, PCCA and PCCB

appear with similar clinical biochemistry parameters highly

correlated with MSUD, such as high levels of lactic acid and

ketone bodies (Figure 8 C). In contrast, other pathophenotypes

point to disorders at a systemic or pathophysiological level, such as

cerebral edema, pancreatitis, lethargy and coma (Figure 8 C).

Nevertheless, these genes are grouped in the same biological

context (Figure 8 B) and, it is important to remark, that all of them

are in the mitochondrial matrix.

This metabolic syndrome illustrates the potentials of PSGN.

This network provides novel pathological similarities between

genes and outlines the pathobiology and functional context of

disease-causing genes using metabolic interactions.

Overlapped physical and pathophenotypic interactions

disregarded in unipartite projections. Finally, given the

relevance of the physical interactions, we carried out a manual

exploration of the intersection between PIN and PSGN. This is to

remove all those gene-to-gene edges in both HDGN and ODGN

from the resulting intersection. This resulted in the selection of all

the disregarded relationships between genes in unipartite projec-

tions of diseasomes that are phenotypically and physically related

(Figure 9 and Table S10). Therefore, tuning the balance between

the ‘‘noise’’ and the confidence of interactions may improve the

predictive power of new disease-related genes using network

medicine approaches based on pathophenotypic term.

Conclusions
Current studies in medical genetics are mainly centered in

establishing associations among diseases and genetic variations for

Figure 7. Receiver operative characteristic (ROC) curve performance by biomolecular interactions of pathophenotypic similarities.
Physical interactions (dashed blue line), metabolic flux correlations (dashed green line), functional interactions (red continuous line) and an integrated
interactome generated by the sum of all other interactomes (black continuous line). ROC curves were computed to assess the signal of
pathophenotypic similarities for biological interactions. True positives (TP) were those interactions that where found in the intersection between
PSGN and each biomolecular interactome (PIN, MGN and FSGN). The dataset of false positives (FP) was calculated from intersected gene pairs
between PSGN and randomizations of each biomolecular interactome. We obtained severals different FP datasets to calculate the average area under
the curve (AUC), it was 0.77 for PIN, 0.76 for MGN, 0.66 for FSGN and 0.68 for the integrated interactome. Only biochemical interactomes show
significantly different AUCs to that of the integrated interactome (average p-values of 2.2E26 and 4.1E22 for PIN and MGN respectively).
doi:10.1371/journal.pone.0056653.g007
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personalized medicine. Many of these genetic variations are

located in intragenic regions of DNA and they constitute the basic

data to build disease-causing gene networks [10,11]. These

networks are useful to find new genetic interactions between

diseases, as well as to predict the influence of gene functions in

existing pathologies [48–50]. In the present work, we have

classified the different patterns of gene-disease associations in four

subsets according to two different criteria (MD-MG, MD-PG, PD-

MG, PD-PG, as depicted in Figure 1C). This is in contrast to

previously published works in which only one criterion was used,

either specific and shared genes by diseases [30] or monogenic or

polygenic disease-causing genes [31,51]. Our findings indicate that

the inferred associations are insufficient to describe properly both

interactions among diseases and among genes. This effect can be

easily observed when analyzing bipartite graphs composed of

gene-to-disease edges. In these networks, more than 30% of the

genes participate in ‘‘bi-univocal’’ relationships (that is, genes

associated exclusively with a single disease). This specificity can be

useful for diagnostics, but it makes it more difficult to establish

groups or to identify interactions among diseases. On the other

hand, our results have also uncovered an enrichment of metabolic

genes in bi-univocal subsets, as well as an enrichment of essential

genes in pleiotropic subsets. The lack of cellular and molecular

phenotyping platforms constrains the possibility to detect shared

features among pathologies. Consequently, this reduces the

possibilities of generating new knowledge on the molecular bases

of the pathophenotypic profiles, to distinguish classes and

subclasses of a given disease more precisely [7,11,26]. However,

medical semantics remains the standard tool to establish the sets of

observed clinical features associated with pathologies. In the case

of diseases with predominantly genetic origins, pathophenotypes

are usually very conserved among patients. We have shown that

pathophenotypic similarity gene networks can be a great resource

to uncover the molecular mechanisms involved in the responses of

organisms to genetic disturbances. For instance, it shows to be

useful to merge biomolecular components involved in a same

pathological process like MSUD.

In the future, network integration and standardization of

molecular and cellular phenotypes could improve the understand-

ing of the evolutionary mechanisms involved in pathological

processes. Further experimental and analytical efforts in this

direction are warranted.

Figure 8. Maple syrup urine disease pathological and metabolic interactions. In red genes associated with MSUD and in blue
pathophenotypic similar genes. (A) Pathophenotypic similarity gene sub-network for MSUD causing genes. It can be noteworthy that there are no
inferred relationships between MSUD genes and the rest. (B) Map of branched-chain amino acid degradation pathway from. This map has been
extracted from the Kyoto Encyclopedia of Genes and Genomes (KEGG, hsa:00280) developed by Kanehisa Laboratories. Enzymes encoded by human
genes are in green. (C) Pathophenotypes shared between genes in the same metabolic module.
doi:10.1371/journal.pone.0056653.g008
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Supporting Information

Figure S1 Schematic representation of the workflow of
essential steps followed in this study: building network
processes, optimal statistical threshold selection, net-

work comparisons, topological analysis and ROC curve
construction.

(PDF)

Figure 9. Physical interactions between genes with similar phenotypic lost in the current networks of diseases. This figure is the result
of the difference of the resulting intersection between PSGN and PIN after removing those interactions present in HDGN and ODGN. Those genes
that are MD-MG in HDN and ODN have been coloured in orangeThese genes indicate that they present underlying pathophenotypical relationships
with other genes that had been disregarded by the inference of shared disease genes.
doi:10.1371/journal.pone.0056653.g009
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Figure S2 Spearman correlation between the number of
pathophenotypes per gene and the average pathopheno-
typic similarity per gene for PSGN genes.
(PDF)

Figure S3 Graph of the pathophenotypes annotated to
maple syrup urine syndrome. Parental nodes are close
to the root in the human phenotype ontology and,
therefore, with lower specificity. In contrast, child
nodes are the most informative and specific pathological
phenotypes.
(PDF)

Table S1 Bipartite and unipartite projections of the
updated version of the human diseases network.
(XLS)

Table S2 Bipartite and unipartite projections of the
updated version of the orphan disease network.
(XLS)

Table S3 Different gene subsets in the human diseases
network following proposed classification.
(XLS)

Table S4 Different gene subsets in the orphan diseases
network following proposed classification.
(XLS)

Table S5 Different biomolecular interactomes based on
physical, metabolic and functional interactions.
(XLS)

Table S6 Biomolecular interactome and PSGN sub-
networks after nodal intersections.
(XLS)

Table S7 Pathophenotypic similarity gene network.
(XLS)

Table S8 Spearman correlations between gene degrees
in PSGN and HDGN/ODGN.
(PDF)

Table S9 Spearman correlation between gene degrees
in PSGN and biomolecular interactomes.
(PDF)

Table S10 Network intersection between PSGN and PIN
removing inferred gene-to-gene associations.
(XLS)

Methods S1

(PDF)
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33. Montañez R, Medina MA, Solé R V, Rodrı́guez-Caso C (2010) When
metabolism meets topology: Reconciling metabolite and reaction networks.

Bioessays 32: 246–256.

34. Veeramani B, Bader JS (2009) Metabolic Flux Correlations, Genetic
Interactions, and Disease. J Comput Biol 16: 291–302.

35. Rolfsson O, Palsson B, Thiele I (2011) The human metabolic reconstruction

Recon 1 directs hypotheses of novel human metabolic functions. BMC Syst Biol
5: 155.

36. Resnik P (1995) Using Information Content to Evaluate Semantic Similarity in a

Taxonomy. IJCAI. 448–453.

37. Mistry M, Pavlidis P (2008) Gene Ontology term overlap as a measure of gene
functional similarity. BMC Bioinformatics 9: 327.

38. Xu T, Du L, Zhou Y (2008) Evaluation of GO-based functional similarity

measures using S. cerevisiae protein interaction and expression profile data.
BMC Bioinformatics 9: 472.

Using Pathological Phenotypes for Human Diseasomes

PLOS ONE | www.plosone.org 18 February 2013 | Volume 8 | Issue 2 | e56653



39. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8:

new features for data integration and network visualization. Bioinformatics 27 :
431–432.

40. Brohée S (2012) Using the NeAT Toolbox to Compare Networks to Networks,

Clusters to Clusters, and Network to Clusters. Methods in molecular biology
(Clifton, N.J.). Springer New York, Vol. 804. 327–342.

41. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:
861–874.

42. Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM (2006) A

text-mining analysis of the human phenome. Eur J Hum Genet 14: 535–542.
43. Xie M, Hwang T, Kuang R (2012) Reconstructing Disease Phenome-genome

Association by Bi-Random Walk. Bioinformatics 1: 1–8.
44. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA (2008) The Mouse

Genome Database (MGD): mouse biology and model systems. Nucleic Acids
Res 36: D724–8.

45. Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype–

phenotype map: the evolvability of complex organisms. Nat Rev Genet 12: 204–
213.

46. Hill WG, Zhang X-S (2012) On the Pleiotropic Structure of the Genotype–

phenotype Map and the Evolvability of Complex Organisms. Genetics.

47. Nellis MM, Danner DJ (2001) Gene preference in maple syrup urine disease.

Am J Hum Genet 68: 232–237.

48. Wheelock CE, Wheelock AM, Kawashima S, Diez D, Kanehisa M, et al. (2009)

Systems biology approaches and pathway tools for investigating cardiovascular

disease. Mol Biosyst 5: 588–602.

49. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, et al. (2009)

Pathway and network-based analysis of genome-wide association studies in

multiple sclerosis. Hum Mol Genet 18: 2078–2090.

50. Cerami E, Demir E, Schultz N, Taylor BS, Sander C (2010) Automated

Network Analysis Identifies Core Pathways in Glioblastoma. PLoS ONE 5:

e8918.

51. Feldman I, Rzhetsky A, Vitkup D (2008) Network properties of genes harboring

inherited disease mutations. Proc Natl Acad Sci U S A 105 : 4323–4328.

Using Pathological Phenotypes for Human Diseasomes

PLOS ONE | www.plosone.org 19 February 2013 | Volume 8 | Issue 2 | e56653


