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Abstract

Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity
associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS
diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano
PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and
brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP,
Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation.
Brain was also investigated for CD68, TNF-a, GFAP. In blood, cell counts were performed while plasma was screened for
endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-a, MIP-2, IL-1b, MPO). Genes up-regulation
(HMOX1, Cyp1B1, IL-1b, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory
tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased
ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to
the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium
interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum
induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover,
PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators,
ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction,
mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum and could facilitate
shedding light on mechanisms underlying the development of urban air pollution related diseases.
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Introduction

Short term exposure to a high amount of PM10 (particles

#10 mm in aerodynamic diameter, including fine and ultrafine

particles) leads to higher hospitalization rates for cardiovascular

diseases, increases risk for myocardial infarction and ischemic

stroke [1], even 24 h after peak of pollution [2]. Different possible

mechanisms have been hypothesized to explain the systemic effect

of PM inhalation [3,4]: on one hand, the inhaled PM may trigger

the direct release of pro-oxidative and/or pro-inflammatory

mediators from lungs into systemic circulation and, on the other

hand, ultrafine PM may actively translocate from lungs into the

bloodstream thus exerting extra pulmonary toxicity.

Convincing evidences indicate that PM10 causes the most

severe effects on human health because of the broad range of

miscellaneous toxic compounds present in this PM fraction [1,3],

such as transition metals, endotoxins [5] and ultrafine compo-

nents, which could mediate the adverse effects in a mechanism

called the ‘‘ultrafine hypothesis’’ [6].

Brain is another potential target of the inhaled PM: it is known

that inhaled nanosized particles can penetrate lungs, deposit in

extra pulmonary tissues and cross the blood-brain barrier (BBB),

possibly already compromised by the PM triggered systemic

inflammation [7].

Our previous investigations [8] demonstrated that summer

PM10 (PM10sum) induced more severe lung inflammation than

winter PM10 (PM10win) after a single intratracheal instillation in

mice, and suggested a link between pro-inflammogenic potential of

PM10sum and its Gram-negative bacteria content [9]. The greater

LPS amount associated to PM10sum (60,5 EU/mg) [10] could

induce in lungs a condition that might trigger a systemic toxic
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reaction, so that the aim of the present study is to broaden the

analysis of Milano PM10sum-induced toxicity, not only in the

respiratory tract but also in extra pulmonary districts. To disclose

the systemic toxicity of Milano PM10sum, we here analysed

different pro-inflammatory and cytotoxic markers, both at RNA as

well as at protein level, in BALB/c mice broncho-alveolar lavage

fluid (BALf), lungs, blood, heart and brain, 24 hours after the last

of three intratracheal instillations of PM10sum. Finally we

evaluated the microRNA miR-21, recently proposed as a new

marker of inflammation which is up-regulated by LPS in many

cells types, including macrophages [11].

Materials and Methods

Animals
Male BALB/c mice (7–8 weeks old) were purchased from

Harlan; food and water were administered ad libitum. Mice were

housed in plastic cages under controlled environmental conditions

(temperature 19–21uC, humidity 40–70%, lights on

7 a.m.27 p.m.). ‘‘Animal use and care procedures were approved

by the Institutional Animal Care and Use Committee of the

University of Milano-Bicocca and complied with guidelines set by

Italian Ministry of Health (DL 116/92); invasive procedures have

been performed under anesthesia and all efforts were made to

minimize suffering.’’

PM Sources and Characterization
Atmospheric PM10sum was collected during summer 2008 at

Torre Sarca, an urban site in Milano, as described in previous

papers [12]. The chemical characterization of PM10 collected

during summer 2008 doesn’t differ from the PM10 collected in

summer 2006 and 2007 [10]. Particles were recovered from filters

by sequential sonications (four cycles of 20 min each) in sterile

water; detached particles were dried into a desiccator and

weighed. Particles’ suspensions were prepared as follow: just

before the intratracheal instillation, PM10sum aliquots were

properly diluted in sterile saline, sonicated, vortexed and then

immediately instilled in mice.

Dose
A single intratracheal instillation of 100 mg of PM10sum raised

pulmonary inflammation within 3 hours; 24 h after the single

instillation all the inflammatory markers basically turned to sham

levels, and only differential cell count and Hsp70 reverted 1 week

later [8].

The aim of this study is to disclose the pulmonary short-term

effects and extra-pulmonary translocation of PM10sum collected

in Milano urban centre. Similar investigations have been pre-

viously based on very high PM exposure rate both in case of whole

chamber PM exposure [13,14,15,16,17,18,19] and in single or

repeated intratracheal instillations [20,21,22,23,24,25].

It is well known that larger particles in the lungs are rapidly

phagocytised by AMs while smaller particles enter the blood

capillaries [20]; moreover, pulmonary inflammation plays a key

role in enhancing the extra-pulmonary translocation of particles,

as confirmed by the evidence that particles translocation is

markedly increased following LPS treatment [20]. We have

previously reported that LPS concentration is particularly high in

PM10sum collected in Milano (60 EU/mg) [10] and that

PM10sum sub-fraction contains about 60% of fine and ultrafine

particles [26]. Our treatment scheme has been designed to

lengthen the PM10sum triggered pro-inflammatory effects within

lungs, in order to prove the translocation of inflammatory

mediators, cytokines, ultrafine particles, LPS and/or PM associ-

ated metals from lungs toward the bloodstream. We started from

the PM dose proposed by Happo et al. [24], who instilled in mice

a cumulative dose of 0.82 mg/animal of coarse PM, and we

reduced the cumulative dose to 0.3 mg/animal of PM10sum

within the same time points. Indeed, the PM dose here used is not

directly correlated to human urban exposures, but it has been

determined as the lowest dose which induces a sustained lung

inflammatory response in PM10sum exposed mice.

It must be taken into account that not all the particles

intratracheally instilled are able to reach the alveoli, as some are

quickly removed by the muco-ciliar clearance system or

phagocited by alveolar macrophages. Finally, we used healthy

BALB/c mice, preventing additional variability to response due to

pre-existing disease. In any case, no signs of PM10sum lung

overloading have been reported as clearly demonstrated by

histological and biochemical investigations.

Intratracheal PM10sum Instillation
Animal testing was carried out by intratracheally instilling 3

mice for each experimental group and the experiment was

replicated twice, for a total of 6 sham and 6 PM10sum-treated

mice. For RNA and miRNA analysis, additional 5 sham and 5

PM10sum-treated mice were considered.

Male BALB/c mice were briefly exposed to a mixture of 2.5%

isoflurane (Flurane) anesthetic gas and kept under anaesthesia for

the whole instillation procedure (about 5 minutes). Intratracheal

instillation with 100 mg of PM10sum in 100 ml of isotonic saline

solution or 100 ml of isotonic saline solution (sham) has been

achieved by means of MicroSprayerH Aerosolizer system (Micro-

SprayerH Aerosolizer- Model IA-1C and FMJ-250 High Pressure

Syringe, Penn Century, USA; validated by Bivas-Benita [27], as

described in Mantecca et al. [28,29] and in Farina et al. [8]. The

intratracheal instillation was performed on days 0, 3, and 6, for

a total of three instillations, as previously described [24,25].

Bronchoalveolar Lavage Fluid Analysis
24 h after the last instillation, mice from each experimental

group (sham and PM10sum-treated) were euthanized with an

anesthetic mixture overdose (Tiletamine/Zolazepam-Xylazine

and Flurane). The PM adverse effects were assessed 24 h after

the last treatment of repeated dosing of particulate since the

greatest and prolonged inflammation does occur within this time

point [24]. The Broncho Alveolar Lavage Fluid (BALf), pellets and

supernatants have been collected as described in Mantecca et al.

[28,29] and in Farina et al. [8].

Cell counts. After centrifugation, total and differential cell

counts were performed according to Mantecca et al. [28,29] and

Farina et al. [8].

Cytokines analysis. The analysis of pro-inflammatory

cytokines and chemokines released in the BALf was performed

by DuoSet ELISA kits for TNF-a, MIP-2 and IL-1b(R&D

Systems, Minneapolis, MN) according to the manufacturer’s

protocols.

Biochemical analysis. The following biochemical analysis

were performed on cell-free BALf supernatants. The commercially

available kits for ALP (DALP-250 QuantiChrom Alkaline

Phosphatase Assay Kit, Gentaur Molecular) and LDH (DLDH-

100 QuantiChrom Lactate Dehydrogenase Kit, Gentaur Molec-

ular) were employed according to the manufacturer’s instructions.

Other proteins. 30 mg of BALf proteins of sham and

PM10sum-treated mice were loaded on SDS-PAGE, submitted

to electrophoresis followed by Western blot, and tested for MPO

and Hsp70 (anti-MPO 1:200, anti-Hsp70 1:200, Santa Cruz),

according to the procedures below described.

Milano PM10sum Induces Systemic Toxic Effects
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Lung, Heart and Brain Parenchyma Analysis
Lungs of sham and PM10sum-treated mice were quickly excised

from the chest and washed in ice cold isotonic saline solution. Left

lung from sham and PM10sum-treated mice was dissected and

submitted to histological and immunohystochemical analysis,

while right lung was submitted to immunoblotting analysis. For

proteins detection and quantification, organs were minced at 4uC,

briefly homogenized for 30 seconds at 11000 rpm with Ultra-

Turrax T25 basic (IKA WERKE), sonicated for 30 seconds and

then suspended in NaCl 0.9%. Samples were submitted to

trichloroacetic acid (TCA) precipitation according to the pro-

cedure described in Farina et al. [8]. The pellets were suspended

in water and protein amounts measured by BCA method (Sigma

Aldrich, USA).

Thereafter, lung, heart and brain homogenates of sham and

PM10sum-treated mice were loaded on SDS-PAGE and sub-

mitted to electrophoresis, followed by Western blot, according to

the procedures described in Farina et al. [8]. Lung parenchyma

was assessed with specific antibodies for MPO, ET-1, HO-1,

Cyp1B1, iNOS, Hsp70, Caspase8-p18 and Caspase3-p17 (all

1:200, Santa Cruz). The activation of TLR4 pathway has been

studied by investigating the phosphorylation of IRAK-1, TAK1

and IKBa (all 1:200, Abcam). Heart homogenates were incubated

with specific antibodies for MPO, HO-1, Hsp70, Cyp1B1, ET-1

Caspase8-p18 and Caspase3-p17 (all 1:200, Santa Cruz) and brain

homogenates were evaluated with specific antibodies for ET-1,

HO-1, soluble and membrane bound TNF-a, Hsp70, Cyp1B1,

CD68, GFAP, Caspase8-p18 and Caspase3-p17 (all 1:200, Santa

Cruz).

Then, blots were incubated for 1.5 h with horseradish

peroxidase-conjugated anti-rabbit IgG (1:5000) or anti-goat IgG

(1:2000) diluted in PBS-Tween20/milk or in TBS-Tween20/BSA.

Proteins were detected by ECL by means of the SuperSignal

detection kit (Pierce, Rockford, IL). Immunoblot bands were

analyzed and the optical density (OD) quantified by KODAK

(Kodak Image Station 2000R); all the data have been normalized

to b-actin (1:1500, Sigma) and each protein in PM10-treated

group has been normalized to the respective sham group.

Lung Histological Analysis
At the end of BAL procedure, the left lung from sham and

PM10sum-treated mice was excised and immediately formalin

fixed and processed for histology. Briefly, after being preserved for

24 h in the fixative, tissue samples were rinsed in distilled water,

dehydrated in an ethanol series from 70% to 100% and embedded

in Bio-plast tissue embedding medium. For each sham and

PM10sum exposed lung sample, 7.0 mm serial sections were cut by

a rotary microtome, mounted on slides and stained with Mayer’s

haemalaun and alcoholic eosin.

The immunohistochemical localization of HO-1 in lung tissues

was performed by an indirect immunochemical method using

a rabbit anti-HO-1 polyclonal antibody (Santa Cruz), and the

peroxidase-based Vectastain Elite ABC Kit (Vectastain Laborato-

ries) following the procedure reported in Mantecca et al. [29].

Samples were qualitatively screened by means of Zeiss Axioplan

microscope at a magnification of 406and images were taken using

Zeiss AxioCam MRc5 digital camera interfaced with the

Axiovision Real 4.6 software. Figure panels were prepared using

Adobe Photoshop.

Blood Analysis
Blood of sham and PM10sum-treated mice was collected by

means of intracardiac puncture with the appropriate anticoag-

ulant (EDTA, Na-citrate). Total cells count and neutrophils

percentage were performed as previously described [8]. Plasma

was obtained after two centrifugation, the first at 2000 g for 20

minutes and the second at 10000 g for 10 minutes at 4uC to

completely remove platelets. Plasma samples have been then

submitted to sP-Selectin quantification (Quantikine Mouse sP-

selectin, R&D Systems) and cytokines analysis (TNF-a, MIP-2

and IL-1b; R&D Systems, Minneapolis, MN), following

manufacturer’s procedures. Immunoblot assays of MPO and

ET-1 (all 1:200, Santa Cruz) were performed according to

previously described protocols; all the data have been normal-

ized to albumin. Each protein of PM10sum-treated group has

been normalized to the respective sham group.

RNA e miRNA Expression Analysis
5 sham and 5 PM10sum-treated mice were considered for

RNA analysis. Lungs, not submitted to BAL procedure (called

‘‘no-BAL’’), have been excised, suspended in an appropriate

volume of RNA Later and submitted to total RNA extraction.

Aliquots of lung and heart parenchyma from all the 5 sham and

5 PM10sum-treated mice were submitted to immunoblot

analysis. Total RNA was extracted from tissues using the

miRNeasy extraction kit (Qiagen, Hilden, Germany), according

to the manufacturer’s instructions. Blood sample collection and

RNA extraction were carried out using the Mouse RiboPureTM-

Blood RNA Isolation kit (Ambion, Life Technologies, Carlsbad,

CA, USA), following the manufacturer’s instructions. After

elution in RNase free-water, RNA samples were quantified by

ND-1000 spectrophotometer (NanoDrop Technologies, Wil-

mington, DE, USA). RNA quality was checked by micro-

capillary electrophoresis with 2100 BioAnalyzer (Agilent Tech-

nologies, Santa Clara, CA, USA). Total RNA integrity was

assessed on the basis of the RIN (RNA Integrity Number) factor

and presence of low molecular weight RNA molecules (in-

cluding 5S rRNA and small RNAs) was verified. RNA samples

were stored at 280uC until use.

Quantitative PCR (QPCR) reactions for microRNAs was

performed by use of TaqManH MicroRNA Reverse Transcription

(RT) kit (Applied Biosystems, Life Technologies, Inc. Carlsbad,

CA, USA) and of specific miRNA primers provided with

TaqManH microRNA assays, according to the manufacturer’s

protocol. Starting from 10 ng of total RNA for each assay, RT

reactions were performed by means of Applied Biosystems 7900

Thermocycler machine. Quantitative microRNA expression

analysis was carried out for miR-21 (Assay ID, 000397, Applied

Biosystems) normalized against U6snRNA (Assay ID, 001973,

Applied Biosystems) taken as endogenous control. For gene

expression analysis, we performed QPCR starting from 1 mg of

total RNA using the High Capacity cDNA Reverse Transcription

kit (Applied Biosystems) and gene-specific primers provided with

TaqManH Gene Expression Assays. Specifically, QPCR analysis

were carried out for HMOX1 (Assay ID Mm00516005_m1),

Cyp1B1 (Assay ID Mm00487229_m1), IL-1b (Assay ID

Mm01336189_m1), MIP-2 (Assay ID Mm00436450_m1) and

MPO (Assay ID Mm00447886_m1) genes. All data have been

normalized versus glyceraldehyde-3-phosphate dehydrogenase

(GAPDH, Assay ID Mm99999915_g1) gene taken as endogenous

control. Reactions were run in triplicate on the Applied Biosystems

7900HT Fast Real-Time PCR System machine. Ct values were

calculated using the SDS software version 2.3 (Applied Biosys-

tems), by applying automatic baseline and standard threshold

settings. We applied the 22DDCt method (Applied Biosystems User

Bulletin No. 2) to obtain a relative quantification of miRNA and

gene expression levels.

Milano PM10sum Induces Systemic Toxic Effects
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Statistical Analysis
For each cytological and biochemical parameter measured in

sham and PM10sum treated mice the means 6 standard error

(s.e.) were calculated. Statistical differences were confirmed by U

Mann-Withney test. To test the tendency toward increase or

decrease of the cytological and biochemical parameters, linear

regressions were carried out. Statistical differences were consid-

ered to be significant at the 95% or 99% level (p,0.05 or p,0.01).

Results

BALf Analysis
Total cell count confirmed no differences between sham and

PM10sum-treated mice, 24 h after the last PM10sum intratracheal

instillation (Tab. 1, A). On the contrary, differential cell count

disclosed a significant decrease of AMs percentage and a significant

increase of PMNs percentage (99% neutrophils) in treated mice

(Tab. 1, A). A significant increase of IL-1b and MIP-2

concentrations were evident in the BALf of PM10sum-treated

mice in comparison to sham, though in presence of unchanged

concentration of TNF-a (Tab. 1, A). Lactate Dehydrogenase

(LDH) and Alkaline Phosphatase (ALP) activities were analyzed in

the BALf as markers of cytotoxicity. LDH activity was significantly

increased in PM10sum-treated mice (Tab. 1, A), while no

difference was detected in ALP activity (Tab. 1, A). Finally,

PM10sum-treatment induced a significant increase in both MPO

and Hsp70 levels (Fig. 1, A and Tab. 1, B).

Lung Genes Expression Analysis
PM10sum-treatment induced a significant MIP-2 up-regulation

while no significant changes were found for HMOX1, Cyp1B1,

IL-1b and MPO; an induction of miR-21 in the lung tissues of

PM10sum-treated mice was evidenced during miRNA gene

expression analysis (Tab. 2).

Figure 1. BALf, lung, heart, brain and plasma immunoblotings. Western blottings displaying proteins in BALf (A), lung (B), heart (C), brain (D)
and plasma (E) in sham and PM10sum-treated mice, 24 h after the third intratracheal instillation. Reported blots are representative of 6 sham and 6
PM10sum-treated mice; densitometry analyses are reported in Tab.1.
doi:10.1371/journal.pone.0056636.g001

Table 1. BALf analysis.

BALf sham (n=6)
PM10sum
(n=6)

mean 6 s.e. mean 6 s.e. p

A Total cells (E+06) 5.21 1.34 5.93 2.31

AMs% 70.2 9.48 41.33 3.73 **

PMNs% 28.8 9.91 57.91 4.02 *

Ls% 0.97 0.97 0.68 0.68

TNF-a (pg/mL) 157.7 32.21 310.98 94.5

MIP-2 (pg/mL) 49.46 33.9 271.09 64.11 *

IL-1b (pg/mL) 40.63 17.46 164.35 36.39 *

LDH (IU/L) 30.7 2.46 43.43 4.46 *

ALP (IU/L) 0.37 0.11 0.36 0.07

B MPO 1 0.23 2.91 0.55 *

Hsp70 1 0.31 3.19 0.72 *

Several markers have been analysed in the BALf of sham and PM10sum-treated
mice. (A): table summarizing results of cell counts and biochemical analysis in
BALf from sham (n = 6) and PM10sum-treated mice (n = 6), 24 h after the third
intratracheal instillation; (B): immunoblotting results in BALf from sham (n = 6)
and PM10sum-treated mice (n = 6), 24 h after the third intratracheal instillation;
each protein in PM10-treated group has been normalized onto respective sham
group. All the data are expressed as mean 6 s.e. Sham vs PM10sum-treated:
*p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0056636.t001

Milano PM10sum Induces Systemic Toxic Effects
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Lung, Heart and Brain Protein Analyses
ET-1, a potent regulator of the vascular tone, was significantly

higher in the lungs of PM10sum-treated mice in comparison to

sham (Fig. 1, B and Tab. 3, A). Moreover a significant increase in

HO-1 and Hsp70 levels (Fig. 1, B and Tab. 3, A), both involved in

the protection against protein unfolding, as well as in the

inflammation and oxidative stress, were observed in the lungs of

PM10sum-treated mice. The level of Cyp1B1, a cytochrome of the

P450 superfamily involved in the activation of many xenobiotics

and in PAHs metabolism, significantly decreased 24 h after the

last PM10sum intratracheal instillation (Fig. 1, B and Tab. 3, A).

iNOS, MPO, Caspase8-p18 and Caspase3-p17 showed no

differences between sham and PM10sum-treated mice (Tab. 3,

A). TLR4 pathway was not activated as no increases of the

IRAK1, TAK1 and IKBa phosphorylation were detected (Tab. 3,

A).

Heart tissues of PM10sum-treated mice disclosed significant

increases of ET-1, Cyp1B1 and Hsp70 levels (Fig. 1, C and Tab. 3,

B). MPO, HO-1, Caspase8-p18 and Caspase3-p17 shown no

differences between sham and PM10sum treated mice (Tab. 3, B).

In the brain of PM10sum-treated mice, ET-1 and HO-1 levels

were significantly increased (Fig. 1, D and Tab. 3, C); Cyp1B1,

CD68, soluble and membrane bound TNF-a, Hsp-70, GFAP,

Caspase8-p18, Caspase3-p17 were basically unchanged compar-

ing sham and PM10sum-treated mice (Tab. 3, C).

Blood and Plasma Analysis
Gene expression analysis evidenced no up-regulation of

HMOX1 or IL-1b in blood RNA of PM10sum-treated mice,

compared to sham, together with no induction of miR-21 (Tab. 4).

Blood and plasma of sham and PM10sum-treated mice were

analysed for pro-inflammatory and pro-trombogenic markers.

Total cell count, neutrophils percentage and sP-selectin concen-

tration, a marker of the activated platelet/endothelium interface,

were significantly increased 24 h after the last intratracheal

instillation of PM10sum (Tab. 5, A). The cytokines analyses in

the plasma of sham and PM10sum-trated mice, performed by

ELISA assay, were under the kit detection limits.

Finally, both MPO and ET-1 increased in PM10sum-treated

mice (Fig. 1, E and Tab. 5, B).

Histopathological Findings
Despite the relatively high cumulative dose of PM10sum

instilled, there were no signs of pulmonary overloading with

particles; moreover, only few free particles and no large particle

aggregates were seen in the BALf or lung tissue of treated mice.

As evidenced by the histological lung analysis, when compared

to sham (Fig. 2, A–B) PM10sum has induced inflammatory cell

recruitment in the connective surrounding the terminal bronch-

ioles and the proximal alveolar sacs (Fig. 2, C–D). Lungs instilled

with PM10sum showed extended inflammatory infiltrate and

particles engulfed by alveolar macrophages (Fig. 2, C–D). These

histological evaluations have supported the cytological and

biochemical assays on BALf. Immunohistochemical detection of

HO-1 in the lungs of PM10sum-treated mice has confirmed the

biochemical analyses, (Fig. 3, A–D). HO-1 induction appeared to

be distributed along both airways and the respiratory tract,

particularly well distinguishable within the epithelium of distal

bronchioles (Fig. 3, C–D).

Table 2. Lung gene expression.

LUNG fold increase range 6 s.e. p

HMOX1 1.51 0.68–2.10 0.39

Cyp1B1 1.29 1.03–1.71 0.24

IL-1b 1.07 0.93–1.32 0.16

MIP-2 2.55 2.03–2.90 0.15 *

MPO 2.21 1.21–3.02 0.4

miR-21 3.04 1.47–5.55 0.59 *

QPCR gene expression analysis in lung parenchyma from sham (n = 5) and
PM10sum-treated mice (n = 5), 24 h after the third intratracheal instillation.
Sham vs. PM10sum-treated:
*p,0.05.
doi:10.1371/journal.pone.0056636.t002

Table 3. Immunoblotting analysis.

sham (n=6)
PM10sum
(n=6)

mean 6 s.e. mean 6 s.e. p

A- LUNG ET-1 1 0.1 1.69 0.52 *

HO-1 1 0.14 3.07 0.64 *

Hsp70 1 0.19 1.68 0.23 *

Cyp1B1 1 0.26 0.39 0.11 *

iNOS 1 0.14 0.75 0.08

MPO 1 0.24 1.32 0.32

Casp8-p18 1 0.24 1.04 0.15

Casp3-p17 1 0.32 1.1 0.2

pIRAK1/IRAK1 1 0.16 0.66 0.09

pTAK1/TAK1 1 0.24 1.21 0.12

pIKBa/IKBa 1 0.18 1.05 0.08

B- HEART ET-1 1 0.24 2.41 0.58 *

Cyp1B1 1 0.37 2.65 0.18 *

Hsp70 1 0.33 2.04 0.11 *

HO-1 1 0.44 1.5 0.27

MPO 1 0.26 2.45 0.11

Casp8-p18 1 0.27 1.02 0.14

Casp3-p17 1 0.34 0.72 0.22

C- BRAIN ET-1 1 0.2 2.86 0.86 *

HO-1 1 0.22 2.3 0.72 *

Cyp1B1 1 0.31 0.68 0.25

CD68 1 1.14 4.5 1.06

soluble TNF-a 1 0.24 2.22 0.36

memb TNF-a 1 0.2 1.19 0.41

Hsp70 1 0.2 1.17 0.28

GFAP 1 0.29 1.03 0.22

Casp8-p18 1 0.31 1.35 0.52

Casp3-p17 1 0.29 1.65 0.42

Immunoblotting analysis in lung (A), heart (B) and brain (C) parenchyma from
sham (n = 6) and PM10sum-treated mice (n = 6), 24 h after the third
intratracheal instillation. The proteins have been normalized to b-actin and each
protein in PM10-treated group has been normalized onto respective sham
group. All the data are expressed as mean 6 s.e. Sham vs. PM10sum-treated:
*p,0.05.
doi:10.1371/journal.pone.0056636.t003
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Discussion

Prolonged or persistent exposure to PM is supposed to exert

heavy adverse effects on cell homeostasis mediated by a direct

particles cell interaction within the district that PM reaches (lung,

myocardial or neuronal tissues), or by the induction of a chronic

inflammation, resulting in a general systemic inflammation and

sustained oxidative stress status [30].

In order to enhance the translocation of PM10sum we tested the

threshold able to lengthen the PM10sum pro-inflammatory effects

within lungs of our BALB/c mice. Previous published reports of

particles exposures that do not yield significant alterations in

markers of lung inflammation [31,32], but do show significant

changes in the expression of makers of inflammation and

endothelial activation in extra-pulmonary tissues, are basically

related to engine combustion derived particles. Indeed the

translocation of these fine particles might be quick enough to

directly exert systemic adverse effects even without overt

pulmonary effects.

Inflammatory Response Elicited by PM10sum in
Respiratory and Cardiovascular Systems

Lungs are the primary site of exposure to PM. In the BALf from

healthy mice, the alveolar macrophages are the most numerous

cells (.90%) and an influx of neutrophils is a sensitive indicator of

inflammatory reaction [28,29,33]. After three PM10sum intra-

tracheal instillations, differential cell count evidenced a significant

decrease of AMs percentage and a significant increase of PMNs

percentage. A compensatory effect between the infiltration of

PMNs and the extra-pulmonary migration of AMs is supposed to

take place, thus explaining the absence of difference of the total

cell count between sham and PM10sum-treated mice, as pre-

viously described [8].

Comparing to a single exposition [8], three repeated intra-

tracheal instillations of PM10sum showed a lower PMNs

percentage and a higher AMs percentage in the BALf of treated

mice, confirming that the acute inflammatory status is still

sustained but not heavily exacerbated, considering that the lung

clearance mechanisms are still working.

24 h after a single PM10sum instillation, TNF-a concentration

significantly increased in the BALf of treated mice [8]; neverthe-

less, 24 h after the last of three PM10sum instillations in a week

(cumulative dose of 0.3 mg/mice/week), TNF-a concentration

was basically unchanged comparing to sham. Moreover, histolog-

ical findings have not shown signs of lung particle overloading. All

together these observations claim for a mild ongoing lung

inflammation triggered by PM10sum treatment scheme. This

perfectly agree with the data coming from the extra-pulmonary

translocation of lung administered particles both in humans and

rodents [14,15,16,17,19,20,22,23].

Several chemoattractants derived from macrophages and

epithelial cells might be responsible for neutrophils recruitment

in the lung, in particular IL-1b [34]. 24 h after PM10sum

treatment, the significant increase of IL-1b concentration in the

BALf together with neutrophils infiltration suggests an ongoing

and persistent lung inflammation [35]. Indeed, the finding of

increased MIP-2 lung mRNA and BALf MIP-2 concentration

observed after 24 h in PM10sum-treated mice is in agreement

with the quick induction in MIP-2 mRNA observed in rat lungs

after in-vivo stimulation with IL-1b [34].

The increased MPO level in the BALf of PM10sum-treated

mice perfectly correlates with lung neutrophils infiltration: indeed,

MPO is an inflammatory marker released by degranulation of

activated neutrophils promoted by IL-1b [36,37] and its activity

increases after PM exposure [38].

The pro-inflammatory effect of PM with high LPS amount on

lungs of treated mice has been already described [39]. It is known

that mediators produced in the lungs are able to translocate into

the bloodstream [40] thus we analysed the presence of in-

flammatory markers also in blood and heart tissue of sham and

PM10sum-treated mice.

The lack of increase in circulating cytokines after acute particles

exposure might reflect that the PM induced inflammation is still

localized (i.e. confined to the lungs); however, after repeated PM-

exposure, the inflammatory cytokines released from lungs may

have enough time to enter the systemic circulation and become

detectable [41]. Indeed, the increased total cell number,

neutrophilia and high MPO levels, that we found in blood and

plasma of PM10sum-treated mice, support the hypothesis of

a systemic reaction and confirm the huge pro-inflammatory effect

of PM10sum.

Endothelial Activation in Lungs and Cardiovascular
System

An increase of vasoactive mediators may occur within the lungs

and the systemic circulation both in presence or absence of lung

inflammation [38]. Previous studies have shown that PM exposure

Table 4. Blood gene expression.

BLOOD fold increase range 6 s.e. p

HMOX1 2.21 1.00–5.37 0.95

IL-1b 1.23 0.52–2.39 0.66

miR-21 1.38 0.82–1.96 0.43

QPCR gene expression analysis in blood from sham (n = 5) and PM10sum-
treated mice (n = 5), 24 h after the third intratracheal instillation.
doi:10.1371/journal.pone.0056636.t004

Table 5. Blood/plasma analysis.

BLOOD sham (n=6)
PM10sum
(n=6)

mean 6 s.e. mean 6 s.e. p

A Total cells (cells/mm3) 4275 218.2 5718 454.91 *

Neutrophils (%) 5.3 0.86 14.9 1.37 **

sP-selectin (ng/mL) 78.12 3.98 97.98 3.02 *

TNF-a (pg/mL) n.d. n.d.

MIP-2 (pg/mL) n.d. n.d.

IL-1b (pg/mL) n.d. n.d.

B MPO 1 0.07 1.36 0.06 *

ET-1 1 0.15 2.18 0.35 *

Inflammation and coagulation markers have been analysed in blood/plasma of
sham and PM10sum-treated mice. (A): table summarizing assays in blood/
plasma from sham (n = 6) and PM10sum-treated mice (n = 6), 24 h after the
third intratracheal instillation; (B): immunoblotting results in plasma from sham
(n = 6) and PM10sum-treated mice (n = 6), 24 h after the third intratracheal
instillation. The proteins have been normalized to albumin and each protein in
PM10-treated group has been normalized onto respective sham group. All the
data are expressed as mean 6 s.e. Sham vs. PM10sum-treated:
*p,0.05;
**p,0.01.
doi:10.1371/journal.pone.0056636.t005
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is associated with an increases in ET-1 level in-vivo and in-vitro

[42,43].

In the lung parenchyma, the ET-1 expression in macrophages

as well as in endothelial and epithelial cells is stimulated by

cytokines, LPS, air pollutant and ozone [44,45]; ET-1 could

promote acute lung injury, inducing cytokines production and

activating neutrophils, releasing oxygen radicals [44]. Indeed, the

increased ET-1, that we found in the lungs of PM10sum-treated

mice, once more confirms an ongoing lung inflammation linked to

PM10sum exposure.

In the heart, ET-1 is synthesized by cardiomyocytes, fibroblasts,

and endothelial cells; moreover, ET-1 directly stimulates cardiac

fibroblasts to produce extracellular matrix proteins thus promoting

myocardial fibrosis [46]. The ET-1 expression has increased in

cardiac tissue of rats daily exposed to diesel exhaust particles and

to urban particulate matter [47]. Confirming previous findings,

the high ET-1 level observed in the heart of our PM10sum-treated

mice strengthens the evidences of cardiac adverse effects elicited

by PM10sum exposure.

A significant increase of ET-1 and sP-selectin were observed in

plasma of PM10sum-treated mice. As previously discussed, lung

cells may release ET-1 into the systemic circulation after PM

exposure, as well as the vascular ET system may be up-regulated

after PM exposure [38,48]. Increased levels of circulating ET-1

may trigger arterial vasoconstriction and influence the inflamma-

tory response by promoting the recruitment of leukocytes into

vessel walls [49]. High ET-1 within the plasma correlates with

acute coronary risk in concomitance to PM exposure [50].

Many data indicate that platelet adhesion to the endothelium is

an event preceding the development of atherosclerotic lesions [51],

contributing to the final stages of cardiovascular diseases [52]. sP-

selectin is a marker of activated interface blood-vasculature [53];

the significant increase in sP-selectin plasma concentration of

PM10sum-treated mice suggested a systemic endothelial activation

induced by PM10sum, which might be related to the high rate of

cardiovascular hospitalization following PM10 exposure peak.

Finally, high MPO levels that we found in blood of PM10sum-

treated mice could be related to an heavy endothelial dysfunction,

as discussed by Brook et al. [38]. The increase of MPO could be

potentially harmful, due to the generation of hypochlorous acid,

a compound toxic on bacteria and also onto host cells [37].

PM10sum Cytotoxic Effect in Lungs and Heart
A significant increase of LDH activity in the BALf was observed

24 h after the PM10sum third intratracheal instillation. However,

this evidence was not supported by any changes in ALP activity,

a specific marker of damage of type I pneumocytes and of

proliferation of type II pneumocytes [54]. The direct cytotoxic

damage induced by PM10sum might be basically related to AMs

and only marginally to pneumocytes, as previously we described

for winter PM [8]; it is possible to hypothesize that the damage

produced by repeated PM intratracheal instillations is a conse-

Figure 2. Lung histological analysis. Histology of lung tissue 24 h after the third intratracheal instillation. (A, B): lung parenchyma of sham mice,
showing bronchiolar and alveolar epithelia; (C, D): PM10sum-treated lung parenchyma, showing inflammatory cells recruitment and AMs infiltration
(arrows) in the connective surrounding terminal bronchioles and proximal alveolar sacs. Each figure represents the status evidenced examining 6
sham and 6 PM10sum-treated mice. A and C bars = 150 mm; B and D bars = 50 mm.
doi:10.1371/journal.pone.0056636.g002
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quence of the amounts of metals and PAHs still associated to

PM10sum.

The lung parenchyma necrosis and inflammation could explain

the increase of Hsp70 levels that we found in the BALf after

PM10sum instillation. Hsp70 might increase in the extracellular

milieu, where it acts as a cytokine to human monocytes [55], after

two events: an active release from epithelial cells or from

mononuclear cells and a passive release when cells undergo

necrosis [56].

Finally, in both lungs and heart, 24 h after the last PM10sum-

treatment, the initiator Caspase 8 and the effector Caspase 3 were

not active, despite the presence of pro-apoptotic inducers such as

cytokines and hypochlorous acid, eventually produced by MPO in

the BALf and blood, suggesting the existence of an on-going

protection mechanism.

HO-1 and Hsp70 Induced Protection in Lung and Heart
Parenchyma

HO-1 was significantly higher in the lungs of PM10sum-treated

mice thus indicating the existence of a protection mechanism

against oxidative stress and inflammation. In the lung parenchy-

ma, HO-1 is expressed in various cells, including type II

pneumocytes and AMs [57]. Its role is to catabolize the heme

group from the cytosol, thus generating CO, biliverdin (converted

to bilirubin) and Fe2+ thus playing a protective role against

inflammation and oxidative stress [58]. Moreover, it has been

hypothesized the existence of a post-translational down-regulation

of cytochromes following the induction of HO-1, possibly related

to a decrease in the heme group bioavailability [59]. Consistently

with this observations, we found a significant decrease in Cyp1B1

levels in the lung parenchyma of PM10sum-treated mice.

On the contrary, the absence of a significant increase of HO-1

in the heart of PM10sum-treated mice allows the increase of

Cyp1B1, thus suggesting that soluble molecules PM-related could

reach the heart parenchyma through the bloodstream.

Oxidative stress, LPS, cytokines, ER stress and protein

unfolding induced by PM exposure, might promote the expression

of heat shock proteins, such as Hsp70 or Hsp90 [60]; in particular,

the intracellular Hsp70 has the ability to protect cells and tissues

limiting the amount of inflammatory mediators [61]. In both lung

and heart parenchyma, Hsp70 showed a significant increase 24 h

after the last PM10sum instillation, suggesting that the active

protection system is not only related to the induction of HO-1.

Graff et al. [62] demonstrated that the treatment of rat ventricular

myocytes with Zn and V induced small but significant increases in

the expression of Hsp70. Taking into account that Zn and V are

soluble components PM-related and have the potential to be

absorbed into the bloodstream and transported to the heart

[62,63], we hypothesize that these two metals could be in part

accountable of the Hsp70 increase that we observed in PM10sum-

treated mice.

Figure 3. Lung immunohistochemical analysis. Immunohistochemical analyses of HO-1 expression in lung tissue 24 h after the third
intratracheal instillation; the brown color reflects the site and intensity of HO-1 expression. (A): lung of sham mice; in the box, a control of the
immunohistochemical reaction specificity, where the primary antibody has been avoided, in a PM10sum instilled mouse; (B): alveolar and
peribronchiolar spaces in the lung of a sham mouse; (C, D): alveolar and peribronchiolar spaces in lungs of PM10sum-treated mice. Each figure
represents the status evidenced examining 6 sham and 6 PM10sum-treated mice. A bar = 150 mm; B–D bars = 50 mm.
doi:10.1371/journal.pone.0056636.g003
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Finally, both Hsp70 and HO-1, are important apoptotic

inhibitors [64,65] which might thus explaining the absence of

apoptosis cascade activation that we found in lungs and heart

parenchyma of PM10sum treated mice.

miR-21
In order to advance our studies on the PM10sum toxic effects,

we considered a new class of molecules, miRNAs. In particular,

according to literature, miR-21 is one of the miRNAs induced in

mice lungs by exposure to LPS [66] and is involved in negative

regulation of the signalling pathway of TLR-2 [67] and TLR-4

[11], thus playing a key role in orchestrating the inflammatory

process induced by LPS. Moschos et al. [66] and Sheedy et al.

[11] have hypothesized that miR-21 might be involved in the

resolution rather than in the induction of inflammation. So,

increased miR21 levels that we found in the lungs of PM10sum-

treated mice could be considered a marker of inflammatory status

associated to an ongoing protection reaction. Consistent with this

observation, the TLR4 pathway was not activated in the lungs of

PM10sum-treated mice.

PM10sum Toxicity on Brain
The BBB endothelial cells play an essential role in maintaining

brain homeostasis, actively transporting nutrients, and limiting the

entrance to harmful components such as LPS and cytokines [68].

In healthy brain, the endothelial cells express very low levels of

adhesion molecules required for leukocyte migration [69], and

expression of ET-1 increases BBB permeability in-vivo [68]. Guo

et al. [35] proposed that elevated plasma levels of ET-1, induced

by PM10 exposure in-vivo, may promote ET-1 penetration within

the brain either by active transport or by passive diffusion across

a permeabilized BBB. The high ET-1 levels that we found in the

brains of PM10sum-treated mice suggest a compromised BBB

function [7], therefore allowing the translocation of smallest

particles and/or of their soluble components within brain. It has

been disclosed that ET-1 is a key factor in the development of

PM10-mediated brain endothelial injury.

A possible mechanism by which PM exerts its toxic effect on

brain cells has been proposed by Block et al. [70]: it is supposed

that particles might initiate the phagocytic activity of microglia,

leading to the neurotoxic production of extracellular superoxide.

As neurons are particularly vulnerable to oxidative damage, the

ROS production can lead to neuron death. In our investigations,

PM10sum-treatment causes an increase in brain HO-1 levels,

probably as a consequence of oxidative stress induction.

The chronic induction of HO-1 can have both beneficial and

detrimental effects on cellular metabolism. While exists plenty of

evidence for the HO-1-mediated neuro-protection, a growing

literature attesting the neuro-endangering effects of HO-1 activity

is also at hand [71]. Fe2+ produced by HO-1 can catalyze the

production of free radicals through the Fenton’s chemistry, thus

acting as a cytotoxic and oxidative stress inducer. Indeed, the

excessive cellular amounts of free Fe2+ heme-derived resulting

from HO-1 over-activity and dysregulation of iron metabolism

[72] may be related to the pathogenesis of neuro-degenerative

disorders [73].

Finally, it must be noted that the intratracheal administration

route for PM has completely avoided the particles transport along

the olfactory nerve. Alterations in the nasal mucosa, olfactory

bulb, cortical and sub-cortical brain structures have been de-

scribed in healthy dogs exposed to high levels of ambient air

pollutants [74]; in addition, brain biomarkers of oxidative stress

and tissue injury have been observed in mice exposed to

concentrated ambient particles [75]. Indeed, it is possible that

ET-1 and HO-1 increased levels in the brain of our PM10sum-

treated mice could be attenuated, while PM nasal inhalation could

induce higher oxidative stress and endothelial activation in some

regions of the central nervous system.

Conclusions
A repeated exposure of PM10sum in BALB/c mice leads to the

induction of lungs inflammation, associated to cytokine pro-

duction, PMNs infiltration and endothelium activation. Trans-

location of mediators, cytokines, ultrafine particles, LPS and/or

metals associated to PM10sum from lungs to bloodstream triggers

systemic adverse effects, involving heart and brain. The activation

of endothelium/platelets interface that we found in PM10 exposed

mice could explain the associations between short-term induced

changes by inhalable particles and cardiovascular hospital

admissions. Our results confirm the systemic toxic effect triggered

by PM10sum mainly involving the respiratory and cardiovascular

system in an inflammatory and pro-coagulant reaction, thus

intending a correlation between PM exposure and cardiovascular

diseases. However, lungs and heart might activate some putative

protection mechanisms against inflammation and/or cytotoxicity

thus supporting that compensatory mechanisms may occur within

sub acute PM exposure.

PM10sum promotes brain endothelial activation and oxidative

stress induction. In recent years, increasing evidences indicates

Alzheimer and other neurodegenerative diseases at least partially

mediated by oxidative stress and impaired BBB functions.

These findings may contribute to the knowledge of the interplay

between PM exposure and cardiovascular diseases, the chronic

oxidative stress generation and the development of neurodegen-

erative diseases. Future investigations should address the effects of

lifetime air pollution exposure and aging related to the neuroin-

flammation and to the neurotoxicity.
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