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Abstract

The analysis of biological information from protein sequences is important for the study of cellular functions and
interactions, and protein fold recognition plays a key role in the prediction of protein structures. Unfortunately, the
prediction of protein fold patterns is challenging due to the existence of compound protein structures. Here, we processed
the latest release of the Structural Classification of Proteins (SCOP, version 1.75) database and exploited novel techniques to
impressively increase the accuracy of protein fold classification. The techniques proposed in this paper include ensemble
classifying and a hierarchical framework, in the first layer of which similar or redundant sequences were deleted in two
manners; a set of base classifiers, fused by various selection strategies, divides the input into seven classes; in the second
layer of which, an analogous ensemble method is adopted to predict all protein folds. To our knowledge, it is the first time
all protein folds can be intelligently detected hierarchically. Compared with prior studies, our experimental results
demonstrated the efficiency and effectiveness of our proposed method, which achieved a success rate of 74.21%, which is
much higher than results obtained with previous methods (ranging from 45.6% to 70.5%). When applied to the second layer
of classification, the prediction accuracy was in the range between 23.13% and 46.05%. This value, which may not be
remarkably high, is scientifically admirable and encouraging as compared to the relatively low counts of proteins from most
fold recognition programs. The web server Hierarchical Protein Fold Prediction (HPFP) is available at http://datamining.xmu.
edu.cn/software/hpfp.
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Introduction

Information on proteins is crucial for understanding cellular

organization and function [1,2]. For each new protein sequence,

sequence-sequence and sequence-structure comparisons are used

to predict its possible function, but only the latter method of

comparison remains accurate in identifying structurally similar

proteins that lack sequence similarity [3]. The analysis of three-

dimensional (3D) protein structures is one of the more efficient

tools in molecular biology, cell biology, biomedicine and drug

design [4]. However, the local minimum problem makes

prediction of the overall protein folding difficult even when the

direct prediction of the 3D protein structure is reliable [5]. The

lack of proteins of known structure in datasets that are homologous

to the query protein is an obstacle even when the homology

modeling approach [6,7] successfully predicts the 3D structure of a

protein. Fold pattern prediction, which represents a deeper level of

analysis than protein structural classification [4], lies between

trapped secondary structure prediction and the partially effective

tertiary structure prediction. Fold patterns are directly related to

protein functions, and their prediction is critical, since these

patterns can efficiently enhance the success rate of protein fold

classification. Previous studies have indicated that protein fold

recognition is urgently required in drug production [8], cancer

therapy [9], and human immunodeficiency virus (HIV) treatment

[10].

Proteins are considered to have a common fold pattern if they

have the same major secondary structures with the same

arrangement and topology [11]. Fold recognition refers to the

recognition of the structural fold of a protein based on the given

sequence information [12], and the number of possible protein

folds is assumed to be restricted [13–16]. Therefore, prediction

depends on the context of particular 3D folds. The decreased rate

at which structural data containing new folds are entered into the

Protein Data Bank (PDB), and the slowing addition of related

Structural Classification of Proteins (SCOP) categories, indicates

that the entire protein structural space will soon be fully covered.

The large scale of the data makes fold prediction for a query

sequence difficult. Several ensemble classification approaches have

been presented to address this problem, including feature

extraction and introducing more ensemble principles. Previous

studies are mostly based on the class label of each protein

sequence, or focus only on the 27 major folds [3,4,11]. Major

disadvantage of such methods is that the 27 folds are represented

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e56499



in seven or more proteins and account for all major structural

classes, hence it is insufficient for protein folds recognition. By

investigating support vector machines (SVMs) and neural networks (NNs)

(which can efficiently predict types of alpha-turns [17]), their study

achieved an accuracy of 45.6% [3]. Since then, several ensemble

classifiers have been utilized to reach a higher success rate. Two

ensemble methods, Discretized Interpretable Multi Layer Perceptrons

(DIMLPs) [18] and Specialized Ensemble (SE) [11], were developed

using the stringent benchmark dataset, and the success rate of

these methods reached 46.7% and 53%, respectively. Shen and

Chou [19] later established an ensemble predictor called PFP-

Pred, based on protein fold prediction, to achieve 62.1% accuracy

with the same dataset. Another novel classifying method, PFRES,

proposed by Chen and Kurgan [20], used a smaller number of

more effective features and attained an accuracy of 68.4%. The

PFP-FunDSeqE predictor was subsequently used with chained

functional domains and sequential evolution information to

achieve a success rate of 70.5% [4], which surpassed other

ensemble classifiers. Chen [21], in a more recent paper, achieved

77% accuracy using an effective feature extraction method and a

novel ensemble classifier. All the aforementioned experiments

were developed using the benchmark dataset that was promoted

by Ding and Dubchak [3], which is not satisfactory for the

classification of all specific protein folds. Moreover, the current

success rate requires further improvement.

In this study, we focused on improving the effect of protein fold

pattern prediction. Using the latest SCOP release (version 1.75)

[22], we deleted similar protein domains and reduced the

homology of dataset to train a highly reliable model. For feature

extraction, we considered the composition, distribution and

physicochemical properties of amino acids (AAs) to obtain 188-

dimensional (188D) features. The Random Forest (RF) model [23]

was first adopted as a benchmark for our ensemble classifier. A

particular training set may have several peculiarities, and merging

numerous base classifiers can potentially reduce the deviation.

Based on the processed dataset, a novel ensemble classifier was

used to further enhance classification accuracy. We employed 18

base classifiers and several selective strategies to assemble highly

variable classifiers to compensate for their individual disadvantag-

es. Consequently, the classification results of seven protein classes

were improved. Therefore, for the first time a hierarchical

classification framework was developed in which all protein folds

were recognized. The outcome of protein fold recognition was

improved by the abovementioned methods with respect to: 1)

improved classification accuracy using the novel ensemble

classifier; and 2) the expansion of the prediction scope for protein

folds using the hierarchical classification framework.

Methods

Several procedures were developed to address the issues of

protein fold recognition. These procedures included the extraction

of feature vectors to establish the model, the integration of base

classifiers to improve accuracy, and the prediction of the second

layer of the SCOP database to handle the overall protein folds.

Feature Extraction
In some cases, two proteins may be structurally similar but have

no significant sequence similarity. More rational predictions are

based on structural information, which are extracted as feature

vectors according to the composition, distribution and physico-

chemical properties of the AAs in a specific protein [24]. An

intermediate step that converts the sequence into a feature space

representation should be performed, which could dramatically

affect the prediction results.

Inspired by the work of Cai et al. [25], our present method

considered AA composition as well as the content, distribution,

and bivalent frequency of AAs possessing a variety of physico-

chemical properties [21] (listed in Table 1). First, the respective

quantities of the 20 AAs (which are represented as AA1, AA2, … ,

AA20, alphabetically) were calculated as n1, n2, … , n20. .

Accordingly, the feature vector (FV) (1–20) was denoted as:

(FV1,FV2,:::,FV20)~(
n1

L
,
n2

L
,:::,

n20

L
) ð1Þ

where L is the sequence length.

Next, we divided the AAs into three groups for each

physicochemical property. Three descriptors, namely, the content

(C), distribution (D), and the bivalent frequency (F), were used to

describe the properties of each protein. Taking hydrophobicity (H)

as an example:

1) The AAs were distributed to the RKEDQN, GASTPHY,

and CVLIMFW groups according to their H properties.

Using the size of the three groups (CH1, CH2, and CH3), we

calculated FV (21–23) as:

N

(FV21,FV22,FV23)~(
CH1

L
,
CH2

L
,
CH3

L
) ð2Þ

2) The chain length was measured as DHij (i = 1, 2, 3; j = 1, 2,

… , 5), wherein the first, 25, 50, 75, and 100% of AAs of a

particular property were located, respectively. Then, we

defined FV (24–38) as:

N

(FV24,:::,FV28; FV29,:::,FV33; FV34,:::,FV38)

~(
DH11

L
,:::,

DH15

L
;
DH21

L
,:::,

DH25

L
;
DH31

L
,:::,

DH35

L
)
ð3Þ

3) The number of bivalent seeds was represented (L – 1), and

we counted the respective number of bivalent seeds that

contained two AAs from different groups. Then, we obtained

the parameters FH1, FH2, and FH3 to define:

(FV39,FV40,FV41)~(
FH1

L{1
,

FH2

L{1
,

FH3

L{1
) ð4Þ

A total of 21 feature vectors were calculated for each property.

After all physicochemical properties were analyzed, we finally

extracted all 188 feature vectors. A flowchart to show this specific

process is presented in Figure 1.

Ensemble Classifier
To achieve satisfactory results, our ensemble classifier combines

different base classifiers to significantly improve accuracy.

Knowing that appropriately combined ensemble classifiers can

optimize the prediction effect [26], we attempted to find an

effective ensemble practice. Previous research indicated that the

diversity of the base classifiers facilitates further improvement.

Accordingly, we utilized a K-Means clustering algorithm [27] to

choose a series of discrepant base classifiers and a circulating,

combined static selective strategy, Ensemble Forward Sequential

Hierarchical Protein Folds Prediction
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Selection (EFSS). EFSS employs the vote rule for its ensemble. In

this way, the proper classifiers were ultimately acquired. Figure 2

illustrates the architecture of our ensemble classifier.

In order to further improve the classifier, we considered the

problem of classifying a given dataset through an ensemble of

n = 18 basic classifiers, which were designated as C1, C2, …, C18.

Table 1. Division of amino acids into 3 different groups by different physicochemical properties.

physicochemical property the 1st class the 2nd class the 3rd class

hydrophobicity RKEDQN GASTPHY CVLIMFW

normalized Van der Waals volume GASCTPD NVEQIL MHKFRYW

polarity LIFWCMVY PATGS HQRKNED

polarizability GASDT CPNVEQIL KMHFRYW

charge KR ANCQGHILMFPSTWYV DE

surface tension GQDNAHR KTSEC ILMFPWYV

secondary structure EALMQKRH VIYCWFT GNPSD

solvent accessibility ALFCGIVW RKQEND MPSTHY

doi:10.1371/journal.pone.0056499.t001

Figure 1. Extraction process of the 188-dimensional (188D) feature vectors (FV). Sequences are input and processed by analyzing amino
acid composition, distribution and protein physicochemical properties, FV1–FV188 are output as feature vectors.
doi:10.1371/journal.pone.0056499.g001

Hierarchical Protein Folds Prediction
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The specific classifier algorithms that were used in this study are: 1)

Logistic Regression, 2) SMO1, 3) SVM2, 4) IB13, 5) IB5, 6) IB10,

7) OneR4, 8) Conjunctive Rule, 9) Decision Table, 10) JRip5, 11)

ZeroR6, 12) Simple Cart, 13) Naı̈ve Bayes, 14) Random Tree, 15)

FT Tree7, 16) RF8, 17) Decision Stump, and 18) J489. The base

classifiers train the primitive entities independently. The results

were represented as Bij = {0, 1} (i = 1, 2, …,18; j = 1, 2, …, m),

where m is the number of instances. Bij = 0 indicates that classifier i

failed to predict instance j and vice versa. The resulting matrix

flows to K-Means clustering, as shown in Figure 2.

We set the partition number to k = 9, such that the K-Means

algorithm divides the base classifiers into nine clusters. Details of K-

Means technique are described in [27]. The classifier with the best

performance in each cluster was chosen to generate a set of selected

classifiers.

To further improve the method, a circulating combination

methodology was employed, after classifiers from the output set

are sorted in descending order by their classification accuracy. We

created another chosen classifiers (CC) set to record the selected

classifiers. In each circle, EFSS successively chooses the best

performing classifiers and creates an ensemble with the classifiers

in CC according to the vote rule. If its diversity decreased as well

as its accuracy increased, the chosen classifier was added to the

group of CCs. Circulation continued until the final result

surpassed our target accuracy, which is reduced by one step in

each circle. The definite algorithm 1 is presented in Table 2.

Before using the algorithm, we initialized the target accuracy (TA)

to 1, the optimal accuracy (OA) to 0, the step to 0.05, and the

current result, which contains three parameters. The diversity is

set to be a very large number to represent infinity, whereas the

success rate and the chosen number are zero.

The ensemble classification problem was successfully resolved in

this study for the first time and K-Means clustering was used to

select the most diverse classifiers. The voting strategy of circle

combination used in the EFSS allowed us to achieve the best

combination of classifiers. Consequently, our novel ensemble

classifier, which multiplies selection strategies, is superior to those

which simply choose several highest-rated classifiers that are then

immediately used for the ensemble.

Hierarchical Classification Framework
SCOP (version 1.75) was used as the data source in our

experiment. This dataset classifies protein structures hierarchically

based on evolutionary relationships and on the principles that

govern their 3D structure [16]. The levels of protein structure are

displayed in Figure 3, and the protein domain is the unit of

classification. If all proteins in a group have residue identities of

30% and greater, or if proteins with lower sequence identities are

similar in function and structure, this group of proteins can be

denoted as a family. Families with proteins of low sequence

Figure 2. The architecture of our ensemble classifier. The training dataset is classified by all base classifiers. After K-Means clustering and
circulating combination the best ensemble result is achieved.
doi:10.1371/journal.pone.0056499.g002

Table 2. Algorithm 1. Circulating Combination of EFSS.

Input: Sorted Classifiers set SC and Training Dataset T

Output: Chosen Classifiers set CC

while TA . = 0 and OA ,TA

while SC is not empty and success rate , TA

choose the first element C0 in SC

ensemble CC U C0 by voting strategy and train T

if diversity decreases and success rate increases

CC.append(C0)

end

remove C0 from SC

end

if success rate .OA

OA : = success rate

end

if OA , TA

TA : = TA – step

end

set SC with initial data

end

doi:10.1371/journal.pone.0056499.t002

Hierarchical Protein Folds Prediction
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identities that have structures and functions suggestive of a

common evolutionary origin are grouped together in a superfam-

ily. When proteins have the same major secondary structures

similar in arrangement and topological connections, these proteins

are classified as part of a common fold, which is the ultimate target

of our classification process. For further convenience, the different

folds are grouped into seven classes: the all-a proteins (284 folds),

all-b proteins (174 folds), a/b proteins (147 folds), a + b proteins

(376 folds), multi-domain proteins (66 folds), membrane and cell

surface proteins and peptides (58 folds), and small proteins (90

folds). These classes comprise the first layer of our hierarchical

classification framework.

Since the structure of the SCOP (version 1.75) database is

hierarchical, the database can readily be used to verify a

hierarchical framework. As shown in Figure 3, we first import

the dataset into the first layer. After RF or ensemble classification,

we obtained high-accuracy results for the seven classes. For each

class, the protein sequences were trained in the second layer and

classified into 1195 folds with lower accuracy. The framework and

the prediction model have been structured. Consequently, upon

the arrival of a new sequence, the sequence is tested in the

hierarchical framework in succession to eventually be predicted as

a fold.

Previous studies [3,4,11,19–21] have classified protein structures

into four classes or 27 folds, which are each present in at least

seven proteins and which represent all major structural classes.

Such an approach applies only to a certain number of proteins.

For proteins that belong to less populated folds, their effects on the

recognition results are neglected. To overcome this limitation, we

proposed a hierarchical classification framework. For the first time,

all protein folds were considered in order to improve the precision

of the predictions.

Experiments

To improve the classification accuracy and to expand the

prediction scope, we developed a series of experiments to validate

the effectiveness and efficiency of our methods. In this section, we

discuss the dataset that was used. Then, we describe our analysis of

the experiment results using the previously-mentioned methods,

and our testing of the effectiveness of the individual feature sets

from the proposed sequence representation.

Data
SCOP is a database of protein structural classification which

provides a detailed and comprehensive description of the

structural and evolutionary relationships of proteins, including

all entries in the Protein Data Bank (PDB). SCOP (version 1.75) was

released in June, 2009 [22] and is used in the current work. While

the dataset of Ding and Dubchak [4], which includes 27 of the

1195 protein folds, is widely used, this dataset is outdated. The

stringent benchmark dataset is compared with the SCOP database

in Figure 4. We anticipated that the latest version of the SCOP

database would lead to more precise and credible predictions.

The latest release of the SCOP database contains a total of

105,725 protein sequences, which include the 17,051, 26,552,

28,304, 25,536, 2,192, 1,874, and 4,216 protein sequences that

belong to classes (a) to (g), respectively. While handling this dataset,

we discovered that it contains a high level of redundancy. For

example, several protein pairs were identical or very similar in

sequence. Statistical analyses of proteins require non-homoge-

neous data because the set of selected structures should be a

Figure 3. Protein structure levels in SCOP. The classification of protein classes and of protein folds are the first and second layer, respectively, of
our hierarchical classification frame.
doi:10.1371/journal.pone.0056499.g003
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sufficient representative of the whole [28]. Based on sequence

identity [29,30], the general measurement of protein sequence

similarity, we compared prediction effects of sequence subsets at

various levels of redundancy and obtained datasets in a series of

frequently used identity values. The most representative dataset

possesses upon 35% sequence identity, which is the same as the

one used by Ding and Dubchak [3]. Along with the decrease in

identity, the sequences have become more independent.

Another measurement we used to extract non-homogeneous

data was the edit distance, in which we selected longer sequences

in pairwise alignments performed by a partition-based method

pass-join [31] with different edit distances. The selection process

and predicting performance are referred to in Appendix S1.

Classification Performance
Through a set of experiments, we achieved highly satisfactory

classification performance. In this subsection, we present exper-

imental data that demonstrate the enhanced classification accu-

racy - the rate of measurement results to success - of the present

method. Figure 5 compares our success rate to that of previous

studies.

We utilized two datasets to validate our comparison. Dataset 1 is

the same dataset that was used in the first six studies. We

combined the training and testing sets in the benchmark dataset,

determined the different features, developed the classification

method with our ensemble classifier, and obtained an accuracy of

74.21%, which is the highest level of accuracy that has been

recorded. Dataset 2 is extracted directly from the SCOP database

and contains the same 27 folds found in the first dataset. Using the

new dataset increased accuracy to 90.44%. We attribute this

higher accuracy to two reasons: the updated SCOP facilitates the

precision of classification, and the redundancy of the data

increases the biased success rate.

Since the effectiveness of our methods has been proven, we

focused on the use of the latest processed dataset, which was

previously described in Section 3.1. We also utilized the newest

transitional version (version 1.75A) of SCOP to verify the universal

applicability of our method. We classified several datasets into

seven classes using tenfold cross-validation, as shown in Figure 6.

The change of classification accuracy among different datasets is

illustrated in Figure 6.

The first layer of the histogram shows an increasing trend of

accuracy as sequence identity becomes less stringent. The success

rate lies between 50.27% and 60.05% at the identity of 35%.

Although this success rate is outperformed by previous researches,

considering the existence of decentralized and less related data in

each class, which contains hundreds of folds, the results are

actually satisfactory. In the second layer, datasets from SCOP

version 1.75A also showed a high accuracy. Our model can

therefore be applied to new datasets rather than being confined to

our own experimental data. Figure 6 shows that, our novel

ensemble classifier significantly outperformed the other two

classifiers. To further analyze this disparity, we chose several

promising base classifiers according to the output of ensemble

classifiers (Table 3 and Table 4).

To demonstrate the robustness of the results, we processed the

dataset in two ways. A protein family is defined as a group of

proteins with residue identities of 30% and greater. We extracted

the longest sequence of each family and obtained a new training

set, in which tenfold cross-validation shows that over-fitting has

been avoided.

The other dataset is the subset with an identity of 35%, as

described in Section 3.1, which was used in our later experiment.

Table 3 shows that the accuracy using our novel ensemble

classifier is 59.61%, which proved to be acceptable. Table 4 shows

that, the all-b and the a/b classes are the easiest to classify. While

the accuracy of the base classifiers ranges between 33.3% and

58.7%, the ensemble classifier achieves an accuracy of 60.1%.

These results represent an effective combination of base classifiers

and explain the improved protein fold prediction in our work.

Feature Analysis
With the exception of the effect of the ensemble classifier, the

feature extraction method contributed to the classification results

in the previous section. Our method is based on the composition,

distribution, and physicochemical properties of the AAs in a

specific protein. To determine which variable has the most

influence on the classification results or which feature vector most

influences information in the dataset, we designed an experiment

that uses the normative Principal Component Analysis (PCA)

method.

PCA is a simple, non-parametric method for extracting relevant

information from confusing datasets that has become a standard

Figure 4. Comparison of the two datasets. In each query
description, the first letter represents the class name and the second
digit represents the fold number. The SCOP dataset that was used in
this paper is shown in red. Seven classes containing 1195 folds (which
are omitted in the figure) from SCOP dataset are explained as: (a) all-a
proteins (284 folds), (b) all-b proteins (174 folds), (c) a/b proteins (147
folds), (d) a+b proteins (376 folds), (e) multi-domain proteins (66 folds),
(f) membrane and cell surface proteins and peptides (58 folds), and (g)
small proteins (90 folds). The benchmark dataset [3] proposed by Ding
and Dubchak, composed of the 27 folds that were extracted from SCOP,
is shown in blue.
doi:10.1371/journal.pone.0056499.g004
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Figure 5. Comparison of success rate among several studies. Our work outperforms all previous works with an accuracy of 74.21%.
doi:10.1371/journal.pone.0056499.g005

Figure 6. Success rate achieved by three classifiers with different sequence identity. The two graphs show the results of two datasets((a)
SCOP version 1.75, (b) SCOP version 1.75A). Their similar success rates demonstrate the robustness of our model. As identity increases it becomes less
stringent and success rate rises. It also shows our ensemble classifier outperforms other two classifiers.
doi:10.1371/journal.pone.0056499.g006

Hierarchical Protein Folds Prediction
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tool in modern data analysis. PCA is mathematically defined as an

orthogonal linear transformation that transforms data to a new

coordinate system such that the greatest variance by any

projection of the data lies on the first coordinate (called the first

principal component), the second greatest variance on the second

coordinate, and so on. Therefore, the final features are the linear

combination of the original features to guarantee that the principle

component is independent and belongs to a lower dimension. By

choosing proper components and analyzing the corresponding

component loadings, the ranking of variables can be addressed.

The dataset performs best when the edit distance is set to 1, and

this dataset was further utilized in our feature analysis experiment.

The dataset was subjected to PCA analysis with the default

parameters. The first column of Table 5 shows the different

components that are ordered by eigenvalue, whereas the other

three columns show the eigenvalues, percent contribution, and

cumulative percent contribution for a portion of components

extracted from the correlation matrix. Our feature extraction

method considers amino acid composition and distribution as well

as eight physicochemical properties, giving a total of nine factors,

along with the first ten components that account for nearly 50% of

the total variance. Given that their eigenvalues are apparently

greater than those of other components, we decided to retain these

first ten components for subsequent analysis.

The optimal PCA result contains 88 components, from which the

first ten were extracted to illustrate their loading (Table 6). According

to our feature extraction method, the 188 features represent the AA

composition and attributes of the respective eight physicochemical

properties. Table 6 shows the uniformly distributed component

loadingsof the features, confirming that the factors wehavechosenall

contribute information that can discriminate between different

proteins. Each component stands for a property. Consequently, the

distribution of the three most contributive features is similarly even.

The factors we have taken account, namely, the content, distribution,

and the bivalent frequency, all supply necessary information for the

classification model. Therefore, we conclude that the feature

extraction method is effective.

Hierarchical Classification Performance
The prediction of protein folds is significant for subsequent

studies. However, our previous work in Section 3.2 was only able

to classify the proteins into their classes. Although its performance

is exceptional, the overall effect is merely acceptable. Hence, we

proposed a hierarchical classification framework to make addi-

tional efforts to predict the protein folds.

The entire dataset is split into seven subsets, each of which is

processed with different sequence identities. We predicted each

subset in the same way, and the general results are shown in

Figure 7, which shows that the success rate increases as sequence

identity is enhanced. When sequence identity equals 20%, the

accuracies of seven subsets range between 19.89% (for subset d) to

39.22% (for subset g). When sequence identity approaches 95%,

accuracies range between 39.92% (for subset d) to 70% (for subset

f). Discrepancies are subtle among subsets but are significant when

similar sequences are excluded.

The second level of the hierarchical frame displays much lower

accuracy, especially when the sequence identity decreases. The

Table 3. Performance on different classifiers on protein fold recognition (one sequence in each family).

Classes Random Forest SMO Logistic Ib1 Ib10 Naı̈ve Bayes Decision Table Our classifier

all-a proteins 54.1% 63.9% 52.8% 38.3% 46% 17.9% 54.6% 61.7%

all-b proteins 42.8% 54.4% 38.4% 31.4% 32.5% 17.4% 41% 58.9%

a/b proteins 57.1% 61.7% 58.7% 46% 59.9% 35% 55.5% 66%

a+b proteins 37.7% 45.9% 41% 36.4% 37.2% 31% 45.7% 49.3%

multi-domain proteins 5.7% 0 23.9% 13.6% 1.1% 76.1% 1.1% 80.5%

membrane and cell surface proteins and
peptides

36.9% 53.3% 54.7% 38.5% 32.8% 8.2% 7.4% 28.6%

small proteins 67.4% 82.6% 6.8% 56.9% 56.9% 83% 39.9% 88.7%

Total accuracy 47.3% 56% 44.9% 38.5% 43.1% 29.5% 46.3% 59.6%

doi:10.1371/journal.pone.0056499.t003

Table 4. Performance on different classifiers on protein fold recognition (sequence at 35% identity).

Classes Random Forest SMO Logistic Ib1 Ib10 Naı̈ve Bayes Decision Table Our classifier

all-a proteins 53.5% 62.1% 52.8% 39% 44.9% 16% 47.4% 64.3%

all-b proteins 49.5% 57.6% 43.6% 35.6% 40.3% 29.4% 42.7% 51%

a/b proteins 66.4% 73.1% 65% 52.5% 73.3% 38.8% 68.5% 69.6%

a+b proteins 31.3% 41.9% 40.6% 35.4% 31.6% 29.8% 35.2% 54.2%

multi-domain proteins 5% 0 28% 15.6% 6.7% 78.2% 0 58.3%

membrane and cell surface
proteins and peptides

37.3% 50.3% 38.8% 39.4% 28% 12.4% 3.1% 41.9%

small proteins 75.1% 85.7% 65.4% 68.5% 68.8% 89.2% 59.5% 70.7%

Total accuracy 50.3% 58.7% 50.9% 42% 48% 33.3% 47.5% 60.1%

doi:10.1371/journal.pone.0056499.t004
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Table 5. Preliminary results* of PCA analysis.

Component Eigenvalue Percent explained Cumulative percent explained

1 20.00517 0.10641 0.10641

2 14.2717 0.07591 0.18232

3 12.47311 0.06635 0.24867

4 10.11524 0.0538 0.30247

5 8.69996 0.04628 0.34875

6 8.05621 0.04285 0.3916

7 6.18316 0.03289 0.42449

8 5.10462 0.02715 0.45164

9 4.77623 0.02541 0.47705

10 4.25826 0.02265 0.4997

11 4.01185 0.02134 0.52104

12 3.76333 0.02002 0.54106

13 3.43468 0.01827 0.55933

14 3.23814 0.01722 0.57655

*Eigenvalue . 3.
doi:10.1371/journal.pone.0056499.t005

Table 6. Loadings of most informative features* on principle component factors.

Feature C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

21 20.186

29 0.189

34 20.179v

43 0.151

44 20.171

50 20.176

53 20.138

60 0.199

63 0.221

65 20.186

70 20.173

81 0.192

86 20.171 0.151

92 20.175

110 20.165

126 20.241

127 20.177

128 0.231

131 0.212

134 0.161 20.204

138 0.2

146 0.158

148 0.2

157 0.157

168 0.202

169 20.186

175 0.156

181 0.189

*Only the first three are shown.
doi:10.1371/journal.pone.0056499.t006
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second level performs better with massive training instances. .

Specific data are listed in Table 7, from which we can determine

the relationships between the class number, instance number and

success rate. As the identity decreases, the instance number is

reduced and the accuracy decreases accordingly, as shown in each

row. By comparing the first and second layers of the framework,

we conclude that the decreased accuracy is a result of the

decreasing number of instances. While comparing the perfor-

mance of the seven subsets, we can see the decreased accuracy

results along with the rapid growth of the class number.

When the target class number N is in the range of hundreds, the

ordinary prediction accuracy should be 1/N, that is, ,1% of N.

Therefore, our prediction accuracy (lowest = 19.89%) is sufficient-

ly satisfactory. However, our prediction accuracy is not as high as

that of the first layer. Furthermore, our study deals with the

possible folds of all proteins. The performance of the proposed

hierarchical framework will guide further work on protein fold

recognition.

Conclusions
Protein fold recognition has been an important aspect of

bioinformatics research for several decades. In the present paper,

we improve the fold pattern recognition results by enhancing

prediction accuracy and expanding the forecast range.

In our preparatory work, we excluded redundant protein items

in the latest SCOP database to build an unbiased prediction

model. We extracted the feature vectors via the analysis of amino

acid composition, distribution, and physicochemical properties.

To enhance the success rate, we used a novel ensemble classifier,

which circulates and combines the selected base classifiers based

on clustering. To expand the classification range, we proposed a

hierarchical framework. Using the second layer, all proteins could

be classified into a fold. Accordingly, the overall classification

effect becomes more precise and accurate.

Our experimental results proved to be effective and compre-

hensive. Using PCA analysis, we showed that feature extraction

was possible. To demonstrate an improvement in the success rate,

we first utilized the same dataset from previous studies to

demonstrate an improved success rate using the current method.

Our ensemble classifier performed with 74.21% accuracy, which

outperforms the best result (70.5%) achieved by Shen and Chou

[4] in 2009. In the present work, we classified the first and second

layer of the hierarchical framework for the most recent dataset.

For the first layer, performance was outstanding, with accuracy

ranging between 58.83% and 70.27%. After further entering the

data into the second layer, the success rate was much lower

because of the increasing classification class number and the

Figure 7. Success rate of seven subsets with different sequence identities. The figure shows factors influencing success rate. Success rate
has an increasing trend when sequence identity rises or class number drops.
doi:10.1371/journal.pone.0056499.g007

Table 7. Influential factors for success rate of 1st and 2nd

hierarchical layers.

Sequence identity 20% 35% 40% 70% 95%

Subset a Accuracy 27.81% 31.40% 32.16% 38.57% 48.07%

Class number 285 285 285 285 285

Instance number 1437 1883 1990 2464 2997

Subset b Accuracy 31.65% 34.93% 37.73% 36.68% 61.04%

Class number 175 175 175 175 175

Instance number 1455 2026 2218 2966 4105

Subset c Accuracy 28.00% 30.71% 31.02% 38.40% 42.76%

Class number 148 148 148 148 148

Instance number 1606 2434 2679 3529 3925

Subset d Accuracy 19.89% 23.00% 25.19% 32.12% 39.92%

Class number 377 377 377 377 377

Instance number 1783 2480 2670 3389 3953

Subset e Accuracy 22.30% 39.61% 39.32% 50.00% 55.79%

Class number 67 67 67 67 67

Instance number 122 179 191 240 273

Subset f Accuracy 22.30% 56.11% 54.95% 63.65% 70.00%

Class number 59 59 59 59 59

Instance number 122 193 198 233 270

Subset g Accuracy 39.22% 43.33% 42.75% 55.41% 65.45%

Class number 91 91 91 91 91

Instance number 438 558 626 916 1192

doi:10.1371/journal.pone.0056499.t007
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decreasing prediction instance number. Although the prediction

result is satisfactory, the present results can still be improved.

Future work will focus on increasing the accuracy of multi-

classification with numerous classes.

In conclusion, our current work has evidently improved the

prediction effect and will lead to other similar studies in this area.

Supporting Information

Appendix S1 Novel Measurement for Sequence Redun-
dancy. Different edit distances (0,1,3,5,10) were used for

comparing the predicting precision. It showed the predicting

influence of the redundance of the protein dataset.

(PDF)
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