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Abstract

Infusing drugs directly into the brain is advantageous to oral or intravenous delivery for large molecules or drugs requiring
high local concentrations with low off-target exposure. However, surgeons manually planning the cannula position for drug
delivery in the brain face a challenging three-dimensional visualization task. This study presents an intuitive inverse-
planning technique to identify the optimal placement that maximizes coverage of the target structure while minimizing the
potential for leakage outside the target. The technique was retrospectively validated using intraoperative magnetic
resonance imaging of infusions into the striatum of non-human primates and into a tumor in a canine model and applied
prospectively to upcoming human clinical trials.
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Introduction

As image-guided drug delivery into the brain becomes more

broadly adopted in the clinic, there is an increasing need for rapid,

robust, intuitive inverse-planning algorithms. Inverse-planning

identifies the optimal inputs, such as the infusion cannula location

and infusion volume, to achieve a desired output, such as the drug

distribution. Surgeons face a daunting number of variables to

manually optimize the infusion, including the cannula location,

type, quantity and infusion volume. As a result, the quality of

infusions is highly variable and the effective coverage observed

pre-clinically [1,2] has been poorly reproduced in clinical trials of

glial-derived neurotrophic factor (GDNF) for treating Parkinson’s

disease [3] neurturin gene for treating Parkinson’s disease [4], the

immunotoxin cintredekin besudotox [5,6] for treating brain

tumors or the chemotherapeutic paclitaxel [7], also for treating

brain tumors. Subsequent analyses of these trials have attributed

the failure to poor distribution of the delivered agents resulting

from variability in the infusion techniques [5,8,9]. For example,

the two patients with autopsy data in the neurturin trial had drug

infused in less than 20% of the targeted putamen.

The position of the infusion cannula is critical to achieving

robust drug coverage. Therefore, improving the quality and

outcomes of direct infusion trials requires developing tools to

improve consistency and minimize user bias and errors such as

non-compliance with protocols [5]. Recent improvements in pre-

surgical planning simulations [10,11] and image-guided surgical

tools [12] have renewed efforts to employ direct infusion in several

upcoming high profile clinical trials. The trials include gene

therapy trials using adeno-associated virus serotype 2 to deliver

aromatic l-amino acid decarboxylase (AAV2-AADC) to treat

Parkinon’s disease [13,14,15], human acid sphingomyelinase

(AAV2-hASM) to treat the lysosomal storage disorder Niemann-

Pick Disease [16,17], glial-derived neurotrophic factor (AAV2-

GDNF) to treat Parkinson’s disease [18,19], a retrovirus to deliver

cytosine deaminase for treating brain tumors [20,21] and

liposomal toxins for treating brain tumors [22,23,24,25]. The

trials will employ an infusion technique called convection-

enhanced delivery (CED) that utilizes positive fluid pressure to

distribute drugs from an infusion cannula through brain paren-

chyma [1,26].

This study presents an inverse-planning technique aimed at

improving drug distribution in these upcoming trials. The

technique prospectively calculates the optimal position for the

infusion cannula that maximizes the fractional coverage of the

target structure while minimizing dispersal into surrounding brain

tissue. The technique is an extension of previous work showing

that cannulae placed in the central Green zone of key brain

structures including the brainstem [27], thalamus [27], and

putamen [28,29] consistently produce spheroid-shaped distribu-

tions. Green Zone characteristics include being remote from major

white matter tracts, vessels and CSF spaces.

The shape-fitting technique is an adaptation of inverse-planning

methods used clinically for dose-planning in radiation oncology

[30]. Radiation planning is a mature field that has demonstrated

the impact of using image-based rapid automated inverse planning
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on a patient-by-patient basis to reduce off-target doses and

increase target coverage improving clinical outcomes.

Materials and Methods

The shape of CED infusions was experimentally determined by

measuring the distribution volumes using intra-operative magnetic

resonance imaging (iMRI) images of CED infusions into the

thalamus or putamen of non-human primates (NHP) and a brain

tumor in a canine model. The NHP experiments were carried out

with approval of the Institutional Animal Care and Use

Committee of the University of California at San Francisco

(Permit AN081863). The canine study was carried out with

approval of the Institutional Animal Care and Use Committee of

the University of California at Davis (Permit 15876). The owner of

the canine provided written informed consent to participate in the

study at the Veterinary Medical Teaching Hospital of the

University of California at Davis.

The animals were housed in a temperature and humidity

controlled environment with a 12 hour light/dark cycle. Primate

chow and water were available at all times. Enrichment was

provided by providing chew and play toys in the cages and offering

a variety of fruit and vegetables. Animals were monitored at least

twice daily for the duration of the study, in addition to periodic

behavioral assessments. To minimize suffering, animals were

sedated with ketamine (Ketaset, 7 mg/kg, intramuscular) and

xylazine (Rompum, 3 mg/kg, intramuscular) during the surgery

and were intubated on 1–3% inhaled isoflurane during the

infusion. The use of NHP and canines was deemed necessary

because large animals provided comparable models for drug

delivery and imaging in humans. The images were used to model

the growth of the spheroid and validate that the output of the

shape-fitting algorithm matched the experimental distributions.

Measurement of Distribution by iMRI
The infusion cannula was inserted into the brain through a

previously described port [22,31] under intraoperative 1.5 Tesla

MRI visualization (AvantoH; Siemens Medical Solutions, Erlan-

gen, Germany) with a surface-coil (MR Instruments Inc,

Minnetonka, MN). The cannula was a custom-designed fused

silica cannula with a 3 mm tip for reflux resistance [32]. Saline

doped with a Gadolinium-based MR contrast agent (1 mM

ProhanceH; Bracco diagnostics, Princeton, NJ) was infused using a

standard clinical CED protocol in which the MRI-compatible

infusion pump (Harvard Bioscience, Hollistan, MA) was started at

1 mL/min and ramped up by 0.5 mL/min every 5 minutes to a

maximum of 4 mL/min.

The infusate distribution was visualized by the signal enhance-

ment of a T1-weighted fast low-angle shot scan (FLASH, TE

4.49 ms, TR 17 ms, flip 40u, 2 repetitions, 0.7 mm in-plane

resolution, 180 mm field of view and 1 mm slices) caused by the

T1-shortening effect of the Gadolinium [33,34,35,36]. The

Gadolinium-infused region was segmented by applying a standard

semi-automated segmentation technique (iPlanH Smartbrush;

Brainlab, Germany).

Determination of Infusion Shape
The shape of the spheroid was assessed by measuring the length

(m, parallel to the cannula tract), width (perpendicular to the

cannula tract), and location of the infusion cannula tip during an

infusion into the thalamus of an NHP (Figure 1). The thalamus

was selected because it is the largest homogeneous structure in the

NHP brain. The shape anisotropy (a) was defined as the width-to-

length ratio and the tip shift (s) was defined as the tip-to-length

ratio. The distribution was therefore modeled as a spheroid of

volume:

Figure 1. Development of the infusion model. (A) The length, width and cannula tip location were measured at each timepoint during the
infusion (Vi 10 mL, 50 mL, 80 mL, 120 mL). (B) The width and tip distances scaled linearly with the infusion length. (C) The distance measures scaled as
cubic roots (solid lines) of the infusion volume. (D) The resulting spheroid simulation showed good agreement with the measured volumes.
doi:10.1371/journal.pone.0056397.g001
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V~pa2m3=6 ð1Þ

with a center shifted proximally along the long axis by a distance

m(0.52s).

Shape-Fitting Implementation
The optimal location for the infusion cannula was identified by

rastering the center of the spheroid over each pixel located in the

target (Figure 2A) and selecting the location with the largest three-

dimensional geometric intersection between the shape of the

spheroid and the shape of the target. The intersection was

evaluated using the clinical criteria for target coverage (T) and

infusate containment (C). Coverage described the percentage of

the target structure that received infusate. Containment described

the percentage of infusate that was restricted to the target.

Containment was therefore the opposite of leakage, which has

previously been used to describe the percentage of infusate outside

the target [11]. Coverage is a clinical indicator of the expected

efficacy of the treatment, while containment is an indicator of the

expected safety of the treatment. Coverage and containment were

calculated from the geometric intersection as:

T~(Vtarget\Vinfusion)=Vtarget ð2Þ

C~(Vtarget\Vinfusion)=Vinfusion ð3Þ

The optimization was implemented in MatlabH (Mathworks,

Natick, MA).

Validation of Shape-Fitting
The algorithm was validated retrospectively in three test cases,

including an infusion into the thalamus of an NHP (150 mL, 75

minutes) the putamen of an NHP (50 mL, 25 minutes), and a

canine (female shepherd) with a brain tumor (250 mL, 80 minutes).

The thalamus and putamen targets were autosegmented using a

custom-built registration atlas for rhesus macaques. The tumor

target was manually segmented using the enhancing region of a

T2-weighted fast spin echo. The tumor was histologically

confirmed to be grade 2 anaplastic oligodendroglioma.

The algorithm was validated by comparing the coverage and

containment between experimental and simulated distributions.

The experimental distribution was measured in the T1-FLASH.

The distribution was simulated by (A) calculating the model

spheroid for the infused volume, (B) positioning the model

spheroid at the experimental cannula location and (C) positioning

the model spheroid at the optimal cannula location identified by

the shape-fitting algorithm.

Modeling for Clinical Trial
The algorithm was applied prospectively to the clinical protocol

for an upcoming clinical trial infusing adeno-associated virus

serotype 2 (AAV2)-glial derived neurotrophic factor (GDNF) into

the putamen of patients with Parkinson’s Disease [19]. The

protocol targets the post-commissural region of the putamen, a

sensorimotor region with nigrostriatal projections that are known

to degenerate in PD [37]. Delivery into the putamen is expected to

result in robust GDNF expression in the globus pallidus and

substantia nigra via anterograde transport. The parameters of the

clinical trial protocol specify bilateral coinfusions of 300 mL and

150 mL into the post-commissural putamen. The second infusion

cannula was optimized by subtracting the distribution of the first

cannula from the target structure, to minimization the distribution

overlap.

Results and Discussion

The experimental distribution approximated the shape of a

spheroid with a constant anisotropy and tip shift, making it

amenable to linear simulations. The shape anisotropy was

consistently about 2/3 and the tip was consistently shifted by

about 1/3 the length (R2 = 0.99; Figure 1B). The distance

measures scaled at cubic roots of the infusion volume (R2 = 0.99;

Figure 1C), producing a linear growth of the simulated spheroid

that showed strong agreement with the measured Gadolinium

distribution volume (R2 = 0.97; Figure 1D).

The simulated coverage and containment for model spheroids

placed at the measured cannula location (Figure 3, middle column)

were within 5% of the measured coverage and containment

(Figure 3, left column). The predicted improvement in coverage

and containment from optimizing the cannula placement in the

putamen and thalamus (Figure 3, right column) demonstrated the

power of using simple geometric shape-fitting to inform clinical

decision-making. The optimized coverage and containment in the

tumor agreed with the measured values because the cannula was

placed within 1 mm of the optimized location.

The application of the shape-fitting technique to upcoming

clinical trials with a 300 mL and 150 mL infusion in human post-

commissural putamen suggested that with cannulae at the

Figure 2. Shape-fitting concept. (A) Automated software was used to identify the target (e.g. putamen). (B) The infusion shape was rastered over
each pixel to calculate the geometric intersection (white) of the infusion (gray) and target (gray). (B) Resulting coverage map of the putamen for a
single 300 mL infusion.
doi:10.1371/journal.pone.0056397.g002

Rapid Inverse Planning for Brain Infusions

PLOS ONE | www.plosone.org 3 February 2013 | Volume 8 | Issue 2 | e56397



optimized locations shown in Figure 4A clinicians should expect to

achieve 70% coverage and 67% containment. Targeting the entire

putamen would increase the containment to 98%, but reduce the

coverage to 47% (Figure 4B). These results are consistent with the

findings of a previous study manually overlaying the infusions [19].

Increasing the infusion volume to increase coverage would come at

the cost of reducing containment (Figure 4AB to the right of the

vertical dotted line). The analysis validated the decision to infuse a

total of 450 uL, which was located just prior to the plateau in the

coverage.

To evaluate the clinical usability, this technique was built into a

software prototype that automatically segmented the targeted

therapeutic dose region and risk-structures for the cannula to

avoid such as ventricles, blood vessels and sulci (Figure 5). The

prototype calculated the optimal cannula position within the

Green Zone and displayed the result using color overlays and

three-dimensional volume rendering. This visualization and

quantitative analysis of the coverage and containment allow the

user to judge the outcome and, if necessary, modify and repeat the

simulation.

The algorithm should be extended to optimize additional

parameters including the number of infusions, the catheter types,

the approach angles and the flow rates or infusion volumes within

the range defined by the clinical protocol. The infusion shape in

this study was modeled solely from the total infused volume and

did not account for the differences in maximum flow rates (2 mL/

min in the thalamus, 3 mL/min in the putamen, 4 mL/min in the

tumor). The effect of flow rate on the infusion shape should be

evaluated in future studies. For a single predefined infusion

volume, both the coverage and containment are optimized when

the geometric intersection of the target and infusion volume is

maximized. Increasing the number of variables will require

balancing the desired target coverage with tolerance for leakage

outside the target. The increasing complexity of a multi-variable

Figure 3. Retrospective validation of shape-fitting model. The experimental distribution was measured by the Gadolinium enhancement in
the T1-weighted FLASH image of a 250 mL infusion into the oligodendroglioma tumor of a dog, a 50 mL infusion into the putamen of a non-human
primate, and a 150 mL infusion into the thalamus of a non-human primate. The color overlays show the target (yellow), infusate (red) and their
intersection (white). The target coverage (T) and containment (C) are listed above each overlay. All simulated infusions positioned at the
experimentally measured cannula location (middle column) showed strong agreement with the experimental distributions (left column), validating
the accuracy of the model spheroid shape. Improving the cannula positioning in the putamen and thalamus would have improved the coverage and
containment. The distance between the measured and optimized cannula locations was 0.6 mm in the tumor, 5.07 mm in the putamen and 3.2 mm
in the thalamus.
doi:10.1371/journal.pone.0056397.g003
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optimization will require more computationally efficient optimi-

zation methods than the simple geometric raster employed in this

study.

There are several drawbacks of this study that should be

acknowledged. First, the use of retrospective studies eliminated the

cannula placement from the simulation validation. Validating the

full algorithm requires performing a prospective study that places

the cannula at the location specified by the shape-fitting algorithm.

This study would be facilitated by the recent technology advances

in CED platforms with sub-millimeter accuracy in the cannula

placement and reflux-resistance at flows up to 5 ml/min [38], the

ceiling for safe and effective CED infusion [32]. Second, spatially

heterogeneous structures such as high-grade tumors with necrotic

cores and edematous rims may affect the infusion shapes. Infusions

into such structures will likely benefit from diffusion tensor

imaging (DTI)-based simulations that derive characteristics of the

tissue architecture from the diffusion signal and incorporate these

into forward projections of the fluid distribution [10,11]. However,

these simulations require DTI scans and are computationally

expensive for performing rapid inverse calculations. Future studies

should evaluate how the various simulation methods can be

combined to give the best combination of robust performance and

accuracy in both heterogeneous and homogeneous tissues. For

example, the shape-fitting inverse algorithm presented here may

be useful to identify the starting point for the forward DTI-based

simulation. Third, the simple spheroid model developed in this

study should be expanded into a shape-library with shapes specific

to the infusion rate, molecular weight of the infusate, cannula

design and target brain tissue (e.g. cortex, white matter tract, basal

ganglia, cerebella or brain tumor).

In conclusion, this study demonstrated that CED infusion

simulations based on subject specific anatomy and generalized

infusion shapes will permit pre-operative planning aimed at

maximizing target coverage and minimizing leakage into sur-

Figure 4. Prospective application of the shape-fitting algorithm to upcoming human clinical trials. (A) The 300 mL and 150 mL infusions
specified in an upcoming Parkinson’s gene therapy trial should be placed as shown to maximize coverage and containment in the post-commissural
putamen. (B) The 450 mL total infusion (vertical dotted line) is predicted to achieve 70% coverage and 67% containment. Increasing the infusion
volume would increase the target coverage, but decrease the containment. (C) If the entire putamen were targeted, the infusion would achieve 98%
containment but only 47% coverage.
doi:10.1371/journal.pone.0056397.g004

Figure 5. Algorithm implementation in a clinical prototype. User-friendly implementation in software (iPlanH; Brainlab, Munich) which
autosegments the target, autosegments the risk structures and identifies the optimal cannula location to maximize coverage and containment.
doi:10.1371/journal.pone.0056397.g005
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rounding structures. The infusion shapes approximate a spheroid

with a long axis parallel to the infusion cannula. This shape scales

linearly with the infusion volume while maintaining a constant

ratio between the length and width over a wide range of infusion

volumes. The infusion plan generated by these simulations

accurately reflects experimental CED infusions in the thalamus

and putamen of an NHP model and a tumor in a canine model.

The algorithm will help improve the consistency of cannula

placement and the coverage of the target in upcoming clinical

trials.
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