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Abstract

Background: Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity’s ‘‘building blocks’’.
Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across
biodiversity’s component pieces.

Methods/Principal Findings: We use a one-dimensional ‘‘niche model’’ to predict antagonistic and mutualistic species
interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network
structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some
aspects of the structure of the niche space were consistently different between network classes.

Conclusions/Significance: These novel results reveal fundamental differences between the ability to predict ecologically
important features of the overall structure of a network and the ability to predict pair-wise species interactions.
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Introduction

Ecological networks describe who interacts with whom in

ecological communities [1]. Subsets of these networks where a

single type of interaction is considered, such as mutualistic

interactions between plants and their pollinators [2], or antago-

nistic interactions between parasites and their hosts [3], are

considered to be the true ‘building blocks’ of biodiversity [2–5].

These ‘building blocks’ provide vital ecosystem services [6], and

understanding the way they are structured is important for gaining

insight into everything from ecosystem function [7–10], to the

response of ecosystems to species extinctions [11,12], invasions

[13,14], and the influence of keystone species [15].

Theory suggests that the architecture of mutualistic and

antagonistic species interaction networks should differ [2,3].

Empirical evidence supports this, and highlights structural

differences between these two types of networks in ways important

to their stability and fragility [2,3]. Moreover, there is a practice of

using different structural models for mutualistic [16–19] and multi-

trophic networks (i.e., ‘food webs’) [20–22], even though doing so

is a purely methodological convenience unrelated to the true

nature of species interactions [23]. A simple structural model

capable of replicating these different types of networks would

provide a single conceptual framework for linking these ‘building

blocks’ in studies of population dynamics [24], ecosystem regime

shifts [25], and other basic and applied ecological questions.

Here we fit a simple, probabilistic niche-structured model

[26,27] to 151 empirical networks to replicate the link structure of

three different classes of bipartite ecological networks (mutualistic:

n = 67, parasitic – antagonistic: n = 40, herbivory – antagonistic:

n = 44). Further details on the datasets analyzed have been

published previously [27–29]. While the structure of these classes

of networks differs [2,30], the rational for a general model is

simple: since a simple one-dimensional niche axis can consistently

explain the structure of multi-trophic level food webs [20,31], one

might also expect it to explain the structure of antagonistic plant-

animal networks derived from these networks. Moreover, just as

body size is a common explanatory trait for niche position in ‘‘food

web’’ antagonistic networks [32], interactions in networks of

mutualistic relationships like plants and their pollinators are often

described as being controlled by one or a few traits in both the

plant and the pollinator (e.g. length of flower corolla pollinator

proboscis [33]). These examples suggest that a low-dimensional

niche-structured model might explain much of the structure of all

three classes of networks. The objective of this paper is to address

whether or not such a low-dimensional model sufficiently explains

the structure of ecological networks.

Model

Bipartite Probabilistic Niche Model
We developed a simple extension of the probabilistic niche

model [26,27] (PNM) for bipartite networks. Our model is

complementary to one proposed earlier [34] by making use of a

niche axis on which each species is positioned and where each

species interacts preferentially with species nearby on this axis.

That ours is a probabilistic version brings it in line with another

recent model [35], although our model differs in two major ways

as our unit of interaction is the species while [35] considers

individuals, and our interaction function is much more general.

By freeing up the constraints on niche parameters imposed by

the original niche model [20], the PNM provides significantly

better fit to empirical food web data than previous models, and

allows for analysis of the resulting niche-related model parameters.
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In our bipartite probabilistic niche model (BPNM; Figure 1) each

resource is placed on a niche axis and the probability that a

consumer interacts with a resource is a function of the relative

distance between the resource’s position on the axis and the

position of the consumer’s niche on that axis. We consider

bipartite networks with L links between SC consumer species and

SR resource species. The bipartite probabilistic niche model

defines the probability of interaction between resource species i
and consumer species j. The resource species are placed on a one-

dimensional niche axis; the niche position of resource species j is

defined as nj . Each consumer species i has two traits, its niche

center ci and its niche range ri. Figure 1 shows a one-dimensional

version of this model. The probability of consumer i interacting

with resource j is a function of the relative distance between the

resource’s niche position and the consumer’s niche center:

P(i,jDh)~a exp {D
nj{ci

ri=2
De

� �
ð1Þ

where P(i,jDh) is the probability that consumer species i interacts

with resource species j given a particular parameter set h where

h~ nf 1:::nSP
,c1:::cSA

,r1:::rSA
,eg; the parameter nj is the niche

position of resource species j; the parameter ci is the center of the

niche of consumer species i; the parameter ri is the width of the

niche of consumer species i; the parameter e varies the cutoff rate

of the niche probability function (for larger values, the niche

probability function is flatter in the center and cuts off more

quickly at the edges of the niche); and the parameter a is the

probability that i eats j when j is exactly on i’s niche optimum (i.e.

when nj~ci).

Statistical methods. The set of model parameter values for

a network with SC consumer species and SR resource species is

given by h, while X is the data, i.e., X is an SC6SR connection

matrix containing an observation X ij for each link i, j (X ij = 1

means i interacts with j; X ij = 0 means i does not interact with j).

The log-likelihood is defined as:

‘(X Dh)~
XX

ln
P(i,jDh) if X ij~1

1{P(i,jDh) if X ij~0

��
ð2Þ

In each of the models we use, every possible interaction between

species pairs is assigned a probability of occurring. This allows

model performance to be calculated in a straightforward likelihood

framework, and for all models, we find the maximum likelihood

parameter values for each empirical network. Using likelihoods to

evaluate model performance effectively separates the model’s

performance evaluation from any summary metrics of network

structure, a distinction that we will show to be extremely important.

Potential Overparameterization
For all models we use simulated annealing [36] to find the

maximum likelihood parameter set given the observed feeding

relationships. The number of parameters in the BPNM scales as

2 � SCð ÞzSRz2, and the number of binary observations scales as

SC � SR. This means that there are relatively few observations per

parameter for some of the less species-rich datasets we analyze,

which leads to a potentially overparameterized model. Over-

parameterization might cause the BPNM to not be the best

minimal model for explaining all aspects of ecological bipartite

networks, and some parameters might be poorly estimated –

necessitating caution when interpreting parameter values. The

BPNM also has, to varying degrees, different numbers of

parameters than the two other models we compare it to. We deal

with these issues in several ways.

First, since the different models in this analysis have different

numbers of parameters, their relative performance on a single

network is compared using AICc rather than by direct comparison

of likelihoods. AICC allows the comparison of models with

different numbers of parameters and includes a correction for

small sample size. Second, we visually inspected the sensitivity of

parameters by choosing several networks at random and, for each

consumer and each resource, changing a particular parameter (r,c,

or n) from 20.3 to +0.3 away from the maximum likelihood value,

while holding all other parameters constant at their maximum

likelihood values. One can assess sensitivity by analyzing the

change in the likelihood surface moving towards and away from

the maximum likelihood parameter. In Figure 2 we show

examples of this for the r and c parameters of a randomly chosen

consumer and the n parameter of a randomly chosen resource

species. In these three cases one sees the characteristic peak

expected at the maximum likelihood value. Not all parameters are

as sensitive as these, but even so, the problem of overparameter-

ization is only likely to make our central conclusion below (that the

BPNM outperforms other simpler models) overly conservative.

Finally, previous work [26] explored an extension of the PNM,

reducing parameters by making certain parameters functions of

others, and when comparing models using AIC found that the

PNM with its full parameter set consistently outperformed other,

more minimal, simplifications of the same model.

Other Models
We compared the performance of the BPNM against two simpler

models. The simplest is a random model, in which every link occurs

with constant probability P~CB~
L

SR � SC

. A recent study suggested

that a bipartite version of the cascade model [21] often provides a good

model of mutualistic networks, and so we developed a probabilistic

bipartite cascade model. Each consumer species is assigned a

parameter Ci and each resource species is assigned a parameter Rj .

An interaction between consumer and resource is only possible if

RjvCi and the number of possible interactions N is the number of

plant-animal pairs in which RjvCi . To force the expected number of

links to be equal to the observed number of links we define

P(i,jDh)~pc if RjvCi and P(i,jDh) otherwise. The fixed link

probability PC~
L

N
if NwL and PC~1 otherwise. As in the BPNM,

we find the maximum likelihood set of model parameters

h~ Rf 1:::RSR
,C1:::CSC

�
.

Figure 1. Diagram of the probabilistic niche model for bipartite
networks. Each resource species has a single parameter nj; each
consumer species has two parameters, ci giving the location on the
niche axis where it has the highest probability of interacting with a
resource species and a distribution width ri. The probability that
consumer species i interacts with resource species j is defined by the
probability P(nj, ri, ci), here a Gaussian.
doi:10.1371/journal.pone.0056277.g001
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Niche Overlap Overview
The degree of dietary overlap between all consumers is a

commonly measured structural property of ecological networks. In

particular, ‘nestedness’ is a measure of the structure of a binary

matrix, where, in this case, the rows represent resource species

(SR), the columns represent consumer species (SC ), and a ‘‘1’’ in

the matrix records the interaction between consumer i and

resource j. There are various metrics to calculate nestedness, all of

which to some degree attempt to measure the niche overlap

between consumers, or in other words, the extent to which the

resource species of specialist consumers are proper subsets of the

resource species of more generalist consumers (and vice-versa). To

determine the BPNM’s predictive skill for the network aggregate

metric of niche overlap, we first calculated the niche overlap of

consumers in the empirical network using a standard nestedness

Figure 2. Parameter sensitivity for one randomly chosen consumer, and one randomly chosen resource species. The maximum
likelihood value of the consumer parameters (c – left, r – middle) and resource parameter (n – right) is indicated by the vertical dashed line. Each
parameter was perturbed across the continuum (x-axis) of 20.3 to 0.3 away from the maximum likelihood value (while holding all other parameters
in the model constant). The corresponding likelihoods of each assessed parameter value are on the y-axis. Some parameters were already close to the
value 0 and could not be changed to a smaller value, explaining why the distributions are not symmetrical in the centre plot.
doi:10.1371/journal.pone.0056277.g002

Building Blocks of Biodiversity
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metric, and compared that to two different approaches to calculate

the niche overlap of the model-derived network.

Empirical Niche Overlap
For our analysis we utilize the metric ‘‘NODF’’, due to the

transparency and statistical properties of the metric [30,37–40] to

measure the niche overlap of empirical networks. The original

NODF algorithm calculates nestedness for the entire matrix, and

independently for only rows (resources) or columns (consumers).

The BPNM only calculates the niche range for consumers, and so

we record only the consumer NODF value for each matrix

(NODFC). Each bipartite network was sorted in descending order

by both row and column marginal totals. The NODF value of a

community of consumer species is a function of the paired overlap

between all combinations of the SCcolumns. The number of

possible combinations is:

PC~SC(
SC{1

2
)

.

The paired overlap (POCij ) between any two (i,j) consumers is

the fraction of resources taken by consumer j that are also taken by

consumer i. Note that the sorting described above means that it is

always the case that the number of resources taken by consumer i

is always greater than or equal to the number of resources taken by

consumer j. Defining NR as the number of resource species taken

either by consumer i or j, NODF then considers the paired overlap

in consumer pairs, defining

NPCij~POCij if NRjwNRi, where NPCij is not recorded

(‘‘NA’’) in the event of NRi~NRj .

We note that the original NODF algorithm records NPCij~0
when two consumer’s feeding ranges perfectly overlap, yet it is

debatable whether or not perfectly overlapping feeding ranges

should result in a maximum deduction from nestedness, and thus

for the purposes of this analysis we ignore those instances both in

our estimating of empirical nestedness and calculation of overlap

in model derived networks (although qualitative comparisons did

not indicate a large discrepancy between the two).

NODF for consumers is then defined as the average of the

NPCij values: NODFC~100 � (

P
NPCij

PC
); where 100 indicates

perfect nestedness.

Model Derived Niche Overlap
Because the BPNM provides a probability of every link, it is not

possible to directly calculate standard nestedness scores for model-

derived networks. To address this, we employed two different

approaches. In the first, we simulated 100 random networks,

where for any network the realization of any interaction between a

consumer and resource was the result of a random binomial draw

against the BPNM derived probability. We then calculated the

niche overlap for each simulated network using the NODF

algorithm as above, and compared the empirical niche overlap

with the mean niche overlap across all 100 simulated networks.

We also note that like most structural properties NODF can be

significantly sensitive to changes in only a few interactions across

Figure 3. Performance of the random (red) and cascade (black) models as measured by AICc score. Results are presented relative to the
PNM, where the x-axis shows the PNM AICc divided by the alternative model’s AICc. The random model outperforms the PNM only once, while the
cascade model does so three times, all of which occur on the lower 50% of the size distribution of networks we analyze.
doi:10.1371/journal.pone.0056277.g003

Building Blocks of Biodiversity
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an entire network [37]. To avoid the problems with this due to

simulating networks as above, we calculated a metric on the

BPNM derived networks complementary to NODF. In the

BPNM, the one-dimensional niche employed represents the

resource dimension available to consumers. For this reason the

NODF method of niche overlap measurement is complementary

to measuring the overlap between the r parameter of each

consumer in a community. Thus, the consumer’s dietary range

(‘‘r’’ parameter) can be used to make a comparison between the

niche overlap of the consumer community in the empirical

network and the best-fit model derived community. To accomplish

this we sort all SC consumers by decreasing width of dietary range

and for each consumer calculate the position of the r parameter

cutoffs along the one dimensional niche axis:

rimin~ci{(
ri

2
) and rimax~ciz(

ri

2
):

For any two consumers (i,j), we calculate the percent of

consumer i’s dietary range that overlaps with consumer j’s dietary

Figure 4. Left) Fraction of links predicted versus network size (#Resource Species * #Consumer Species); Centre ) Fraction of links
(fL) correctly predicted (x-axis) versus empirical niche overlap (y-axis); Right) Fraction of links (fL) correctly predicted (x-axis) versus
empirical connectance [#Links/(#Consumers * #Resources)] (y-axis). See Methods Summary for details on calculations of niche overlap.
doi:10.1371/journal.pone.0056277.g004

Building Blocks of Biodiversity
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range (POCij , the continuous equivalent of the original NODF

algorithm [40]), where NPCij~POCij if rjwri, and where NPCij is

not recorded (‘‘NA’’) in the event of rj~ri.

The number of possible pairwise comparisons (PC ) is the same

as calculated above, and the overall niche overlap for consumers is

then defined as the average of the NPCij values:

OverlapC~100 � (

P
NPCij )

PC
); where 100 indicates perfect over-

lap. Thus, OverlapC is a BPNM-specific method of measuring

niche overlap on the same scale as NODFC .

Connectance
We measured the size of the networks as SR � SC , and the

connectance of the empirical networks as

P
X

SR�SC
. We measured the

connectance of the model derived networks in two different ways.

For the approach using 100 network simulations, we calculated

model derived connectance as the average connectance of all 100

simulated networks. Avoiding simulating the networks resulted in

the connectance metric

P
Pij

SR�SC
.

Results

Replicating Consumer-resource Interactions
In Figure 3 we show that the probabilistic niche model

consistently outperforms a random (red) model in all but 18 of

our 151 networks. The BPNM outperforms a bipartite cascade

model in all but 15 of the 151 networks (black points in Figure 3).

The few cases where the BPNM model does not outperform the

cascade model are those networks in the lower end of the range of

sizes we analyze. Given the uniformly superior performance of the

BPNM, the rest of the paper analyzes only the performance of that

model in detail.

In all networks, the expected number of links produced by the

model, which is equal to the sum of the link probabilities, is very

close to the number of interactions in the empirical dataset. As

described and implemented previously by others [26,31], we can

thus use the fraction of links (fL) correctly predicted (

P
PijP
X

) as a

simple and easily understood measure of model performance

comparable to previous work. We note, however, that if the total

model predicted links is significantly different from the total

number of links in the network then this measure of performance is

Figure 5. Top Left) Empirical niche overlap (as measured by NODF – see Methods) versus model derived niche overlap (as
measured by the average NODF score of 100 simulated networks – see Methods); Top Right) Residuals about the opposing linear
regression versus network size; Bottom Left) Empirical niche overlap (as measured by NODF – see Methods) versus model derived
niche overlap (as measured by the overlap in consumer r parameters – see Methods); Bottom Right) Residuals about the opposing
linear regression versus network size.
doi:10.1371/journal.pone.0056277.g005

Building Blocks of Biodiversity
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insufficient, as a model predicting every link as realized would by

necessity produce a perfect fit – while also incorrectly predicting

every missing link. Figure 4 (left) shows how our measure of model

performance (fL) scales with network size. The decrease in fL with

size shows that a single niche dimension is sufficient for explaining

individual interactions within small networks, but becomes

insufficient for very large ones. This scale dependence in model

fit exists for all three categories of interaction networks. Given the

single dimension employed by the BPNM, the scale dependence in

model fit is perhaps not surprising, as by random chance one

expects larger networks to include greater heterogeneity in species

trait distributions, and thus more dimensions for a niche space to

be defined within.

Replicating Consumer-resource Network Structure
A model that replicates the interactions between consumers and

resources by necessity also replicates overall network structure,

such as connectance, degree distribution, specialist-to-generalist

consumer ordering, and niche overlap. One might assume that a

model failing to replicate the interactions might also fail to

replicate metrics of overall network structure, although analysis of

empirical data has shown that temporal variability in individual

interactions did not affect aggregated properties of network

architecture such as nestedness [41]. We show that the BPNM is

capable of reproducing three ecologically important aspects of

network structure (connectance, niche overlap, and specialist-to-

generalist consumer ordering) for all categories of networks

regardless of how well the model does at predicting individual

interactions within the network.

Niche overlap is a structural quality of a bipartite network and

as a general ecological concept simply addresses the question: to

what extent are the resources taken by specialist consumers proper

subsets of the resources taken by more generalist consumers [37–

40]? We focus on niche overlap (as measured by the nestedness

metric NODF; see Methods for implementation details) for two

reasons. First, it is claimed that consumers in mutualistic networks

are more highly overlapping than antagonistic consumers due to

differing coevolutionary pressures [3] and thus we might expect

our model results to differ between these two interaction types.

More importantly, we investigate niche overlap because it is

closely related to the niche concept underlying the BPNM. The

usual picture of a nested network is highly niche structured in a

single niche dimension. In nested networks, a narrower niche (e.g.

specialized consumer feeding range) is nested within broader ones

(e.g. generalist consumer). In this view of nested networks,

narrower niches have a high level of overlap with broader ones.

Figure 6. Top Left) Empirical connectance versus model derived connectance (as measured by the average connectance of 100
simulated networks – see Methods); Top Right) Residuals about the opposing linear regression versus network size; Bottom Left)
Empirical connectance versus model derived connectance (sum of the model probabilities/network size – see Methods); Bottom
Right) Residuals about the opposing linear regression versus network size.
doi:10.1371/journal.pone.0056277.g006

Building Blocks of Biodiversity
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In keeping with the theoretical niche-structured assumptions of

the BPNM, in Figure 4 (middle and right) we show that the BPNM

performs best on the most highly nested and connected (across all

networks Spearman’s correlation between connectance and

nestedness = 0.80, p-value ,0.001) empirical networks. This shows

that connectance, the niche overlap, and the niche concept as

implemented by the niche model are related, such that all highly

nested (or connected) ecological networks are well-explained by a

one dimensional niche structured model.

We further explore the relationship between niche structure and

niche overlap in Figure 5 (top and bottom left) by plotting the

niche overlap of the empirical network against the niche overlap of

the model-derived network (see Methods Summary for our two

alternative niche overlap calculations). Figure 5 shows the BPNM

is capable of replicating the niche overlap structure even in

networks that have a relatively low level of niche overlap and that,

at the level of individual interactions, are poorly explained by the

BPNM (have a low value of fL), This means that regardless of how

well the model performs at predicting specific links; it consistently

replicates the niche overlap structure of the empirical networks.

The linear regressions in Figure 5, and the relationship between

the residuals about those regressions and the size of the network

shows that model niche overlap most departs from empirical

overlap in small networks with high degrees of overlap (Both

Figure 7. Plots of best-fit model parameters for two empirical networks. The y-axis represents the single dimensional axis assumed in the
BPNM, scaling from 0 to 1. Light grey circles represent the niche positions (n parameters) of resource species along the single niche dimension. Black
circles represent consumer niche center positions (c parameters), and the black bars represent the 97.5% range of consumer’s dietary widths (r
parameters). Consumers have been ordered equidistant from one another along the x-axis, in order (left to right) from most specialized (consume the
fewest resource species) to most generalist (consume the greatest number of resource species) according their rank witin the empirical interaction
network. Left: An antagonistic network, where the best-fit model achieves 57% fraction of links (fL) correct. Right: A mutualistic network, where the
best-fit model achieves 49% fraction of links (fL) correct.
doi:10.1371/journal.pone.0056277.g007

Building Blocks of Biodiversity
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regressions: R2 = ,0.92, p,2610216), and the range of the

residuals decreases with network size.

Figure 6 replicates Figure 5, but shows the relationship between

empirical connectance and two measures of model derived

connectance (see Methods for details). In Figure 6 we show the

same results to be true for connectance as for niche overlap,

although even stronger. This replicates the strong correlation

between those two measures in the empirical dataset. It can be

argued that connectance is a more parsimonious descriptor of

network structure than calculating more complicated niche

overlap metrics such as nestedness. Yet, connectance and niche

overlap need not be strongly related (except when approaching the

limit of all interactions realized). We do not attempt to discern

whether either is driving the results in Figures 4 and 5, as it is

sufficiently interesting to note that the BPNM replicates both

measures.

Further, we show in Figure 7 that the BPNM, regardless of its

ability to predict individual links, is capable of replicating another

fundamental structural characteristic of ecological networks, which

is the generalist to specialist consumer ordering. In Figure 7, the

model-estimated niche axis position of the resources is plotted on

the y-axis; while on the x-axis we have shown the model-estimated

niche centroid (ci) and niche width (ri) of consumers in a mutualistic

(Figure 7 right) and antagonistic (Figure 7 left) network. In both

networks, however, we have ordered the consumers, from most

specialized to most generalized, along the x-axis according to their

empirical rank. It is immediately obvious that such an ordering

closely matches the model ordering (measured as the consumer’s r

value). Indeed, the average spearman’s rank-order correlation

(0.90, 92% of p-values ,0.05) across all empirical and model-

derived networks shows this to be true.

Differences between Mutualistic and Antagonistic
Interaction Networks

In Figure 7 (left) it is clear that the center of consumer’s niches

in the antagonistic network is much more strongly clumped

together than in the mutualistic network (Figure 7 right), although

the distribution of the resources across the single axis remains

fairly uniform. We examined whether this pattern recurred across

all the networks by examining the distributions of niche positions

(‘‘c’’) in all the networks and comparing the distributions between

mutualistic and antagonistic (both predator-prey and parasite)

networks. Distribution width was measured using the standard

deviation of the c values, and the distribution of the standard

deviation of c in mutualistic and antagonistic networks is

significantly different (KS test, p = 0.029). Q-Q plots show the

relationship between two probability distributions, where a one-to-

one relationship on and x and y axes indicates the two

distributions are the same. Thus, a Q-Q plot of the standard

deviation of c for mutualistic and antagonistic networks (Figure 8)

shows that c standard deviation of mutualistic networks is more

likely to be intermediate-valued, corresponding to a near-uniform

distribution. In contrast, the c standard deviation of an antago-

nistic network is more likely to be relatively small or large,

corresponding to a more highly peaked distribution (as in Figure 7

left) or a distribution with multiple spread peaks respectively.

Figure 8. Q-Q plot of the standard deviation of consumer c parameter values in antagonistic (including parasitic) and mutualistic
networks.
doi:10.1371/journal.pone.0056277.g008

Building Blocks of Biodiversity
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Discussion

A recent study [38] suggested that a bipartite cascade model

consistently gave as good or better results than a niche-structured

model. Our results do not support this, instead showing that an

optimally parameterized niche model almost always outperforms

an optimally parameterized cascade model. This difference in

results probably occurs because the rules used to assign niche

positions and interaction niche parameters (center and width)

previously used [38] are highly non-optimal. Importantly, when

maximum likelihood parameter choices are made, the BPNM

performs consistently better than the bipartite cascade model.

Santamarı́a and Rodrı́guez-Gironés [34] showed previously a

combination of complementarity and cascade rules to be necessary

to reproduce observed network properties. We show here that a

unidimensional complementarity model is sufficient. One possible

explanation for this discrepancy might be that the BPNM is

probabilistic, while that of Santamarı́a and Rodrı́guez-Gironés is

not. However, the discrepancy is more likely due to the fact that

Santamarı́a and Rodrı́guez-Gironés used fixed uniform distribu-

tions for their model, while our results show that the niche value

distributions within empirical networks are highly non-uniform.

We show that a simple one-dimensional probabilistic niche

model is capable of closely replicating the structure of three broad

categories of ecological bipartite networks, regardless of funda-

mentally different structures across these networks, and that the

niche-structured model is a consistently better model than models

without constrained niches. For the first time we show that two

commonly identified themes within the ecological network

literature, nestedness and niche, are closely related, and that

using the niche concept is a simple and successful approach to

modeling the structure of multiple types of bipartite ecological

interaction networks.

Yet, we also find that there are clear differences in the niche

structure of mutualistic and antagonistic networks. In particular,

the distributions of niche centers are significantly different between

mutualistic and antagonistic networks. It is likely that the

consistent differences we show in the niche structure of mutualistic

and antagonistic networks describe how mutualistic and antago-

nistic processes produce different constraints on species behaviors

and interactions. This, in turn, directly influences our ability to

predict and preserve earth’s natural systems. Interactions between

species, and the structure of ecological networks those interactions

create, both have important consequences for the functioning and

robustness of ecosystems [2,3]. The ability of a simple one-

dimensional niche model to predict the structure of a wide range

of ecological interaction networks demonstrates that common

principles structure these systems. Discovering the order and

consistent variability underlying what sometimes appear to be

overwhelmingly complex systems is a vital step towards developing

our ability to predict and preserve species, ecosystems, and their

services.
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