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Abstract

The development of accurate computational models of biological processes is fundamental to computational systems
biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The
measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model
to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a
significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid
optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution
method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our
method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found
that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known
approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability
of the parameters estimated by the method using an a posteriori practical identifiability test.
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Introduction

The elucidation of the dynamic behaviour of biological

processes that are made up of complex networks is a key topic

in systems biology. Mathematical models are popular for such

studies, because they can test predictions and generate hypotheses

for experimental analyses about the processes. These models are

constructed with time derivative expressions, such as ordinary

differential equations (ODEs), to describe the change of certain

quantities of interest over time [1].

Normally, models consist of a set of parameters that represent

the physical properties of the system, such as biochemical reaction

rates. Measurement of these parameters is often difficult and in

some cases impossible [2]. Parameters are usually estimated by

fitting the predicted data from a model to experimental time-series

measurements. The fitting, which is performed by minimizing the

error between the two sets of data by adjusting the model

parameters, is an optimization problem. Local optimization

methods [3] such as Levenberg-Marquardt [4], gradient descent

[5], Nelder-Mead [6] and least-squared fitting [7] have been

extensively utilized for this purpose. These methods exploit a given

set of initial values within a specified search space to find optimal

parameter values, which correspond to the local minimum error

between the experimentally measured and predicted data.

However, it is difficult to find a global minimum when the initial

values are not carefully selected. Furthermore, the measured data

usually suffer from noise and experimental errors [8], [9],

impairing accurate solutions. To handle noisy data, statistical

based methods have received considerable attention [1], [8].

Methods such as maximum-likelihood [10] and Bayesian inference

[11] employ probabilistic based approaches to infer the param-

eters. However, these methods incur significant computational

cost, especially when solving high dimensional parameter estima-

tion problems, and require intricate derivatives that demand large

constraint adjustments.

Recently, global optimization methods have also gained much

focus [9], [12], [13], [14]. These methods employ stochastic

searching techniques for a set of potential solutions that are

randomly selected within a given search space. Particle Swarm

Optimization (PSO) [15], [16], Genetic Algorithms (GA) [17],

[18], Simulated Annealing [19], [20], Scatter Search (SS) [21],

[22], and Differential Evolution (DE) [23] have already been used

to estimate the parameters of various biological models [9], [24],

[25], [26]. The main advantage of these methods is their ability to

find global optimum solutions in nonlinear and high dimensional

problems. In addition, they are generally derivative-free and are

easy to implement. However, since they look for a global optimum

solution over the entire search space, a significant amount of

computation time is required [9], [24].

Various optimization methods have been hybridized to capture

the best features of each while reducing the computational cost

[12]. Balsa-Canto and co-workers [25] presented a general

strategy to switch between global and local searching techniques,

showing this to be effective at estimating the parameters of
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biological systems. More recently, Fu and co-workers [27]

proposed a hybrid method that improved the conventional

velocity updating strategy in PSO by incorporating the evolution-

ary operations of the DE method. Ho and Chan [26] employed

the local Taguchi method to enhance evolutionary operations of

DE and applied it to estimate the parameters of a HIV model. We

have recently reported a preliminary effort [28] to hybridize the

Firefly Algorithm (FA) [29] with the evolutionary operations of the

DE method. Among these methods, evolutionary computation was

shown to enhance accuracy and reduce computation time.

To date, hybridization works have not focused on the issue of

model identifiability [30], [31], which is important when

developing predictive biological models [32]. A non-identifiable

model has no unique values for the parameters and, as a result,

similar model predictions can be obtained from different

parameter values. Statistically, a model is non-identifiable if it

has two different parameter values that produce the same

probability distribution of the observable variables. On the other

hand, a model is identifiable if its true parameter values can be

determined from a sufficient number of observation data.

Identifiability can be classified as structural [32], [33] or practical

[34], [35]. The model structure, which depends on the dynamics

of the system and the conditions of the stimuli and observation,

determines structural identifiability, whereas practical identifia-

bility relies on the completeness of the sampling data and the lack

of measurement noise.

Identifiability is important in biological models since we can

only make valid inferences from models that are at least partially

identifiable. In addition, optimization methods cannot estimate

parameters reliably if the model is structurally non-identifiable. As

such, in this work we focus on developing an optimization method

for structurally identifiable models. However, to ensure that the

estimated parameters are reliable and thereby are a unique

solution to the particular model, we perform a practical

identifiability test after the estimation procedure.

Here, we extend FA to estimate the parameters of nonlinear

biological models. The FA method employs a population-based

iterative procedure with a number of agents that synchronously

solve an optimization problem [36]. Since it adopts stochastic

searching techniques similar to PSO and GA, a substantial

amount of computation time is required to obtain good estimation

accuracies. We attempt to address the computation time issue by

incorporating an evolutionary operation from the DE method

[12], specifically by relocating the agents in each subsequent

iteration. Compared to our preliminary work [28], the present

study introduces a discrimination step that classifies the solutions

into two sub-groups: potential and weak solutions, and ensures

that the computation time is utilized more efficiently by preserving

those solutions with favorable fitness in each iteration. The

proposed method is tested to estimate the parameters of models for

the p53 signalling pathway negative feedback loop [37] and

arginine catabolism [38]. We compare the results from the

proposed method and the Nelder-Mead, PSO, and FA methods.

In addition to exhibiting improved accuracy and convergence

speed, the method also showed that it is reliable in estimating

parameters in a practical identifiability test [1], [8].

Methods

In this section, we begin with the problem formulation by

mathematically representing a target biological process and the

parameter estimation problem, followed by a detailed description

of the proposed optimization method and the identifiability test.

The test verifies the reliability of the estimated parameter and is

performed a posteriori, i.e., after conducting the estimation

procedure.

Problem Formulation
A biological process can be represented as a series of ordinary

differential equations (ODEs) in the following form:

_ss~f s,u,x,tð Þ
s t0ð Þ~s0

y~g s,u,x,tð Þze

8><
>: ð1Þ

where s is the state vector, which depicts the concentration of a

molecule species; u is the input signal to the process, such as

Figure 1. Flowchart of the parameter estimation problem. The
parameter estimation procedure begins with a prediction from the
model and reference data obtained from experiments. The predictions
are generated from an ODE solver. The difference between the
predicted and the expected data is computed in an iteration. The
iteration is repeated until an optimal parameter set is found by
minimizing the difference.
doi:10.1371/journal.pone.0056310.g001
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temperature changes; x = {x1, x2, x3,…, xM} denotes the

parameters such as kinetic rates; t is the sampling time; and y

represents the measurable data points or output variables [1], [8].

In general, experimental data exhibit measurement noise. To

represent this property in the formulation, the output function, g is

superimposed with the uncorrelated Gaussian noise, e [39], [40].

The parameter estimation problem can be categorized as an

optimization problem since it aims to find the optimal values of the

parameter set, x, such that the difference between the experimen-

tal data, ŷy , and the state vector produced by the model, y , is

minimized. The optimization problem can be expressed by the

following nonlinear least squared function:

J xð Þ~ arg min
XM
m~1

XN

n~1

ŷyn{yn xmð Þð Þ2 ð2Þ

where x is the solution representing the set of parameters; M and N

are the total number of parameters to be estimated and sampling

times, respectively [39]. Estimating the parameters is nontrivial

because of the nonlinearity of the problem can result in suboptimal

values. Figure 1 illustrates the parameter estimation framework. It

consists of the optimization method that searches for suitable

parameter values and the ODE solver that generates model

predictions.

Figure 2. Algorithm of the proposed method. The proposed method is composed of the two major steps indicated by the shaded sections. The
first step sorts the population according to fitness into two sub-populations: potential and weak. The potential sub-population is subjected to
evolutionary improvements. In the last step, a random vector update is performed on the solutions within the weak sub-population.
doi:10.1371/journal.pone.0056310.g002
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An Evolutionary Firefly Algorithm
We propose an improvement to FA by introducing an

evolutionary operation to the selected fireflies in a population.

Each ith firefly denotes a vector, xi = {xi1, xi2, xi3,…, xiM}, that

represents a set of M parameters of the model. The population of

fireflies is initialized randomly. The position of each firefly is

constrained to not exceed the range of the search space by

xi~ xL
imzC1| xU

im{xL
im

� �� �
ð3Þ

where xi is the vector of the ith solution, C1 is a uniformly

distributed random value between 0 to 1, xU
i and xL

i are the

predefined upper and lower bounds, respectively, and m[M [23].

Once the vector is determined, the fitness value of each ith

solution, J(xi), is calculated. The fitness of each solution is

Table 1. Average best fitness and standard deviation (presented within bracket) for the p53 negative feedback loop model.

No. of Solutions No. of Iterations Nelder-Mead PSO FA Proposed

20 100 9.6461024 (3.2261024) 3.1961024 (1.3161024) 1.5561025 (1.0161025) 1.3461027 (1.1561027)

200 3.1761024 (2.9261024) 2.0961024 (2.1561024) 9.8961026 (5.5161026) 8.5561028 (3.9661028)

500 3.0261024 (3.0361024) 1.9861024 (1.0161024) 8.2161026 (4.5461026) 1.2561028 (2.5061028)

40 100 7.2061025 (5.0261025) 4.0461025 (3.1361025) 2.2061026 (2.1161026) 1.5661028 (2.2861028)

200 5.2561025 (2.1261025) 2.5961025 (1.9861025) 8.2261027 (2.0161027) 7.9661029 (1.2861029)

500 2.2361025 (1.9261025) 1.7961025 (1.5161025) 3.6561027 (2.7161027) 2.1661029 (1.0861029)

60 100 7.0461025 (5.0561025) 2.1561025 (2.0161025) 1.1261026 (1.1061026) 9.2561029 (2.5261029)

200 5.5161025 (3.3561025) 9.3561026 (1.1161026) 8.7561027 (5.6061027) 3.2861029 (1.0261029)

500 3.2761025 (1.5061025) 7.0561026 (5.8161026) 5.0561027 (5.2161027) 9.95610210 (4.18610210)

80 100 5.2361026 (3.3661026) 1.7761026 (1.3561026) 1.0461027 (1.7861027) 3.2161029 (1.0261029)

200 3.0261026 (2.9661026) 9.2761027 (5.1561027) 8.8461028 (2.8061028) 9.58610210 (5.52610210)

500 2.9561026 (1.0661026) 7.5761027 (3.1961027) 5.5061028 (3.2561028) 5.01610210 (4.89610210)

doi:10.1371/journal.pone.0056310.t001

Figure 3. Convergence behaviour for the p53 negative feedback loop model. Plots show the average best fitness values of the Nelder-
Mead, PSO, FA and proposed methods at each iteration.
doi:10.1371/journal.pone.0056310.g003
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compared with its neighbours. If a neighbour is fitter, the distance

between the pair of ith and jth solutions is computed and the

attraction value, bis calculated as follows

b~b0e
{Qr2

ij ð4Þ

where b0 is the initial attractiveness, e is the standard exponential

constant, Q, is the predefined light absorption coefficient, and rij is

the Euclidean distance between the ith and jth solutions [29]. The

vector update is only performed when the fitness of the

neighbouring jth solution is better than the current ith solution

using the expression

xi~ ximzb xjm{xim

� �
za C2{

1

2

� �� 	
ð5Þ

where a and C2 are uniformly distributed random numbers in the

range 0 to 1. Thus, the updates allow the solutions to move

towards that with the current optimal fitness and utilize the search

space more efficiently [29], [36]. The iteration is repeated until all

solutions have been updated. The solution that produces the best

fitness is selected as the global best solution. The population, now

containing updated solutions, is then sorted according to the fitness

into two parts: potential solutions, which consists of the fittest

solutions, and weak solutions, which contains the remainder. The

solution vectors are updated according to

xweak
im ~xminzC3| xweak

im {xmin

� �
ð5Þ

where xmin is the vector of current best solution and C3 is a

uniformly distributed random number between 0 and 1 [23].

Evolutionary operations are performed simultaneously on the

potential solutions. First, a mutation step is executed for each

solution,

vim~
xminzC4| x

potential
im {xmin


 �
x

potential
im

8<
: if

if

C4ƒMR

C4wMR
ð6Þ

where vi is the mutated solution vectors, C4, is a uniformly

distributed random number between 0 and 1, and MR is a

predefined mutation rate [23]. A new breed of solutions is then

created by a crossover step according to the condition

x
off
im ~

vim if

x
potential
im if

�
C5ƒCR

C5wCR
ð7Þ

where xoff
i is the vector of offspring solutions, C4 is a uniformly

distributed random number between 0 and 1, and CR is a

predefined crossover rate [23]. The fitness of each offspring

solution is calculated and, to retain the population size, a simple

selection is done according to [23]

x
potential
im ~

x
off
im if

x
potential
im if

(
J x

off
i


 �
ƒJ x

potential
i


 �
J x

off
i


 �
wJ x

potential
i


 � ð8Þ

These solutions are then inserted into the original population. The

solution that yields the best fitness within the population is set as

the current best firefly and the value is noted as the current global

optimum. This procedure is repeated until the maximum number

of iterations is reached or an acceptable fitness value is found. The

overall procedure of the proposed method is depicted in Figure 2.

Identifiability Test
We perform an identifiability test based on the simple

approximation of the variance of random noise variables [1],

[8]. Consider a set of time series data that is measured at discrete

time intervals, with the model expressed as

_ss~f s,u,x,tð Þ
s t0ð Þ~s0

yn~g s,u,xn,tnð Þzen

8><
>: ð9Þ

where n stipulates the number of samples. Assume that by

executing the optimization procedure, an estimated parameter, x̂xis

found in which x̂x~x. Thus, the measurement noise of the

component can be written as [1], [8]

êen~yn{g s,u,x̂xn,tnð Þ ð10Þ

If x̂x~x, and accordingly g s,u,x̂xn,tnð Þ&g s,u,xn,tnð Þ, the variance

of êen given by ŝs2
n will be nearer to the real variance of en Thus,

ŝs2
ncan be estimated from

ŝs2
n&jn~

1

N

XN

n~1

êenð Þ2 ð11Þ

where N is the total number of samples. Consequently, the interval

of the variance can also be estimated from the confidence level, c

= 1–d, and ŝs2
nwill lie within the interval

njn

x
N,1{d

2

ƒs2
nƒ

njn

x
N,d

2

ð12Þ

with a probability of 100c%. Here, xN,d represents the 100dth

percentile of the x2 distribution with N degrees of freedom [1], [8].

If the actual variance, s2
n, does not lie within the interval, the

measurements, yn, could not have been produced by the parameter

Table 2. Average computation times, in second, for the p53
negative feedback loop model. Average time taken for 500
iterations in 100 independent runs.

No. of
Solutions Average Computation Times (s)

Nelder-Mead PSO FA Proposed

20 33.5 45.3 40.5 36.8

40 52.9 61.0 58.2 53.3

60 71.2 80.3 75.6 73.0

80 95.6 112.4 106.1 98.4

doi:10.1371/journal.pone.0056310.t002
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x̂x. Hence, x̂x is considered inaccurate with a confidence of 100c%

[1], [8]. In this work, we set the value of c to 0.95, and thus fixed

the significance level to 0.05.

Model Selection
Model selection is a crucial step in biological system modelling

since many variations of models are available with different

experimental conditions and assumptions [1], [8], [41]. Here, we

perform a model selection procedure to evaluate the relevancy of

the experimental conditions and assumptions to fit a given set of

measurements. We used two approaches to select the model that

best fits the data. The first approach employs the measurement

error variance points and intervals [1], [8]. Consider two distinct

models that are represented in the form of (1) and are rewritten as

E1 :
_ssE1~fE1 sE1,uE1,x,tð Þ
y~gE1 sE1,u,x,tð Þze

�
ð13Þ

E2 :
_ssE2~fE2 sE2,uE2,x,tð Þ
y~gE2 sE2,u,x,tð Þze

�
ð14Þ

From the above expressions we know that the same experi-

mental data is used in both models. The variance point and

intervals of the models can therefore be computed following the

procedure described in the previous section.

In the second approach [41], the Akaike Information Criterion

(AIC) [42], [43] is used. The measurement noise is assumed to be

independent and normally distributed. We use the following

Figure 4. Data fitting for the p53 negative feedback loop model. Data points (circles) represent synthetic measurements obtained by adding
Gaussian noise to the model prediction (crosses). Lines represent the reconstructed model using the parameters estimated by the proposed method.
The upper left and right panels illustrate the concentrations of nuclear-p53 and Mdm2, respectively. The lower left and right panels represent the
concentrations of p53-Mdm2 and Mdm2 mRNA, respectively.
doi:10.1371/journal.pone.0056310.g004

Table 3. x2 test for the parameter estimation of the p53 negative feedback loop model using the proposed method.

A B C D

Real Variance (sk
2) 3.5361021 3.2461021 3.3061021 3.2861021

Variance Point (jk) 3.5261021 3.2461021 3.3161021 3.2961021

Variance Interval [3.2861021, 3.7961021] [3.0261021, 3.4961021] [3.0861021, 3.5661021] [3.0661021, 3.5561021]

x2 Test Pass

doi:10.1371/journal.pone.0056310.t016
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expression of the AIC [41],

AIC~N ln
RS

n

� �
z2M ð15Þ

where N, RS, and M are the number of samples, the residual sum

of squares and the number of parameters, respectively. A model

that yields a smaller AIC value is considered as the better model

[41].

Results

To evaluate the performance of the proposed method, we

estimated the parameters of models for the negative feedback loop

of p53 signalling pathway and arginine catabolism. The models

contain both small and large number of parameters with noisy and

incomplete measurements. The experimental data for both models

were generated in silico [1] and added with 25% white Gaussian

noise. The reliability of the estimated parameters is verified by the

practical identifiability test, as previously performed by Lillacci

and Khammash [1], [8].

The Negative Feedback Loop of p53 Signaling Pathway
p53 is a tumour-suppressor protein that regulates the activity of

hundreds of genes involved in cell growth and death [44], [45]. It

also plays a crucial role in preventing cancer [46]. The

accumulation and activation of p53 is controlled by several stress

signals, including DNA damage, hypoxia, heat shock, nutrient

deprivation and oncogene activation [37]. p53-regulated genes

produce proteins that communicate the stress signals to adjacent

cells and constitute feedback loops that increase or reduce p53

activity [44]. A p53 negative regulator, Mdm2 has been suggested

to be an important factor in oncogene activation [37]. It is an E3

ligase that ubiquitinates p53 by direct association and inhibits its

transcriptional activity [37]. Simultaneously, p53 also regulates the

mdm2 gene, resulting in a negative feedback loop [47].

Recently, Hunziker, Jensen and Sandeep [37] developed a

model of the p53-Mdm2 feedback loop to investigate the

integration of multiple stress signals. The model can be used to

predict the stress signal that produces a high p53 response and is

represented as [37]

_AA~k1{k2A{k3ABzk4Czk5C ð16Þ

_BB~k6D{k3ABzk4Czk7C{k5B ð17Þ

_CC~k3AB{k4C{k7C{k5C ð18Þ

_DD~k8A2{k9D ð19Þ

where A, B, C, and D are nuclear-p53, Mdm2, the p53-Mdm2

complex, and Mdm2 mRNA, respectively. The parameters k1, k2,

k3, k4, k5, k6, k7, k8, and, k9 are the rates of p53 production, p53

degradation, p53-Mdm2 complex formation, p53-Mdm2 complex

diffusion, Mdm2 degradation, Mdm2 translation, Mdm2-mediat-

ed degradation of p53, Mdm2 transcription, and Mdm2 mRNA

degradation, respectively [37]. To evaluate the robustness of the

proposed method, it was used to estimate all nine parameters of

the model with incomplete and noisy experimental data.

The solution vector for the optimization problem can be given

as xi = {k1, k2, k3, k4, k5, k6, k7, k8, k9} for i = {1,2,3,…,NP}, where

NP is the size of the solution. We evaluated the performance of our

method against the FA, Nelder-Mead, and PSO methods. Each

method is subjected to a set of 100, 200, and 500 iterations with

20, 40, 80, and 100 solutions. The average and the standard

deviation of the best fitness values, which are calculated out of 100

runs, are listed in Table 1. The results indicate that the proposed

method is able to find better fitness values with smaller deviations

than the other tested methods.

Figure 3 compares the fitness convergence of the evaluated

methods. Overall, the proposed method exhibited improved

convergence times and escaped suboptimal solutions compared

Table 4. x2 test for the parameter estimation of the p53 negative feedback loop model using the Nelder-Mead method.

A B C D

Real Variance (sk
2) 3.5361021 3.2461021 3.3061021 3.2861021

Variance Point (jk) 5.0761024 2.5561024 68961024 8.2161025

Variance Interval [4.7161024, 5.4661024] [2.3761024, 2.7561024] [6.4161024, 7.4261024] [7.6461025, 8.8661025]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t003

Table 5. x2 for the parameter estimation of the p53 negative feedback loop model using the PSO method.

A B C D

Real Variance (sk
2) 3.5361021 3.2461021 3.3061021 3.2861021

Variance Point (jk) 5.8861024 2.0361024 7.9961024 2.2261024

Variance Interval [5.4861024, 6.3461024] [1.8961024, 2.1961024] [7.4461024, 8.6161024] [2.0761024, 2.3961024]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t004

Biological Model Parameter Estimation
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to those produced by the other methods. The local Nelder-Mead

method converged to suboptimal solutions several times and ended

at one of them when the maximum number of iterations is

reached. Consequently, this method may be suitable for problems

having a small number of parameters, but in high dimensional

complex problems it would likely generate unacceptable results.

Although the PSO method can escape suboptimal solutions, it

suffers from longer computation times.

All computations were performed on the same 64-bit platform,

powered by an Intel Core i5 1.5 GHz central processing unit

(CPU) with 4 GB of memory. Table 2 lists the average amount of

computation time of each method for 500 iterations in 100

independent runs. Generally, the results show that the proposed

method requires a computation time that is less than PSO and FA

and similar to the Nelder-Mead method. The reduced time is the

result of the improved searching strategy adopted by the proposed

method.

The real variances arising from the noisy experimental data

were computed as 3.5361021, 3.2461021, 3.3061021, and

3.2861021 for A, B, C and D, respectively. Table 3 to 6 list the

variance points and the corresponding intervals for each method.

The variance points of the proposed method agree with the real

variances and lie within the expected variance intervals, whereas

those of the other methods do not. Furthermore, the variance

points of the other methods are also significantly smaller than the

real variances and have larger intervals than the proposed method.

Generally, variance points that are small and within the expected

intervals indicate that the model output is reliable and consistent

with the data set. However, if the points are smaller than the

expected values, as described above, it implies that the data has

been overfitted when estimating the parameters. Overfitting can

be caused by insufficient experimental data or, as in the case here,

susceptibility to noise in the data when estimating a large number

of parameters. As such, although the errors between the model

outputs of the other methods and the data are smaller because of

overfitting, the models themselves do not accurately represent the

system and would generate erroneous outputs. Tables 3, 4, 5, 6

also show that the Nelder-Mead, PSO, and FA methods have

failed the x2 test with a confidence level of 95%. Together, the

results demonstrate that the proposed method is more robust to

the measurement noise since it has passed the x2 test and has good

variance points within the expected intervals. Figure 4 illustrates

the data fit of the reconstructed model using the parameters of the

proposed method and the corresponding experimental data. The

figure clearly shows that the results from the estimates are

consistent with the curves obtained from the experiments.

Table 7 compares the model selection results of the original

model (Eq. 16–19) with a modified form represented by the

following equations:

Table 6. x2 test for the parameter estimation of the p53 negative feedback loop model using the FA method.

A B C D

Real Variance (sk
2) 3.5361021 3.2461021 3.3061021 3.2861021

Variance Point (jk) 1.0161025 7.1261026 6.6661025 2.2761026

Variance Interval [1.0061025, 1.1661025] [6.6261026, 7.6761026] [8.0561025, 9.3261025] [1.5561024, 1.7961024]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t005

Table 7. p53 negative feedback loop model selection results.

A B C D

Real Variance (sk
2) 3.5361021 3.2461021 3.3061021 3.2861021

E1 Point (jk) 3.5261021 3.2461021 3.3161021 3.2961021

Interval [3.2861021, 3.7961021] [3.0261021, 3.4961021] [3.0861021, 3.5661021] [3.0661021, 3.5561021]

AIC 22.256104 22.316104 22.146104 22.286104

x2 Test Pass

E2 Point (jk) 3.3361021 1.4361021 1.3761021 8.2861021

Interval [3.5961021, 7.7861021] [1.5461021, 7.5061021] [1.4761021, 8.1461021] [4.1861021, 8.9261021]

AIC 21.356104 21.326104 21.346104 1.596104

x2 Test Fail

E3 Point (jk) 2.606102 2.896103 3.316104 8.126103

Interval [2.426102, 2.806102] [2.696103, 3.136103] [3.086104, 3.576104] [7.566103, 8.756103]

AIC 27.556103 21.276104 21.576104 21.826104

x2 Test Fail

Model E1 was reported by Hunziker, Jensen and Sandeep [37], model E2 is a modified version of E1, and model E3 was suggested by Proctor and Gray [48].
doi:10.1371/journal.pone.0056310.t006
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Figure 5. Model selection for the p53 negative feedback loop model. Data points (circles) represent synthetic experimental measurements
obtained by adding Gaussian noise to the model prediction. The straight and dash lines represent the reconstructed model, E1, and the modified
model, E2, respectively. The X represents the model prediction of the model by Proctor and Gray [48]. The upper left and right panels display the
concentrations of nuclear-p53 and Mdm2, respectively. The lower left and right panels show the concentrations of p53-Mdm2 and Mdm2 mRNA,
respectively.
doi:10.1371/journal.pone.0056310.g005

Figure 6. Convergence behaviour for the arginine catabolism model. Plots show the average best fitness values of the Nelder-Mead, PSO, FA
and the proposed methods at each iteration.
doi:10.1371/journal.pone.0056310.g006
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_AAE2~k1{k2A{k3ABzk5C ð20Þ

_BBE2~k6D{k3ABzk7C{k5B ð21Þ

_CCE2~k3AB{k7C{k5C ð22Þ

_DDE2~k8A2 ð23Þ

Setting k4 and k9 to zero perturbs the original model by

removing diffusion of the p53-Mdm2 complex into the nucleus

and knocking out the Mdm2 gene. Simultaneously, the degrada-

tion process of Mdm2 mRNA is also bypassed. This combined

perturbation will affect the concentration of each gene product.

Table 7 shows that the variance points of each concentration in

the new model are not within the expected intervals, indicating

that the estimated parameters are inconsistent with the actual

dynamics described by the experimental data. Therefore, the

estimated parameters can be rejected with 95% confidence level.

The AIC results also show that the size of the parameters

estimated using the original model is much smaller than those

produced by the modified model, further supporting the rejection

of the modified model. Figure 5 shows the model selection

performed by the proposed method between the reconstructed

model, E1, and the modified model, E2.

Table 8. Average best fitness and standard deviation (presented within bracket) for the arginine catabolism model.

No. of Solutions No. of Iterations Nelder-Mead PSO FA Proposed

25 100 1.8961023 (2.3061023) 2.1161024 (1.9861024) 8.8961025 (3.3561025) 9.9161026 (4.2261026)

500 8.9461024 (5.1261024) 1.8661024 (1.0361024) 2.9961025 (1.9161025) 4.1061026 (3.3061026)

1000 5.0561024 (3.0161024) 8.1961025 (2.2661025) 9.0961026 (5.6161026) 8.2561027 (4.0361027)

50 100 8.5361024 (5.5661024) 9.9361025 (6.7261025) 2.5161025 (2.2361025) 3.8961026 (1.0261026)

500 3.9761024 (2.1761024) 5.0161025 (3.2361025) 9.9061026 (5.1361026) 8.8061027 (5.2261027)

1000 9.9161025 (5.5761025) 9.0961026 (3.1161026) 3.8761026 (1.1061026) 1.2561027 (1.0261027)

75 100 2.5261024 (2.3661024) 3.8861025 (2.0161025) 9.2561026 (5.3461026) 7.7361027 (3.3061027)

500 8.5861025 (3.2061025) 9.0861026 (5.5861026) 2.9561026 (1.2461026) 1.5361027 (1.1961027)

1000 5.3561025 (2.1861025) 3.1561026 (2.0561026) 9.9861027 (5.1661027) 8.5561028 (1.1061028)

100 100 1.2561024 (2.0761024) 2.2361025 (1.9161025) 8.3361026 (4.2461026) 5.5061027 (2.3161027)

500 9.9861025 (3.2761025) 8.9361026 (4.5961026) 5.1261026 (2.1261026) 8.5361028 (2.0561028)

1000 6.2361025 (2.1861025) 5.3861026 (2.9661026) 2.2661026 (1.9561026) 2.9861028 (1.2061028)

doi:10.1371/journal.pone.0056310.t007

Table 9. Average computation times, in second, for the
arginine catabolism model. Average times taken for 1000
iterations in 100 independent runs.

No. of
Solutions Average Computation Times (s)

Nelder-Mead PSO FA Proposed

25 48.9 55.0 50.9 51.2

50 70.1 85.3 79.6 68.8

75 93.5 106.9 98.1 95.6

100 120.9 136.1 125.5 132.2

doi:10.1371/journal.pone.0056310.t008

Figure 7. Data fitting for the arginine catabolism model. Data
points (circles) represent the synthetic experimental measurements
generated by adding the Gaussian noise to the model prediction
(crosses). Lines represent the reconstructed model using the parame-
ters estimated by the proposed method. The upper and lower panels
represent the concentrations of ornithine and internal arginine,
respectively.
doi:10.1371/journal.pone.0056310.g007
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Using the same experimental data set, we also tested if the

method can be used to select the model reported by Hunziker,

Jensen and Sandeep [37] over an older model proposed by Proctor

and Gray [48] for the p53 signaling pathway negative feedback

loop. The Proctor and Gray model, denoted as E3, also specifies

the concentrations of nuclear-p53, Mdm2, the p53-Mdm2

complex and Mdm2 mRNA, although the model structure is

significantly different. As shown in Figure 5, using the data set, the

method was not able to obtain a fit with E3. Table 7 also indicates

that E3 fails the x2 test. Overall, the results show that the method

can be used to select models based on the experimental data, since

only E1 passed the test.

The Arginine Catabolism Pathway
Arginine is an essential amino acid that has several important

roles in mammals, such as wound healing, ammonia removal from

the body, and hormone release. Arginine is synthesized from

citrulline by the consecutive actions of two cytosolic enzymes,

argininosuccinate synthetase and argininosuccinate lyase. The

synthesis involves a considerable amount of energy since each

molecule of argininosuccinate requires the hydrolysis of adenosine

triphosphate (ATP) to adenosine monophosphate (AMP). The

amino acid synthesis has also been extensively studied since it is a

precursor of nitric oxide, crucial in neurotransmission and

immune response [49], [50]. Despite its importance, the dynamic

properties of arginine catabolism remain unclear [38].

In this study, the model of the arginine catabolism pathway

reported in [38] is used. The model consists of the branch of

arginine metabolism leading to either nitric oxide or polyamines in

aorta endothelial cells. The following series of equations represent

the model [38]:
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A
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where A, B, and C are external arginine, ornithine, and internal

arginine, respectively. In total, the model consists of 16 param-

eters, but it only considers the concentrations of ornithine and

internal arginine, which can be derived from the following ODEs:

_BB~v2{v3{v5 ð29Þ

_CC~v1{v2{v4 ð30Þ

Here, we present the data fit results of these two concentrations.

We evaluated the performance of the proposed method by

comparing it with the Nelder-Mead, PSO, and FA methods. The

population size, NP was set to 25, 50, 75, and 100. Each method

was subjected to 100, 500, and 1000 iterations with 100

independent runs. Table 8 lists the resulting average best fitness

values. In all cases, the proposed method obtained better fitness

Table 10. x2 test for the parameter estimation of the arginine
catabolism model using the proposed method.

B C

Real Variance (sk
2) 3.5761021 3.5561021

Variance Point (jk) 3.6061021 3.5561021

Variance Interval [3.3261021, 3.8761021] [3.3161021, 3.8261021]

x2 Test Pass

doi:10.1371/journal.pone.0056310.t009

Table 11. x2 test for the parameter estimation of the arginine
catabolism model using the Nelder-Mead method.

B C

Real Variance (sk
2) 3.5761021 3.5561021

Variance Point (jk) 6.146102 6.416105

Variance Interval [5.586102, 6.626102] [3.646104, 6.926105]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t010

Table 12. x2 test for the parameter estimation of the arginine
catabolism model using the PSO method.

B C

Real Variance (sk
2) 3.5761021 3.5561021

Variance Point (jk) 1.936101 6.326105

Variance Interval [1.776101, 2.086101] [2.526104, 6.816105]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t011

Table 13. x2 test for the parameter estimation of the arginine
catabolism model using the FA method.

B C

Real Variance (sk
2) 3.5761021 3.5561021

Variance Point (jk) 8.216102 2.746104

Variance Interval [7.646102, 1.616103] [2.556104, 2.746104]

x2 Test Fail

doi:10.1371/journal.pone.0056310.t012
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values. The convergence behaviour of each method is presented in

Figure 6. The results indicate that the proposed method converges

faster than the other methods. Additionally, unlike the others, the

proposed method can also escape suboptimal solutions. The

Nelder-Mead method once again converged to a suboptimal

solution. At the beginning of the iterations, the performances of

the PSO, FA, and the proposed methods were comparable, which

suggests that the three methods are proficient in finding better

solutions among the suboptimal solutions. Nonetheless, as shown

in Table 9, the proposed method showed faster convergence times

than PSO and FA, which is the result of the substantial

improvements in the convergence behaviour toward the end of

the iterations.

We measured the variance of the results from each method to

evaluate their reliability. The real variance points were calculated

as 3.5761021 and 3.5561021 for B and C, respectively. Tables 10,

11, 12, 13 show the variance points and intervals obtained by the

proposed, Nelder-Mead, PSO, and FA methods. The variance

points of the proposed method lie within the intervals, and the

Table 14. Arginine catabolism model selection results.

B C

Real Variance (sk
2) 3.5761021 3.5561021

F1 Point (jk) 3.6061021 3.5561021

Interval [3.3261021, 3.8761021] [3.3161021, 3.8261021]

AIC 22.886105 21.896104

x2 Test Pass

F2 Point (jk) 6.8561021 2.6661021

Interval [5.9861021, 7.3861021] [2.8761021, 6.1561021]

AIC 21.136105 29.736103

x2 Test Fail

Model F1 is a reconstructed model that was reported in [38] and model F2 is a
modified version of F1.
doi:10.1371/journal.pone.0056310.t013

Figure 8. Model Selection for the arginine catabolism model. Data points (circles) represent synthetic experimental measurements obtained
by adding Gaussian noise to the model prediction. The straight and dash lines represent the reconstructed model, F1, and the modified model, F2,
respectively. The upper and lower panels represent the concentrations of ornithine and internal arginine, respectively.
doi:10.1371/journal.pone.0056310.g008
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deviation from the expected points is also very small. However,

other methods produced variance points that deviated significantly

from the expected values, even though they were still within the

intervals. The proposed method is also the only method to pass the

x2 test. Figure 7 illustrates a smooth fit of the data generated from

the estimated parameters using the proposed method with the data

from the experiment. Taken together, these results indicate that

the parameters estimated by the proposed method are more

reliable.

Table 14 lists the results of the model selection for the arginine

catabolism pathway. The model depicted by Eq. 29–30 is modified

by setting the value of parameter k7 to zero to give a new model:

Figure 9. Model Selection for different parameter sets in the arginine catabolism model. Data points (circles) represent synthetic
experimental measurements obtained by adding Gaussian noise to the model prediction. The upper and lower panels represent the concentrations
of ornithine and internal arginine, respectively.
doi:10.1371/journal.pone.0056310.g009
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_BBE2~{v3{v5 ð31Þ

_CCE2~v1{v4 ð32Þ

The model now bypasses the competitive inhibition by

ornithine. As listed in Table 14, the variance points of the

concentrations in the model differs from the real variance points.

More importantly, the variances are not within the intervals given

by the model. In addition, the concentrations obtained from the

model are rejected by the x2 test. The AIC test also indicates that

the variances obtained from the original model are smaller than

those of the new model, supporting the decision to reject the latter.

Figure 8 shows the selection of the reconstructed model, F1, and

the new model, F2, by the proposed method.

To further evaluate the robustness of the method, we have also

performed model selection tests with different sets of parameter

values. Table 15 lists the parameter sets used, which are denoted

by F1 (unchanged parameters), F3, F4, and F5, and the

corresponding model outputs are given in Figure 9. Table 16

summarizes the results of the x2 test for each parameter set. The

results clearly show that F1 is statistically consistent with the

selection data, whereas the other parameter sets failed the test.

These results indicate that the method is robust to parameter

changes and can be used to select the most plausible model for a

given data set.

Discussion

The estimation of parameters is a major issue in the

development of accurate and reliable biological models. Models

are usually represented with ODEs to simulate the time varying

processes that take place within cells. The ODEs depend on

parameters that reflect the physiological properties of the system,

such as reaction rates and kinetic constants. Since it is difficult to

measure all parameters experimentally, the model is predicted by

fitting experimental data using nonlinear least square techniques.

However, prediction is also a challenge because experimental data

are frequently hampered by measurement noise and incomplete-

ness due to experimental limitations. In the past few years, several

approaches have been proposed to get around this problem [1],

[8], [10], [14], [22]. Especially, evolutionary-based algorithm such

as the DE method, has demonstrated to be effective in predicting

nonlinear biological models [39], [41] since it can produce robust

and reliable estimations [9], [14], [22].

In this paper, we have proposed an optimization method for the

parameter estimation and selection of biological models. The

method hybridizes the FA and DE approaches. By coupling with

an error variance test, the method acquires the reliability of the

estimated parameters. Because the variance also determines the

selection or rejection of a model, even noisy and incomplete

experimental data can be used to estimate the unknown

parameters.

Evolutionary algorithms often converge to suboptimal solutions

and require a substantial amount of computation time [9], [12].

The proposed method addresses these limitations by improving

the neighbourhood search of FA using the random evolutionary

search of DE. In one iteration, the solutions obtained from the

predicted model are ranked according to the fitness. The ranked

population is then classified as potential and weak solutions. The

neighbourhood and evolutionarily operations of FA and DE

methods are performed to improve the potential solutions,

respectively, whereas the weak solutions are randomly repopulated

to escape suboptimal solutions. With this improved search, less

computation time is needed to find good solutions.

We measure the performance of the method by applying it to

two complex and nonlinear biological models: the negative

feedback loop of p53 signalling and arginine catabolism. In both

cases, the method found better solutions within shorter compu-

tation times compared to Nelder-Mead, PSO, or FA approaches.

Statistical analysis using error variance and intervals showed that

Table 15. Evaluated parameter sets of the arginine catabolism model.

Model Parameters

F1 k1 = 70, k2 = 160.5, k3 = 380, k4 = 847, k5 = 420, k6 = 420, k7 = 110, k8 = 1500, k9 = 1000, k10 = 0.013, k11 = 60, k12 = 1.33, k13 = 16,
k14 = 160.5, k15 = 380, k16 = 847

F3 k8 = 100, k15 = 1, k16 = 1

F4 k7 = 1, k10 = 1, k14 = 1, k15 = 1

F5 k2 = 1, k5 = 1, k8 = 1, k15 = 1, k16 = 1

doi:10.1371/journal.pone.0056310.t014

Table 16. Arginine catabolism model selection results with
different parameter sets.

B C

Real Variance (sk
2) 3.5361021 3.2461021

F1 Point (jk) 3.5261021 3.2461021

Interval [3.2861021, 3.7961021] [3.0261021, 3.4961021]

AIC 22.256104 22.316104

x2 Test Pass

F3 Point (jk) 5.726104 2.566106

Interval [5.336104, 6.176104] [2.366106, 2.746106]

AIC 29.216103 21.056104

x2 Test Fail

F4 Point (jk) 6.566104 1.116106

Interval [6.106104, 7.106104] [1.036106, 1.206106]

AIC 25.506103 21.156104

x2 Test Fail

F5 Point (jk) 2.216106 8.506105

Interval [2.066106, 2.396106] [7.886105, 9.126105]

AIC 24.966103 21.296104

x2 Test Fail

doi:10.1371/journal.pone.0056310.t015
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the parameters estimated by the proposed method are reliable and

consistent with the experimental data. Hence, the method is able

to find reliable and accurate parameters even from noisy and

incomplete experimental data. Furthermore, the x2 test showed

that the model output generated using the estimated parameters is

valid. Strikingly, the Nelder-Mead, PSO, and FA methods all

failed this test. The estimated parameters were used for model

selection to determine the reliability of the parameters in different

experimental conditions. The favorable results of the evaluation

demonstrated the consistency of the parameters with the original

model and the corresponding experimental data. The results also

suggest that the parameters are practically identifiable in different

experimental conditions.

Efforts to couple parameter estimation using a hybrid optimi-

zation method with statistical analysis to ensure the reliability and

accuracy of prediction models have exhibited positive results in

recent years [1], [8], [41]. Our work here demonstrates similar

outcomes. Since our method can find identifiable parameters from

experimental data, it can be employed when designing optimal

experiments for parameter estimation [30], [31], [40], [49]. In

addition, owing to its reduced computation time, parameters of

more detailed nonlinear models such as spatially resolved reaction-

diffusion models [51], [52], [53] could also potentially be

estimated with the method.
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