
Collaborative Filtering for Brain-Computer Interaction
Using Transfer Learning and Active Class Selection
Dongrui Wu1*, Brent J. Lance2, Thomas D. Parsons3

1 Machine Learning Laboratory, GE Global Research, Niskayuna, New York, United States of America, 2 Army Research Laboratory, Aberdeen Proving Ground, Aberdeen,

Maryland, United States of America, 3 Department of Psychology, University of North Texas, Denton, Texas, United States of America

Abstract

Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or
physiological signals to influence human interaction with computers, environment, and each other. A major challenge in
developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As
a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time,
cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to
increase the recognition accuracy without increasing the number of user-specific training samples. One promising method
for achieving this is collaborative filtering, which combines training data from the individual subject with additional training
data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended
for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference
user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty
recognition. TL improves the learning performance by combining a small number of user-specific training samples with a
large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-
specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine
classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data
samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other
applications that involve human neural or physiological data, such as affective computing.

Citation: Wu D, Lance BJ, Parsons TD (2013) Collaborative Filtering for Brain-Computer Interaction Using Transfer Learning and Active Class Selection. PLoS
ONE 8(2): e56624. doi:10.1371/journal.pone.0056624

Editor: Derek Abbott, University of Adelaide, Australia

Received October 24, 2012; Accepted January 15, 2013; Published February 21, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The authors have no support or funding to report.

Competing Interests: The first author is with a commercial company (GE Global Research). This does not alter the authors’ adherence to all the PLOS ONE
policies on sharing data and materials.

* E-mail: drwu09@gmail.com

Introduction

Future technologies that allow computer systems to adapt to

individual users – or even to the current cognitive/affective state of

the user – have many potential applications including entertain-

ment, training, communication, and medicine. One promising

avenue for developing these technologies is through brain-

computer interaction (BCI) or physiological computing; i.e, using

processed neural or physiological signals to influence human

interaction with computers, environment, and each other [1,2].

There are numerous challenges to effectively using these signals in

system development. One of the primary challenges is the

individual differences in neural or physiological response to tasks

or stimuli. In order to address these individual differences, many

researchers train or calibrate their systems for each individual,

using data collected from that individual. However, the time spent

collecting this data is likely to decrease the utility of these systems,

slowing their rate of acceptance. As an example, one of the

primary reasons that slow cortical potential-based BCIs never

achieved mainstream acceptance, even among the disabled, is

because using the slow cortical potential-based BCI could require

training for several hour-long sessions per week for months in

order to achieve satisfactory user performance [3].

While it is possible to train a generic model with group or

normative data, in practice this tends to result in significantly

lower performance than calibrating with individual data [4]. An

example of this may be found in our earlier work [5], in which we

used a support vector machine (SVM) to classify three task

difficulty levels from neural and physiological signals while a user

was immersed in a virtual reality based Stroop task [6], which has

been shown to have high individual differences in neural and

physiological response as the task difficulty varies [7]. Results

revealed that when each subject is considered separately, an

average classification rate of 96.5% can be obtained by SVM;

however, the average classification rate was much lower (36.9%,

close to chance) when a subject’s perception of task difficulty level

was predicted using only data from other subjects. In a more

recent study [8] on whether generic model works for rapid event-

related potential (ERP)-based BCI calibration, a generic model

was derived from 10 participants’ data and tested on the 11th

participant. Experiments showed that seven of the 11 participants

were able to use the generic model during online training, but the

remaining four could not.

Novel approaches to analyses of individual differences have

significant potential in helping to address these individual

differences in neural and physiological responses [9,10]. In

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56624

particular, we are interested in analytical methods that decrease

the amount of data required for training/calibration a customized

BCI system, or equivalently, methods that increase the perfor-

mance of the BCI system without increasing the number of user-

specific training samples. Collaborative filtering – the process of

making inferences about a user based on the combination of data

collected from that user with a database of information collected

from similar previous users – is one potential solution [11]. Using

collaborative filtering to decrease the amount of time and data

required for individual customization should, in turn, increase the

usability leading to wider acceptance of BCI technologies [12].

This paper describes a successful collaborative filtering ap-

proach developed for implementation in a BCI system. While

there are many types of BCI systems [1], the example application

domain used herein was developed as a passive BCI (i.e. a BCI

that uses a pattern recognition algorithm to passively monitor a

user’s cognitive and/or affective state [13]), that would monitor a

user of a virtual environment (VE) for cognitive assessment and

rehabilitation, looking for neural and physiological indicators of

task difficulty. The specific VE used for the sample domain is the

Virtual Reality Stroop Task (VRST), which uses neuropsycholog-

ical tests embedded into military-relevant VEs to evaluate

potential cognitive deficits [6,14,15]. Cognitive assessment and

rehabilitative VEs or serious games such as VRST require

immersion on the part of the user to be successful [16–18]. One

of the key aspects for immersion is the difficulty of the task being

performed. If the task is too difficult, the user will become

frustrated and lose interest. However, if the task is too easy, the

user will become bored, again resulting in a loss of interest [19–

21].

There are many ways to modulate difficulty based solely on the

behavioral measures of user performance [22]. However, there are

also strong individual differences in ability to handle difficulty, i.e.,

some users are better able to handle more difficult tasks than

others. One way to address these individual preferences would be

to combine information obtained from neural and physiological

measures with the behavioral measures to provide superior

performance for difficulty modulation [23]. However, these

methods for neural and physiological-based difficulty modulation

are strongly affected by the differences between individual

physiological responses [2]. Thus, for these approaches to be

successful, we will require a robust method for addressing the

widely varying individual differences in physiological response to

task difficulty.

One method for tailoring a BCI pattern recognition algorithm

for a specific user is to collect a set of user-specific training data

samples at once, estimate the recognition performance using cross-

validation, and iterate until the maximum number of iterations is

reached, or the cross-validation performance is satisfactory. The

pseudocode for such an algorithm is shown in Figure 1, where the

k-nearest neighbor (kNN) classifier is used for simplicity.

There are many techniques to improve this method. Two of

them are examined in this paper:

N Transfer Learning (TL) [24]: Use the information contained in other

subjects’ training data. Although training data from other subjects

may not be completely consistent with a new subject’s profile,

they may still contain useful information, as people may

exhibit similar responses to the same task. As a result,

improved performance can be obtained at recognizing the

difficulty of a task.

N Active Class Selection (ACS) [25]: Optimally generate the user-specific

training samples online. If in an application there are lots of offline

unlabeled training samples and the bottleneck is to label them,

then active learning [26–29] can be used to optimally select a

small number of training samples to label. However, in many

applications we do not have unlabeled data, and all training

samples need to be generated online. Thus we cannot propose

which samples to label; instead we must obtain additional

training samples. So, the ACS problem becomes how to drive

the selection of the class from which training samples are

obtained during an online calibration session with the user, so

that a high-performance classifier can be constructed from a

small number of training samples.

Figure 1. The baseline algorithm, in which only user-specific training samples are used, and new training samples are generated
randomly from the c classes online.
doi:10.1371/journal.pone.0056624.g001

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e56624

In our previous research we have shown that TL can improve

classification performance compared with a baseline that uses only

the user-specific training samples [30], and ACS can improve

classification performance compared with a baseline that selects

the classes uniformly [31]. Because TL considers how to make use

of data from other subjects and ACS considers how to optimally

generate user-specific training samples online, they are indepen-

dent and complementary. This paper presents theory and

experimental results on a collaborative filtering approach which

combine TL and ACS for learning an optimal classifier from a

minimum amount of user-specific training data samples.

There has been some work on combining TL and collaborative

filtering [32–36], where TL was used to make use of auxiliary data

to address the data sparsity problem in collaborative filtering. Most

of this work was for recommender systems, particularly movie

recommendation. Our work is different from these in that: 1) we

use TL to handle the data insufficiency problem instead of the

sparsity problem; 2) we combine TL and ACS, instead of using TL

only; and, 3) we apply our algorithm to a BCI system.

There are also a small number of existing collaborative filtering

systems for BCI [8,37–40], which integrate information from other

users to improve the performance for the current user. For

example, Lu et al. [40] built two classification models for each

user, one is an adaptive user-specific model from user-specific

online training data only, and the other is a user-independent

model from offline training data from other users. The two models

performed classifications independently for a new input, and the

one with higher confidence score was chosen. Jin et al. [8] built an

online genetic classification model by directly combining online

user-specific training data and offline training data from other

users. They showed that the online generic model achieved better

performance than a generic model which used offline data from

other users only. It also achieved similar performance to a typical

model which used user-specific data only, but the online generic

model needed less user-specific data so it was trained more quickly.

Our work is different from these approaches in two aspects. First,

we propose a different way to make use of the offline data from

other users. Second, we propose an optimized procedure to

generate the user-specific training data online.

Methods

Transfer Learning (TL)
This section introduces the theory and an algorithm for TL. For

simplicity we use the kNN classifier as an example since it has only

one parameter (k) to optimize given a fixed distance function and

the type of normalization. However, these ideas can be generalized

to other classifiers such as the SVM [41].

TL theory. In many machine learning applications, in

addition to the data for the current task, we also have data from

similar but not exactly the same tasks. The learning performance

can be greatly improved if these additional data are used properly.

TL [24,42] is a framework proposed for addressing this problem.

Definition (Transfer Learning). [24] Given a source

domain DS with learning task T S , and a target domain DT with

learning task T T , TL aims to help improve the learning of the

target predictive function fT (:) in DT using the knowledge in DS

and T S , where DS=DT , or T S=T T .

In the above definition, a domain is a pair D~fX ,P(X)g,
where X is a feature space and P(X) is a marginal probability

distribution, in which X~fx1,:::,xng[X . DS=DT means that

X s=XT , and/or P(XS)=P(XT), i.e., the features in the source

domain and the target domain are different, and/or their marginal

probability distributions are different. Similarly, a task is a pair

T~fY,P(Y jX)g, where Y is a label space and P(Y jX) is a

conditional probability distribution. T S=T T means that

YS=YT , and/or P(YSjXS)=P(YT jXT), i.e., the label spaces

between the source and target domains are different, and/or the

conditional probability distributions between the source and target

domains are different.

For example, in the domain of classifying the subjective

difficulty level of a task in a VE based on neural and physiological

signals, the labeled neural and physiological data from a user

would be the primary data in the target domain, while the labeled

neural and physiological data from other users would be the

auxiliary data from the source domain. A single data sample would

consist of the feature vector for a single epoch of neural and

physiological data from one subject, collected as a response to a

specific stimulus, and labeled with the difficulty of responding to

that stimulus. Though the features in this primary data and

auxiliary data would be the same, generally their marginal

distributions are different, i.e., P(XS)=P(XT), due to the fact

that the baseline physiological levels for the subjects are likely to

differ. Moreover, the conditional probabilities are also different,

i.e., P(YSjXS)=P(YT jXT), due to the significant individual

differences in neural and physiological response to different

difficulty levels. As a result, the auxiliary data from the source

domain cannot represent the primary data in the target domain

accurately, and must be integrated with some labeled primary data

in the target domain to induce the target predictive function.

Previous work [42] has shown that when the primary training

dataset is very small, training with auxiliary data can significantly

improve classification accuracy, even when the auxiliary data is

significantly different from the primary data. This result can be

understood through a bias/variance analysis. When the size of

primary training data is small, a learned classifier will have large

variance and hence large error. Incorporating auxiliary data,

which increases the number of training samples, can effectively

reduce this variance. However, this data may increase the bias,

since the auxiliary and primary training data have different

distributions. This also suggests that as the amount of primary

training data increases, the utility of auxiliary data should decrease

[42].
TL algorithm. Suppose there are Np user-specific training

samples fxp
i ,y

p
i gi~1,2,:::,Np for the primary supervised learning

problem, where x
p
i is the feature vector of the ith training sample

and y
p
i is its corresponding class label. The superscript p indicates

the primary learning task. Additionally, there are Na auxiliary

training samples (training samples from other subjects)

fxa
i ,ya

i gi~1,2,:::,Na , whose distribution is assumed to be similar to

the primary training samples but not exactly the same. So, the

auxiliary training samples should be treated as weaker evidence in

designing a classifier. Moreover, we may want to select some

‘‘good’’ auxiliary training samples and discard the ‘‘bad’’ ones.

In the kNN classifier we need to optimize the number of

NNs, k. This is done through internal cross-validation [42,43].

The most important parameter in determining the optimal k is

the internal cross-validation accuracy on the primary training

samples, i.e., the portion of the correctly classified primary

training samples in the internal cross-validation, ap. However,

because Np is very small, different k may easily result in the

same ap. So, aa, the internal cross-validation accuracy on the

selected ‘‘good’’ auxiliary training samples, is used to break the

ties. Once the optimal k is identified for the kNN classifier, its

performance can be evaluated as the accuracy of the algorithm

classifying the test data.

As pointed out in [42], in many learning algorithms, the

training data play two separate roles. One is to help define the

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56624

objective function, and the other is to help define the hypothesis.

Particularly, in kNN one role of the auxiliary data is to help define

the objective function and the other is to serve as potential

neighbors. In [30] we investigated both roles and found that using

the auxiliary training samples in the validation part of the internal

cross-validation algorithm generally achieved better performance.

So, only this approach is considered in this paper. In each iteration

the TL algorithm computes ap by leave-one-out cross-validation

using the Np primary training samples, and aa using the Np

primary training samples to classify a selected set of ‘‘good’’

auxiliary training samples. Its pseudo-code is given in Figure 2,

and is denoted TL in this paper.

How the ‘‘good’’ auxiliary training samples are selected is very

important to the success of the TL algorithm. The general

guideline is to select auxiliary training samples that are similar to

the primary training samples. Specifically we are using a mean

squared difference, calculated by:

1. Computing the mean feature vector of each class for the new

subject, from the Np primary training samples. These are

denoted as m
p
i , where i~1,2,:::,c is the class index.

2. Computing the mean feature vector of each class for each

subject in the auxiliary dataset. These are denoted as m
j
i , where

i~1,2,:::,c is the class index and j is the subject index.

3. Select the subject with the smallest difference from the new

subject, i.e., arg minj

Pc
i~1 jjm

p
i {m

j
i jj

2
, and use his/her data

as auxiliary training data.

We note that the way to select ‘‘good’’ auxiliary training samples

may be application dependent, and there are multiple potential

avenues for research in this area. One of them is pointed out in the

Future Research section.

Active Class Selection (ACS)
This section introduces the theory and an algorithm for ACS.

For simplicity the kNN classifier is used; however, the algorithm

can be extended to other classifiers such as the SVM.

ACS theory. Active learning (AL) [26–26] has been attracting

a great deal of research interest recently. It addresses the following

problem: suppose that we have considerable amounts of offline

unlabeled training samples and that the labels are very difficult,

time-consuming, or expensive to obtain; which training samples

should be selected for labeling so that the maximum learning

(classification or prediction) performance can be obtained from the

minimum labeling effort? For example, in speech emotion

estimation [29,44,45], the utterances and their features can be

easily obtained; however, it is difficult to evaluate the emotions

they express. In this case, AL can be used to select the most

informative utterances to label so that a good classifier or predictor

can be trained based on them. Many different approaches have

been proposed for AL [28] so far, e.g., uncertainty sampling [46],

query-by-committee [47,48], expected model change [49],

expected error reduction [50], variance reduction [51], and

density-weighted methods [52].

Figure 2. The TL algorithm, in which primary and auxiliary training samples are used together in determining the optimal k in the
kNN classifier.
doi:10.1371/journal.pone.0056624.g002

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e56624

However, in many online applications we do not have large

amounts of unlabeled offline data, and hence cannot propose

which samples to label. Instead, it is possible to request more

training samples on-the-fly from desired classes. For example, in

the domain of classifying the subjective difficulty level of a task in a

VE based on neural and physiological signals, there is no existing

unlabeled data (i.e., neural/physiological signals), and it is not

possible to generate sample training data with specific character-

istics, such as a data sample with a specific heart rate, or EEG

alpha power. However, we can control the difficulty level of the

training sample. So, the problem of ACS is to optimally select the

classes during real-time interaction with the user, by displaying

stimuli from desired classes to the user in order to obtain training

samples that allow a high-performance classifier to be constructed

from minimal training samples.

Unlike the rich literature on AL, there has been limited research

on ACS. Weiss and Provost [53] proposed a budget-sensitive

progressive sampling algorithm for selecting training data. They

considered a two-class classification problem. The proportion of

Class 1 samples and Class 2 samples added in each iteration of the

algorithm is determined empirically by forming several class

distributions from the currently available training data, evaluating

the classification performance of the resulting classifiers, and then

determining the class distribution that performs best. They

demonstrated that this heuristic algorithm performs well in practice,

though the class distribution of the final training set is not

guaranteed to be the best class distribution. Lomasky et al. [25]

claimed that if one can control the classes from which training

samples are generated, then utilizing feedback during learning to

guide the generation of new training data may yield better

performance than learning from any a priori fixed class distributions.

They proposed several ACS approaches to iteratively select classes

for new training instances based on the existing performance of the

classifier, and showed that ACS may result in better classification

accuracy. The below algorithm is based on and improves Lomasky

et al.’s Inverse ACS algorithm [25].

ACS algorithm. In [31] we compared two ACS algorithms

(Inverse and Accuracy Improvement), proposed by Lomasky et al. [25],

with a baseline uniform sampling approach, and found that the

Inverse algorithm consistently outperformed a baseline kNN

classifier. This approach is considered and improved in this paper.

The ACS method relies on the assumption that poor class accuracy

is due to not having observed enough training samples. It requires

internal cross-validation to evaluate the performance of the current

classifier so that the class with poor performance can be identified

and more training samples can be generated for that class.

We assume that there are c classes and no limits on

generating instances of a particular class. The ACS algorithm

begins with a small set of l0 labeled training samples, where li is

the number of instances to generate in Iteration i. ACS is used

to determine p
j
i (0ƒp

j
iƒ1), the portion of the li instances that

should be generated from Class j. In Iteration i, we record the

classification accuracy (in the leave-one-out cross-validation) for

each class, a
j
i , j~1,2,:::,c. Then, Lomasky et al. defined the

probability of generating a new instance from Class j as:

p
j
i~

1

a
j
i

Pc
j~1

1

a
j
i

, j~1,2,:::c ð1Þ

i.e., it is proportional to the inverse of a
j
i . We have improved

this approach by adding a constraint that no two consecutive

new training samples can be generated from the same class, i.e.,

if the last new training sample is generated from Class h, then

the next new training sample is generated from Class j (j=h)

with probability:

p
j
i~

1

a
j
i

P
j=h

1

a
j
i

, j=h ð2Þ

This improvement reduces the risk that most new samples are

generated from the class which has the lowest accuracy but is

difficult to improve, and our experiments showed that it is more

robust than Lomasky et al.’s original approach.

The detailed algorithm is given in Figure 3, and it is denoted

ACS in this paper.

Combining TL and ACS
Because in our case TL considers how to make use of training data

from other subjects and ACS considers how to optimally generate

samples of user-specific training data online, they are independent

and complementary. So, we conjecture that a collaborative filtering

approach based on combining TL and ACS will result in improved

classification performance. The fundamental concept is to use TL to

select the optimal classifier parameters for the current subject based

on available data obtained from the current subjects and other

subjects, and then use ACS to obtain the most informative new

training samples from the current subject, until the desired cross-

validation accuracy is obtained, or the maximum number of training

samples is reached, as illustrated in the left column of Figure 4. The

pseudo-code for combining TL and ACS for a kNN classifier is given

in Figure 5, and it is denoted TL+ACS in this paper.

The idea of TL+ACS can be illustrated with the following

example. Suppose there are three label classes, and we start from 3

primary training samples (one for each class) and generate one

new training sample in each iteration until the desired cross-

validation accuracy is reached. In the first iteration, we use TL

(combining the 3 primary training samples with a large number of

‘‘good’’ auxiliary training samples) to identify the optimal k, and

then use ACS to compute the probability that the new training

sample should be generated from each class. A new training

sample is then generated according to the three probabilities. It is

added to the primary training dataset. These 4 primary training

samples are then combined with a large number of ‘‘good’’

auxiliary training samples and used in the second iteration. The

program iterates until the desired cross-validation accuracy is

reached. The optimal k obtained in the last iteration (identified by

TL) is output as the optimal kNN parameter.

Recall that ACS considers the case that we do not have

unlabeled offline data in the target domain, and we can only

control from which classes new training samples are generated on-

the-fly. When there are large amounts of unlabeled data in the

target domain and we want to suggest which ones to label, an AL

approach is appropriate. As TL and AL are also independent and

complementary, they could be combined in a similar fashion as

TL and ACS [54], as shown in the right column of Figure 4.

Experiments

This section presents our experimental results from a compar-

ison of the four algorithms (baseline, TL, ACS, and TL and ACS

combined, for both the kNN and SVM classifiers). These

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e56624

algorithms were applied to the task difficulty level classification

problem introduced in [5]. We first consider kNN because we

have shown that the specific TL and ACS approaches presented in

the previous sections work well with this classifier [30,31]. For

example, in [30] we compared two TL approaches for the kNN

classifier and found that the approach presented in this paper gave

better results; in [31] we compared two ACS approaches for the

kNN classifier and found that the approach presented in this paper

gave better results. However, the generic framework of combining

TL and ACS should apply to all classifiers, though the

implementation details may differ. To demonstrate this, we also

present results of these methods applied to an SVM classifier.

It is important to note that the purpose of the experiments is not

to show how good a kNN or SVM classifier can be in task difficulty

classification; instead, the goal was to demonstrate how TL and

ACS, and especially their combination, can improve the

Figure 3. The ACS algorithm, in which the classes from which new training samples are generated are determined based on per-
class cross-validation performance.
doi:10.1371/journal.pone.0056624.g003

Figure 4. Methods to combine TL with ACS and AL. Left: Combining TL and ACS; Right: Combining TL and AL.
doi:10.1371/journal.pone.0056624.g004

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e56624

performance of an existing classifier. The ideas proposed in this

paper can also be extended to other classifiers, and also to other

applications, including additional BCI, physiological computing,

or affective computing systems [44].

Experiment Setup and Data Acquisition
The data included in this paper were drawn from a larger study

on the VRST [6]. Neural and physiological measures were used to

predict levels of threat and task difficulty. The VRST is part of a

battery of tests developed by Parsons that are found in an adaptive

VE, which consists of a virtual city, a virtual vehicle checkpoint,

and a virtual Humvee driving scenario in simulated Iraq and

Afghanistan settings [14,21,55–57].

Ethics statement. The University of Southern California’s

Institutional Review Board approved the study. Upon agreement

to participate, prospective subjects were educated as to the

procedure of the study, possible risks and benefits, and alternative

options (non-participation). Prior to actual participation, they

completed written informed consents approved by the University

of Southern California’s Institutional Review Board. After each

subjects’ written informed consent was obtained, basic demo-

graphic information was recorded.

Participants and procedure. A total of 20 college-aged

subjects participated in the study. Two of the 20 subjects did not

respond at all in one of the three scenarios, and were excluded as

outliers. While experiencing the VRST, participant neural and

physiological responses were recorded using a Biopac MP 150

system in conjunction with the NeuroSim Interface (NSI) software

developed at Parsons’ Neuroscience and Simulation Laboratory

(NeuroSim) at the University of Southern California. Electroen-

cephalography (EEG), Electrocardiographic activity (ECG), Elec-

trooculography (EOG), Electrodermal activity (EDA), and Respi-

ration (RSP) were recorded. Following completion of the VRST

protocol, none of the subjects reported simulator sickness.

EEG was measured using seven electrodes placed at locations

Fp1, Fp2, Fz, Cz, Pz, O1, and O2 according to the international

10–20 system for EEG electrode placement. The EEG signal was

recorded at 512 Hz, and was referenced to linked ear electrodes.

EDA was measured using Ag/AgCl electrodes placed on the index

and middle fingers of the non-dominant hand [58]. ECG was

recorded with use of a Lead 1 electrode placement, with one Ag/

AgCl electrode placed on the right inner forearm below the elbow,

another in the same position on the left inner forearm, and a third

on the left inner wrist to serve as a ground. Finally, RSP was

recorded with a transducer belt placed around widest area of the

rib cage.

Virtual Reality Stroop Task (VRST). The VRST involves

the subject being immersed in a VE consisting of a Humvee that

travels down the center of a road in a desert environment with

military relevant events while Stroop stimuli appear on the

windshield (see Figure 6). The VRST is a measure of executive

functioning and was designed to emulate the classic Stroop test

[59]. Like the traditional Stroop, the VRST requires an individual

to respond by selecting one of three colors, (i.e., red, green, or

blue). Unlike the traditional Stroop, a subject responds by pressing

a computer key, and the VRST also adds a simulation

Figure 5. The TL+ACS algorithm, which uses TL to determine the optimal k and ACS to generate new training samples.
doi:10.1371/journal.pone.0056624.g005

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e56624

environment with military relevant events in high and low threat

settings. Participants interacted with the VRST through an

eMagin Z800 head-mounted display (HMD). To increase the

potential for sensory immersion, a tactile transducer was built by

mounting six Aura bass shaker speakers on a three foot square

platform.

Stimuli and design. Participants were immersed in the

VRST as neural and physiological responses were recorded. EEG,

ECG, EDA, and RSP were collected as participants rode in a

simulated Humvee through alternating zones of low threat (i.e.,

little activity aside from driving down a desert road) and high

threat (i.e., gunfire, explosions, and shouting amongst other

stressors). The VRST was employed to manipulate levels of task

difficulty. The VRST consisted of 3 conditions: 1) word-reading, 2)

color-naming, and 3) Stroop interference. The Stroop interference

condition displays a color word, such as red, in a different color

font, while the subject’s task is to name the color of the font, not

read the word (right column of Figure 6). Each Stroop condition

was experienced once in a high threat zone and once in a low

threat zone.

There are many different task difficulty levels in VRST. In this

study we chose the following three:

N Scenario I: Low threat, color naming.

N Scenario II: High threat, color naming.

N Scenario III: High threat, Stroop interference.

Each scenario consisted of 50 stimuli. Three colors (Blue,

Green, and Red) were used, and they were displayed randomly

with equal probability. In Scenario I, 50 colored numbers were

displayed one by one while the subject was driving through a safe

zone. Scenario II was similar to Scenario I, except that the subject

was driving through an ambush zone. Scenario III was similar to

Scenario II, except that Stroop stimuli instead of color naming

stimuli were used. In terms of task difficulty, the three scenarios are

in the order of I v II v III. We set forth to classify these three

scenarios using the proposed algorithms.

For each scenario each of the 50 stimuli was displayed at a

random location on the windshield in a different color, randomly

selected from one of the three different color schemes, in order to

reduce signal habituation. Stimuli were presented for a maximum

of 1.25 seconds each, and participants were asked to respond as

quickly as possible without making mistakes. As shown in Table 1,

the average reaction time was less than one second. The next

stimulus was displayed when the user gave response to the current

one. So, in total each stimulus took only a few seconds, and the

150 stimuli were finished in about 10 minutes.

Comparison of the Algorithms
Each of the 18 subjects had 150 responses (50 stimuli for each

task difficulty level). The same 29 features from our previous

analysis [5] were used (shown in Table 2), with all 29 features

being used across all subjects for this analysis. Twenty-one features

were extracted from EEG, three from EDA, three from RSP, and

two from ECG. Feature extraction consisted of segmenting the

data into 3-second epochs that were time locked from 1 second

prior to the stimulus occurrence to 2 seconds after. EOG artifacts

were removed from the EEG using a standard regression-based

approach. Then, EEG data was filtered using a [1,30] Hz

bandpass filter, epoched into overlapping 1 second windows, and

detrended. Spectral power was then calculated in the theta [3.5, 7]

Hz, alpha [7.5, 13.5] Hz, and beta [13.5, 19.5] Hz frequency

bands for each channel. The EDA features were the mean,

minimum, and maximum amplitude response in the epoch

window. Respiration was scored similarly, with mean, minimum,

and maximum amplitude in the epoch window. ECG features

consisted of the number of heartbeats and the average inter-beat

intervals (IBIs, scored as the time difference in seconds between

successive R waves) in the epoched window. We normalized each

feature for each individual subject to [0, 1].

The coefficients of the first two principle components of the 29

features for the 18 subjects are shown in Figure 7. Different colors

are used to denote different scenarios: red for Scenario I, green for

Scenario II, and blue for Scenario III. Observe that generally the

distributions of these coefficients are quite different among the

subjects, which suggests that it may be impossible to find a generic

classifier that works well for all subjects. This has been confirmed

by our previous studies. In [5] we have reported that when we

trained a SVM classifier on 17 subjects and tested it on the

remaining subject, the average classification rate was 36.9%, close

to chance. We also trained a kNN classifier on 17 subjects and

tested it on the remaining subject. The average classification rate

was 35.8%, again close to chance.

Figure 6. The Humvee Stroop scenarios. Left: Color naming; Middle: Word reading; Right: Interference.
doi:10.1371/journal.pone.0056624.g006

Table 1. Mean and standard deviation of two performance
measures in different scenarios.

Mean Standard Deviation

Scenario I II III I II III

Number of correct responses 40.222 41.944 33.667 10.268 11.526 13.960

Reaction time (second) 0.805 0.776 0.866 0.072 0.076 0.089

doi:10.1371/journal.pone.0056624.t001

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e56624

However, when examining Figure 7 more closely, we can

observe that some subjects share similar distributions of the

principle component coefficients, e.g., Subjects 4 and 6, Subjects 8

and 17, and Subjects 13 and 16. This suggests that auxiliary data

from other subjects may be helpful in building a classifier for a new

user. Next we show how classification performance can be

improved above baseline using TL, ACS, and their combination.

kNN classification. In kNN classification we set the maxi-

mum number of primary training samples to 30, and a, the

minimum satisfactory classification accuracy, to 1, i.e., the

algorithms terminated when 30 primary training samples were

generated. The Euclidean distance was used to specify nearest

neighbors. We studied each subject separately, and for each

subject l0~3 (so that there is at least one primary training sample

for each labeled class). We used li~f1,2,3g for Vi, i.e., in the first

experiment, only one primary training sample was generated in

each iteration; in the second experiment, two primary training

samples were generated in each iteration; and in the third

experiment, three primary training samples were generated in

each iteration. After Iteration i, the kNN classification perfor-

mance was evaluated using the remaining 150{
Pi{1

j~0 lj responses

from the same subject. We repeated the experiment 100 times

Table 2. The 29 features used by the kNN and SVM classifiers.

EEG

SCL RSP ECG FP1 FP2 Fz Cz Pz O1 O2

min max mean min max mean Heartbeat IBI h a b h a b h a b h a b h a b h a b h a b

doi:10.1371/journal.pone.0056624.t002

Figure 7. Coefficients of the first two principle components of the 29 features.
doi:10.1371/journal.pone.0056624.g007

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e56624

(each time selecting the l0 initial training samples randomly) for

each combination of subject and li, and then recorded the average

performances of the four algorithms. It was necessary to repeat the

experiment many times to ensure the statistical significant of the

results. This is because there were two forms of randomness: 1)

training data samples were selected randomly, so for the same

sequence of class labels the training samples were different; and, 2)

the class to select training samples from was chosen according to a

probability distribution instead of deterministically.

Figure 8 shows the performances of the four algorithms on the

18 subjects for li~1. Observe that significantly different classifi-

cation accuracies were obtained for different subjects. For

example, with 30 user-specific training samples, 95.82% accuracy

was obtained for Subject 4 by TL+ACS, but only 56.76% for

Subject 11. However, regardless of the large individual differences,

both TL and ACS outperformed the baseline for all 18 subjects,

and TL+ACS achieved the best performance among the four.

The mean and standard deviation of the classification accuracy

of the four algorithms for li~f1,2,3g on the 18 subjects are shown

in Figure 9. Observe that:

1. TL outperformed the baseline approach. The performance

improvement is generally larger when Np is small. As Np

increases, the performances of TL and the baseline converge,

i.e. the effect of auxiliary training data decreases as the number

of primary training data samples increases.

2. ACS outperformed the baseline approach, and when Np

increased the performance improvement of ACS became larger

than the performance improvement of TL over the baseline.

3. TL+ACS outperformed the other three approaches. It

inherited both TL’s superior performance for small Np and

ACS’s superior performance for large Np, and showed

improved performance overall.

To show that the performance differences among the four

algorithms are statistically significant, we performed paired t-tests

to compare their average accuracy (Table 3), using a~0:05. The

results showed that the performance difference between any pair

of algorithms is statistically significant (Table 4). Although our t-

tests revealed significance, we decided to be very conservative with

our results and took measures to ensure that the probability of

Type I error did not exceed 0:05. Hence, we also performed

Holm-modified Bonferroni corrections [60] to assess classification

Figure 8. Performances of the four kNN classifiers on the 18 subjects for li~1. The horizontal axis shows Np , and the vertical axis shows the
testing accuracy on the 150{Np examples from the same subject.
doi:10.1371/journal.pone.0056624.g008

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e56624

accuracy through consideration of the four algorithms and three li
together. Despite the very conservative nature of Bonferroni

correction, 10 of the 15 differences are statistically significant (the

five insignificant ones are shown in bold in Table 4).

We have shown that with the same number of primary training

samples, TL, ACS, and TL+ACS can give higher classification

accuracy compared with the baseline approach. As an equivalent

goal of the improved algorithms is to learn an optimal classifier

using a minimum number of primary training samples, it is also

interesting to study how many primary training samples can be

saved by using the three improved algorithms, as compared to the

baseline approach. Take TL as an example. Assume that the TL

algorithm has a classification accuracy of a when Np primary

training samples are used. We then find how many primary

training samples are needed by the baseline algorithm to achieve

the same classification accuracy and denote that number by Np’.
Then (Np’{Np)=Np’|100% is percentage of primary training

samples saved by TL. The mean and standard deviation of the

percentages are shown in Figure 10. Note that we only show Np

up to 20 because Np’ is larger than Np and the maximal Np’ in the

experiments is 30. Observe from Figure 10 that:

1. TL can save over 7% primary training samples over the

baseline approach, especially when Np is small. When Np

increases the saving becomes smaller, which is intuitive, as

more primary training samples diminish the usefulness of the

auxiliary training samples.

2. ACS can save over 17% primary training samples over the

baseline, especially when Np is small. When Np increases the

saving generally becomes smaller, which is intuitive, as the

classifier converges to the optimal one when each class has

sufficient training samples, no matter how they are generated.

3. TL+ACS can save over 22% primary training samples over the

baseline, especially when Np is small. It also outperformed both

TL and ACS.

To show that the percentages of saved primary training samples

among the four algorithms are statistically significant, we

performed paired t-tests to compare their average savings

(Table 5), using a~0:05. The results showed that the percentage

of saved primary training samples between any pair of algorithms

is statistically significant (Table 6). Again, to ensure that the

probability of Type I error does not exceed 0:05, we also

performed Holm-modified Bonferroni correction on the percent-

Figure 9. Mean and standard deviation (std) of the four kNN classifiers on the 18 subjects. li is the number of primary training samples
generated in each iteration.
doi:10.1371/journal.pone.0056624.g009

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 11 February 2013 | Volume 8 | Issue 2 | e56624

ages by considering the four algorithms and three li together. The

results indicate that all 15 differences are statistically significant.

SVM classification. To demonstrate that the generic frame-

work of combining TL and ACS can be applied to other classifiers,

we also implemented it for an SVM classifier [41,61] using

li~f1,2,3g. The same 29 features in the kNN classifier were again

used in the experiment, and no feature selection was performed.

The radial basis function (RBF) SVM in LIBSVM [62] was

employed, so in training we tuned two parameters: C, which is the

penalty parameter of the error term, and c, which defines the RBF

kernel. Modification to the algorithms is very simple: In the TL

part of Algorithms 2 and 4, instead of optimizing k in kNN, we

now optimize C and c.

Table 3. Average classification accuracy for the four methods.

Np

li Method 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Baseline .33 .49 .54 .56 .58 .60 .62 .63 .64 .65 .66 .68 .68 .69 .70 .71 .71 .72 .72 .73 .73 .74 .74 .75 .75 .75 .76

TL .53 .54 .57 .59 .60 .62 .63 .65 .65 .67 .68 .68 .69 .70 .71 .71 .72 .73 .73 .73 .74 .74 .75 .75 .75 .76 .76

1 ACS .33 .56 .59 .63 .64 .65 .66 .67 .68 .69 .70 .70 .71 .72 .72 .73 .73 .74 .74 .74 .75 .75 .76 .76 .76 .77 .77

TL+ACS .53 .59 .62 .64 .65 .66 .67 .68 .69 .70 .70 .71 .72 .72 .73 .73 .74 .74 .75 .75 .75 .76 .76 .77 .77 .77 .78

Baseline .49 .56 .60 .63 .65 .67 .69 .70 .71 .73 .74 .75 .75

TL .55 .59 .62 .64 .66 .68 .70 .71 .72 .73 .74 .75 .76

kNN 2 ACS .51 .61 .65 .67 .69 .70 .71 .72 .73 .74 .75 .76 .77

TL+ACS .59 .63 .66 .68 .70 .71 .72 .73 .74 .75 .76 .77 .77

Baseline .53 .60 .64 .68 .70 .72 .73 .75 .76

TL .57 .62 .66 .69 .71 .73 .74 .75 .76

3 ACS .54 .65 .68 .70 .72 .74 .75 .76 .77

TL+ACS .60 .66 .69 .71 .73 .74 .76 .76 .77

Baseline .33 .47 .50 .53 .56 .58 .60 .62 .64 .65 .66 .67 .68 .69 .70 .71 .72 .72 .73 .74 .74 .75 .75 .76 .76 .77 .77

TL .53 .55 .57 .58 .60 .62 .63 .65 .66 .67 .68 .69 .70 .71 .72 .72 .73 .73 .74 .75 .75 .76 .76 .77 .77 .77 .78

1 ACS .33 .53 .55 .58 .60 .62 .63 .64 .65 .66 .67 .69 .69 .70 .71 .72 .72 .73 .74 .74 .75 .75 .76 .76 .76 .77 .77

TL+ACS .52 .58 .63 .64 .66 .67 .68 .69 .70 .71 .72 .72 .73 .74 .74 .75 .75 .76 .76 .77 .77 .78 .78 .78 .79 .79 .79

Baseline .47 .54 .59 .62 .65 .68 .70 .71 .73 .74 .75 .76 .77

TL .55 .59 .62 .65 .67 .69 .71 .73 .74 .75 .76 .77 .77

SVM 2 ACS .49 .56 .61 .64 .66 .68 .70 .72 .73 .74 .75 .76 .77

TL+ACS .58 .64 .67 .69 .71 .73 .74 .75 .76 .77 .78 .78 .79

Baseline .50 .59 .64 .68 .70 .72 .74 .76 .77

TL .57 .62 .66 .69 .72 .74 .75 .77 .78

3 ACS .51 .61 .65 .68 .71 .73 .75 .76 .77

TL+ACS .60 .66 .70 .72 .74 .76 .77 .78 .79

doi:10.1371/journal.pone.0056624.t003

Table 4. Paired t-test results (a~0:05) on classification accuracy.

TL vs Baseline ACS vs Baseline TL+ACS vs Baseline TL+ACS vs TL TL+ACS vs ACS

li df t p df t p df t p df t p df t p

1 26 2.69 0.0123 26 8.01 0.0000 26 6.09 0.0000 26 9.48 0.0000 26 2.21 0.0364

kNN 2 12 3.24 0.0071 12 7.34 0.0000 12 6.01 0.0001 12 9.11 0.0000 12 2.65 0.0213

3 8 2.87 0.0207 8 5.84 0.0004 8 5.08 0.0010 8 7.64 0.0001 8 2.35 0.0467

1 26 3.77 0.0008 26 4.54 0.0001 26 7.46 0.0000 26 10.00 0.0000 26 6.74 0.0000

SVM 2 12 3.89 0.0022 12 6.20 0.0016 12 6.20 0.0000 12 8.94 0.0000 12 6.58 0.0000

3 8 3.04 0.0161 8 2.69 0.0273 5 8 5.18 0.0008 8 7.98 0.0000 8 5.87 0.0004

The df for li~1 is 26 because there are 27 different Np in this case (Np~4,5,:::,30). The df for li~2 is 12 because there are 13 different Np in this case (Np~5,7,:::,29).
The df for li~3 is 8 because there are 9 different Np in this case (Np~6,9,:::,30).
doi:10.1371/journal.pone.0056624.t004

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e56624

Figure 10. Mean and standard deviation of the percentage of primary training samples saved by TL, ACS, and TL+ACS over the
baseline approach, when the kNN classifier is used. li is the number of primary training samples generated in each iteration.
doi:10.1371/journal.pone.0056624.g010

Table 5. Average percentage of saved primary training samples over the baseline method.

Np

li Method 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TL 34.60 24.01 26.10 22.14 17.60 17.35 14.25 14.04 11.36 10.84 10.80 8.97 9.25 10.39 7.87 6.99 7.95

1 ACS 0 32.54 33.35 36.23 35.14 32.53 29.85 26.68 25.99 24.03 23.10 22.14 21.35 21.01 19.97 19.00 17.21

TL+ACS 36.05 45.74 44.01 40.03 39.30 35.82 32.97 32.03 29.68 27.25 27.36 25.28 25.82 24.31 23.97 22.14 22.41

TL 32.28 25.36 20.98 16.41 13.73 13.31 11.47 10.99

kNN 2 ACS 20.63 35.34 33.05 30.25 25.41 23.96 22.21 20.27

TL+ACS 46.05 44.25 40.61 34.51 31.98 30.19 27.60 24.75

TL 34.26 25.00 20.00 17.33 14.09

3 ACS 27.78 31.67 26.46 22.45 20.81

TL+ACS 39.81 39.72 32.17 28.74 27.09

TL 45.95 37.86 32.71 27.79 22.02 20.11 16.82 17.30 17.33 15.27 16.81 14.07 12.86 12.75 11.61 10.17 11.23

1 ACS 3.33 35.68 25.99 26.46 22.18 20.01 17.04 13.62 12.14 12.57 12.87 10.59 5.42 3.98 3.00 1.15 4.25

TL+ACS 44.88 48.11 50.34 45.57 44.20 40.35 38.91 37.00 34.75 33.35 30.84 29.17 26.43 24.74 25.46 23.23 21.33

TL 40.28 32.44 27.09 19.77 16.17 16.21 13.03 13.15

SVM 2 ACS 24.69 20.54 16.94 17.44 13.38 8.08 6.68 5.11

TL+ACS 52.13 48.40 40.71 38.02 34.13 31.67 29.06 26.60

TL 37.96 27.50 23.46 17.37 15.55

3 ACS 31.48 23.06 12.22 8.80 6.63

TL+ACS 46.48 41.30 36.55 31.96 28.10

doi:10.1371/journal.pone.0056624.t005

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e56624

Figure 11 shows the performances of the four algorithms on the

18 subjects for li~1. Again, significantly different classification

accuracies were obtained for different subjects. However, regard-

less of the large individual differences, generally both TL and ACS

outperformed the baseline for all 18 subjects, and TL+ACS

achieved the best performance among the four.

The mean and standard deviation of the classification accuracy

of the four algorithms for li~f1,2,3g on the 18 subjects are shown

Table 6. Paired t-test results (a~0:05) on percentage of saved primary training samples.

TL vs Baseline ACS vs Baseline TL+ACS vs Baseline TL+ACS vs TL TL+ACS vs ACS

li df t p df t p df t p df t p df t p

1 16 7.98 0.0000 16 11.63 0.0000 16 17.06 0.0000 16 15.36 0.0000 16 3.43 0.0034

kNN 2 7 6.75 0.0003 7 12.91 0.0000 7 12.61 0.0000 7 21.45 0.0000 7 3.49 0.0101

3 4 6.29 0.0033 4 13.35 0.0002 4 12.48 0.0002 4 7.31 0.0019 4 6.62 0.0027

1 16 8.16 0.0000 16 5.65 0.0000 16 15.54 0.0000 16 11.07 0.0000 16 15.28 0.0000

SVM 2 7 6.30 0.0004 7 5.68 0.0008 7 11.69 0.0000 7 19.40 0.0000 7 23.49 0.0000

3 4 6.07 0.0037 4 3.49 0.0250 4 11.29 0.0004 4 11.86 0.0003 4 12.00 0.0003

The df for li~1 is 16 because there are 17 different Np in this case (Np~4,5,:::,20). The df for li~2 is 7 because there are 8 different Np in this case (Np~5,7,:::,19).
The df for li~3 is 4 because there are 5 different Np in this case (Np~6,9,:::,18).
doi:10.1371/journal.pone.0056624.t006

Figure 11. Performances of the four SVM classifiers on the 18 subjects for li~1. The horizontal axis shows Np , and the vertical axis shows
the testing accuracy on the 150{Np examples from the same subject.
doi:10.1371/journal.pone.0056624.g011

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 14 February 2013 | Volume 8 | Issue 2 | e56624

in Figure 12. Observe that the average performances of TL, ACS

and TL+ACS were all better than the baseline approach, which

verified the effectiveness of the proposed approaches. However,

unlike in Figure 9, where ACS outperformed TL when Np was

large, for SVM classifier generally the performance of ACS was

always worse than TL. This is because the ACS approach used in

our experiment (selecting a new class according to the inverse of

the per-class cross-validation accuracy, which is called Inverse in

[25]), which is suitable for the kNN classifier, is not optimal for the

SVM classifier. This fact is confirmed by Figure 1(b) in [25], where

several ACS approaches for SVM were compared. In the future

we will investigate better ACS approaches for the SVM classifier.

To show that the performance differences among the four

algorithms are statistically significant, we performed paired t-tests

to compare their average accuracy (Table 3), using a~0:05. The

results showed that the performance difference between any pair

of algorithms is statistically significant (Table 4). To ensure that the

probability of Type I error does not exceed 0:05, we also

performed Holm-modified Bonferroni correction on the classifi-

cation accuracy by considering the four algorithms and three li
together. The results indicate that all 15 differences are statistically

significant, despite the very conservative nature of Bonferroni

correction.

Similar to the kNN case, for the SVM classifier we also studied

how many percentages of primary training samples can be saved

by using the three improved algorithms, compared with the

baseline approach. The results are shown in Figure 13. TL+ACS

can save over 21% of primary training samples.

To show that the percentages of saved primary training samples

among the four algorithms are statistically significant, we

performed paired t-tests to compare their average savings

(Table 5), using a~0:05. The results showed that the percentage

of saved primary training samples between any pair of algorithms

is statistically significant (Table 6). Again, to ensure that the

probability of Type I error does not exceed 0:05, we performed

Holm-modified Bonferroni correction on the percentages by

considering the four algorithms and three li together. The results

indicate that all 15 differences are statistically significant.

As the search space of the SVM classifier is much larger than

that of the kNN classifier, which implies that more primary

training samples are needed to identify the optimal SVM model

parameters, we expect that more significant performance im-

provement can be demonstrated for the SVM classifier by using

the improved algorithms. The conjecture is clearly verified in

Figure 14, in which the mean baseline and TL+ACS performances

for li~1 for both kNN and SVM are shown. We would also

expect that the baseline SVM classifier should outperform the

baseline kNN classifier as it is more sophisticated; however,

Figure 14 shows that this is only true when Np is large, because a

small number of primary training samples are not sufficient to

Figure 12. Mean and standard deviation (std) of the four SVM classifiers on the 18 subjects. li is the number of primary training samples
generated in each iteration.
doi:10.1371/journal.pone.0056624.g012

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 15 February 2013 | Volume 8 | Issue 2 | e56624

identify the optimal SVM parameters in a large search space. In

summary, it seems that TL+ACS is particularly advantageous

when a sophisticated classifier with a large search space is used.

Discussion

We have demonstrated that a collaborative filtering approach

based on TL and ACS can improve kNN and SVM classifier

performance over a baseline classifier using the same quantity of

training data, and that combining TL and ACS can achieve an

even larger performance improvement. So, for same level of

classification accuracy, TL+ACS may require a smaller number of

user-specific training samples. This will reduce the data acquisition

effort to customize an automatic task difficulty recognition BCI

system, and hence increase its usability and popularity.

The VRST application is a scenario reflecting the ways in which

this collaborative filtering algorithm could be used in automatic

task difficulty classification. The VE maintains a database with

many different subjects and their neural and physiological

responses at different task difficulty levels. A new user can build

his/her profile for automatic task difficulty classification by

performing a calibration task, which is a subset of the primary

task. Assuming that there are c levels of task difficulty, the VE will

display c stimuli, one from each difficulty level. The neural and

physiological responses from the user, along with selected ‘‘good’’

auxiliary training samples from the subject database, are then used

by TL to identify the optimal parameters for the classifier. The TL

module also computes the classification accuracy from cross-

validation using these optimal parameters.

If the classification accuracy is not satisfactory, the ACS module

then determines from which difficulty level the next stimulus

should be displayed. The VE generates the corresponding stimulus

and records the user’s neural and physiological responses during

the test and adds it to the primary training sample database. The

Figure 13. Mean and standard deviation of the percentage of primary training samples saved by TL, ACS, and TL+ACS over the
baseline approach, when the SVM classifier is used. li is the number of primary training samples generated in each iteration.
doi:10.1371/journal.pone.0056624.g013

Figure 14. Comparison of the kNN and SVM classifiers for li~1.
doi:10.1371/journal.pone.0056624.g014

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 16 February 2013 | Volume 8 | Issue 2 | e56624

TL module is used again to update the optimal parameters for the

classifier and compute the cross-validation accuracy. If the

accuracy is satisfactory, then the VE configures the classifier using

the optimal parameters and stops training; otherwise, it calls the

ACS module to generate another new primary training sample

from the user and iterates the process. The advantage is that the

user will need to provide many fewer responses with TL+ACS

than without, saving the user’s time calibrating the system.

Note that TL and ACS each requires a higher computational

cost than the baseline approach, because TL needs to consider the

auxiliary training samples in the internal cross-validation, and

ACS needs to compute the per-class cross-validation accuracy.

However, since the extra computational cost only occurs during

the training process, it does not hinder the applicability of these

improvements.

Conclusions and Future Research
Individual differences make it difficult to develop a generic BCI

algorithm whose model parameters fit all subjects. It is hence

important to customize the BCI algorithm for each individual user

by adapting its parameters using user-specific training data.

However, collecting user-specific data is time-consuming and may

also decrease the user’s interest in the BCI system. In this paper we

have shown how TL, ACS, and a collaborative filtering approach

based on their combination, can help learn an optimal classifier

using a minimum amount of user-specific training data. TL

exploits the information contained in auxiliary training data, and

ACS optimally selects the class new training data to generate from.

This approach reduces the data acquisition effort in customizing a

BCI system, improving its usability and potentially, its popularity.

In the future we will improve both TL and ACS, thereby

improving our collaborative filtering framework. For TL, we may

be able to improve the selection of ‘‘good’’ auxiliary data by

removing inconsistent data samples from the auxiliary data (i.e.,

reduce the intra-individual difference). If a subject cannot reliably

classify his/her own perception of task difficulty, then unlikely his/

her data can give good suggestions on another subject’s

perception. One possible approach is that for each subject in the

auxiliary data, we remove a minimum number of confusing data

so that a 100% accurate classifier can be obtained. The remaining

data from all subjects can then be combined to form the auxiliary

dataset. To improve ACS, we will investigate other ACS

approaches, such as Redistricting and Improvement [25].

Another direction of our future research is to integrate TL and

ACS with feature selection. As it has been shown in [5], many of

the 29 features are not useful. However, the useful features are

subject dependent. As these features directly affect the classifica-

tion performance and computational cost, it is necessary to

integrate TL and ACS with feature selection for further

performance improvement. In addition, we are involved in several

large-scale (w100 subjects) neural and physiological data collec-

tions, and intend to use that data to continue to refine and

improve these collaborative filtering approaches.

Finally, we are interested in studying whether the proposed

approach can also be used in cross-domain knowledge transfer

[63,64], e.g., whether the labeled task difficulty data in VRST can

help improve the task difficulty recognition performance in other

related application domains like personalized learning and

affective gaming [65–67].

Acknowledgments

The authors would like to thank Dr. Kaleb McDowell (Army Research

Lab) for his constructive comments.

Author Contributions

Conceived and designed the experiments: BL TP. Performed the

experiments: BL TP. Analyzed the data: DW BL. Contributed reagents/

materials/analysis tools: DW. Wrote the paper: DW BL TP.

References

1. Lance BJ, Kerick SE, Ries AJ, Oie KS, McDowell K (2012) Brain-computer

interface technologies in the coming decades. Proc of the IEEE 100: 1585–1599.

2. Fairclough SH (2009) Fundamentals of physiological computing. Interacting

with Computers 21: 133–145.

3. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002)

Brain-computer interfaces for communication and control. Clinical Neurophys-

iology 113: 767–791.

4. Kerick S, Ries AJ, Oie K, Jung TP, Duann JR, et al. (2011) 2010 neuroscience

directors strategic initiative. Technical report, No. ARL-TR-5457, U.S. Army

Research Laboratory.

5. Wu D, Courtney CG, Lance BJ, Narayanan SS, Dawson ME, et al. (2010)

Optimal arousal identification and classification for affective computing: Virtual

Reality Stroop Task. IEEE Trans on Affective Computing 1: 109–118.

6. Parsons TD, Courtney C, Arizmendi B, Dawson M (2011) Virtual reality Stroop

task for neurocog-nitive assessment. Studies in Health Technology and

Informatics 143: 433–439.

7. Hoshikawa Y, Yamamoto Y (1997) Effects of Stroop color-word conflict test on

the autonomic nervous system responses. AJP - Heart and Circulatory

Physiology 272: 1113–1121.

8. Jin J, Sellers EW, Zhang Y, Daly I, Wang X, et al. (2013) Whether generic

model works for rapid erp-based bci calibration. Journal of Neuroscience

Methods 212: 94–99.

9. Kareev Y (1982) Minitypologies from within-subjects designs: Uncovering

systematic individual differences in experiments. Journal of Verbal Learning and

Verbal Behavior 21: 363–382.

10. Macedonio M, Parsons T, Rizzo A (2007) Immersiveness and physiological

arousal within panoramic video-based virtual reality. Cyberpsychology and

Behavior 10: 508–516.

11. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to

weave an information tapestry. Communications of the ACM 35: 61–70.

12. Makeig S, Kothe C, Mullen T, Bigdely-Shamlo N, Zhang Z, et al. (2012)

Evolving signal processing for braincomputer interfaces. Proc of the IEEE 100:

1567–1584.

13. Zander TO, Kothe C (2011) Towards passive brain-computer interfaces:

applying brain-computer interface technology to human-machine systems in

general. Journal of Neural Engineering 8: 025005.

14. Parsons TD, Rizzo AA (2008) Affective outcomes of virtual reality exposure

therapy for anxiety and specific phobias: A meta-analysis. Journal of Behavior

Therapy and Experimental Psychiatry 39: 250–261.

15. Armstrong C, Reger G, Edwards J, Rizzo A, Courtney C, et al. (2013) Validity

of the virtual reality stroop task (VRST) in active duty military. Journal of

Clinical and Experimental Neuropsychology 35: 1–11.

16. Burke J, McNeill M, Charles D, Morrow P, Crosbie J, et al. (2009) Optimising

engagement for stroke rehabilitation using serious games. The Visual Computer

25: 1085–1099.

17. Flores E, Tobon G, Cavallaro E, Cavallaro FI, Perry JC, et al. (2008) Improving

patient motivation in game development for motor deficit rehabilitation. In:

Proc. Int’l Conf. on Advances in Computer Entertainment Technology.

Yokohama, Japan, 381–384.

18. Parsons T, Rizzo A, Courtney C, Dawson M (2012) Psychophysiology to assess

impact of varying levels of simulation fidelity in a threat environment. Advances

in Human-Computer Interaction 5: 1–9.

19. Hunicke R (2005) The case for dynamic difficulty adjustment in games. In: Proc.

ACM SIGCHI Int’l Conf. on Advances in computer entertainment technology.

Valencia, Spain, 429–433.

20. Juul J (2009) Fear of failing? the many meanings of difficulty in video games. In:

Wolf MJP, Perron B, editors, The Video Game Theory Reader 2, NY:

Routledge. 237–252.

21. Parsons T, Reinebold J (2012) Adaptive virtual environments for neuropsycho-

logical assessment in serious games. IEEE Transactions on Consumer

Electronics 58: 197–204.

22. Yang L, Hanneke S, Carbonell J A theory of transfer learning with applications

to active learning. Available: http://www.cs.cmu.edu/˜liuy/atl.pdf. Accessed

2013 Jan 15.

23. Rani P, Sarkar N, Liu C (2005) Maintaining optimal challenge in computer

games through real-time physiological feedback. In: Proc. 11th Int’l Conf. on

Human Computer Interaction. Las Vegas, NV, 184–192.

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 17 February 2013 | Volume 8 | Issue 2 | e56624

24. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans on

Knowledge and Data Engineering 22: 1345–1359.

25. Lomasky R, Brodley CE, Aernecke M, Walt D, Friedl M (2007) Active class

selection. In: Proc. 18th European Conference on Machine Learning. Warsaw,
Poland, 640–647.

26. MacKay DJC (1992) Information-based objective functions for active data
selection. Neural Computation 4: 589–603.

27. Muslea I, Minton S, Knoblock CA (2006) Active learning with multiple views.

Journal of Artificial Intelligence Research 27: 203–233.

28. Settles B (2009) Active learning literature survey. Computer Sciences Technical

Report 1648, University of Wisconsin–Madison.

29. Zhang Z, Schuller B (2012) Active learning by sparse instance tracking and

classifier confidence in acoustic emotion recognition. In: Proc. InterSpeech.
Portland, OR.

30. Wu D, Parsons TD (2011) Inductive transfer learning for handling individual
differences in affective computing. In: Proc. 4th Int’l Conf. on Affective

Computing and Intelligent Interaction. Memphis, TN, volume 2, pp. 142–151.

31. Wu D, Parsons TD (2011) Active class selection for arousal classification. In:

Proc. 4th Int’l Conf. on Affective Computing and Intelligent Interaction.
Memphis, TN, volume 2, pp. 132–141.

32. Li B, Yang Q, Xue X (2009) Transfer learning for collaborative ltering via a

rating-matrix generative model. In: Proc. Int’l Conf. on Machine Learning

(ICML). Montreal, Canada, pp. 617–624.

33. Pan W, Liu NN, Xiang EW, Yang Q (2011) Transfer learning to predict missing
ratings via heterogeneous user feedbacks. In: Proc. Int’l Joint Conf. on Articial

Intelligence (IJCAI). Barcelona, Spain, pp. 2318–2323.

34. Pan W, Xiang EW, Yang Q (2012) Transfer learning in collaborative filtering

with uncertain ratings. In: Proc. 26th AAAI Conf. on Artificial Intelligence

(AAAI). Toronto, Canada, pp. 662–668.

35. Singh AP, Gordon GJ (2008) Relational learning via collective matrix
factorization. In: Proc. ACM SIGKDD Int’l Conf. on Knowledge Discovery

and Data Mining (KDD). Las Vegas, NV, pp. 650–658.

36. Adams RP, Dahl GE, Murray I (2010) Incorporating side information into

probabilistic matrix factorization using Gaussian processes. In: Proc. Conf. on
Uncertainty in Articial Intelligence (UAI). Catalina Island, CA, pp. 1–9.

37. Xia Y, Li L, Cao J, Golz M, Mandic DP (2011) A collaborative filtering
approach for quasi-brain-death EEG analysis. In: Proc. Int’l Conf. on Acoustics,

Speech and Signal Processing. Prague, Czech Republic, pp. 645–648.

38. Li L, Xia Y, Jelfs B, Cao J, Mandic DP (2012) Modelling of brain consciousness

based on collaborative adaptive filters. Neurocomputing 76: 36–43.

39. Wang Y, Jung TP (2011) A collaborative brain-computer interface for improving

human performance. PLoS ONE 6: e20422.

40. Lu S, Guan C, Zhang H (2009) Unsupervised brain computer interface based on
intersubject information and online adaptation. IEEE Trans on Neural Systems

and Rehabilitation Engineering 17: 135–145.

41. Vapnik V (1995) The Nature of Statistical Learning Theory. Berlin: Springer-

Verlag.

42. Wu P, Dietterich TG (2004) Improving SVM accuracy by training on auxiliary

data sources. In: Proc. Int’l Conf. on Machine Learning. Banff, Alberta, Canada,
871–878.

43. Varma S, Simon R (2006) Bias in error estimation when using cross-validation
for model selection. BMC Bioinformatics 7.

44. Wu D, Parsons TD, Mower E, Narayanan SS (2010) Speech emotion estimation

in 3D space. In: Proc. IEEE Int’l Conf. on Multimedia & Expo (ICME).

Singapore, pp. 737–742.

45. Grimm M, Kroschel K, Narayanan SS (2008) The Vera Am Mittag German
audio-visual emotional speech database. In: Proc. Int’l Conf. on Multimedia &

Expo (ICME). Hannover, German, pp. 865–868.

46. Lewis D, Catlett J (1994) Heterogeneous uncertainty sampling for supervised

learning. In: Proc. Int’l Conf. on Machine Learning (ICML). New Brunswick,
NJ, pp. 148–156.

47. Seung H, Opper M, Sompolinsky H (1992) Query by committee. In: Proc. ACM

Workshop on Computational Learning Theory. Pittsburgh, PA, 287–294.
48. McCallum A, Nigam K (1998) Employing EM in pool-based active learning for

text classification. In: Proc. Int’l Conf. on Machine Learning (ICML). Madison,
WI, pp. 359–367.

49. Settles B, Craven M, Ray S (2008) Multiple-instance active learning. In:

Advances in Neural Information Processing Systems (NIPS). Vancouver, BC,
Canada, pp. 1289–1296.

50. Roy N, McCallum A (2001) Toward optimal active learning through sampling
estimation of error reduction. In: Prof. Int’l Conf. on Machine Learning (ICML).

Williamstown, MA, pp. 441–448.
51. Cohn D (1994) Neural network exploration using optimal experiment design. In:

Proc. Advances in Neural Information Processing Systems (NIPS). Denver, CO,

volume 6, pp. 679–686.
52. Xu Z, Akella R, Zhang Y (2007) Incorporating diversity and density in active

learning for relevance feedback. In: Proc. European Conference on Information
Retrieval (ECIR). Rome, Italy, pp. 246–257.

53. Weiss GM, Provost F (2003) Learning when training data are costly: The effect

of class distribution on tree induction. Journal of Artificial Intelligence Research
19: 315–354.

54. Shi X, Fan W, Ren J (2008) Actively transfer domain knowledge. In: Proc.
European Conf. on Machine Learning (ECML). Antwerp, Belgium, 342–357.

55. Parsons T, Courtney C, Rizzo A, Edwards J, Reger G (2012) Virtual reality
paced serial assessment tests for neuropsychological assessment of a military

cohort. Studies in Health Technology and Informatics 173: 331–337.

56. Parsons TD, Cosand L, Courtney C, Iyer A, Rizzo AA (2009) Neurocognitive
workload assess-ment using the virtual reality cognitive performance assessment

test. Lecture Notes in Artificial Intelligence 5639: 243–252.
57. Parsons TD, Rizzo AA (2008) Initial validation of a virtual environment for

assessment of memory functioning: Virtual reality cognitive performance

assessment test. Cyberpsychology and Behavior 11: 17–25.
58. Butler T, Pan H, Tuescher O, Engelien A, Goldstein M, et al. (2007) Human

fear-related motor neurocircuitry. Neuroscience 150: 1–7.
59. Stroop J (1935) Studies of interference in serial verbal reactions. Journal of

Experimental Psychology 18: 643–661.
60. Holm S (1979) A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics 6: 65–70.

61. Hsu CW, Chang CC, Lin CJ (2010) A practical guide to support vector
classification. Available: http://www.csie.ntu.edu.tw/̃cjlin/libsvm. Accessed

2013 Jan 15.
62. Chang CC, Lin CJ (2009) LIBSVM: A library for support vector machines.

Available: http://www.csie.ntu.edu.tw/˜cjlin/libsvm. Accessed 2013 Jan 15.

63. Xue GR, Dai W, Yang Q, Yu Y (2008) Topic-bridged PLSA for cross-domain
text classification. In: Proc. 31st Annual Int’l ACM SIGIR Conf. on Research

and Development in Information Retrieval (SIGIR). Singapore, pp. 627–634.
64. Zheng VW, Hu DH, Yang Q (2009) Cross-domain activity recognition. In: Proc.

11th Int’l Conf. on Ubiquitous Computing. Orlando, FL, pp. 61–70.
65. Wu D (2012) Fuzzy sets and systems in building closed-loop affective computing

systems for human-computer interaction: Advances and new directions. In: Proc.

IEEE World Congress on Computational Intelligence. Brisbane, Australia, pp.
1–8.

66. Gilleade K, Dix A, Allanson J (2005) Affective videogames and modes of
affective gaming: Assist me, challenge me, emote me. In: Proc. Digital Games

Research Association (DiGRA) Conf. Vancouver, Canada, pp. 16–20.

67. Advance personalized learning. Available: http://www.engineeringchallenges.
org/cms/8996/9127.aspx. Accessed 2013 Jan 15.

Collaborative Filtering for BCI

PLOS ONE | www.plosone.org 18 February 2013 | Volume 8 | Issue 2 | e56624

