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Abstract

Phenotype descriptions are important for our understanding of genetics, as they enable the computation and analysis of
a varied range of issues related to the genetic and developmental bases of correlated characters. The literature contains
a wealth of such phenotype descriptions, usually reported as free-text entries, similar to typical clinical summaries. In this
paper, we focus on creating and making available an annotated corpus of skeletal phenotype descriptions. In addition, we
present and evaluate a hybrid Machine Learning approach for mining phenotype descriptions from free text. Our hybrid
approach uses an ensemble of four classifiers and experiments with several aggregation techniques. The best scoring
technique achieves an F-1 score of 71.52%, which is close to the state-of-the-art in other domains, where training data exists
in abundance. Finally, we discuss the influence of the features chosen for the model on the overall performance of the
method.
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Introduction

Phenotype descriptions are important for our understanding of

genetics, as they enable the computation and analysis of a varied

range of issues related to the genetic and developmental bases of

correlated characters [1]. The literature contains a wealth of such

phenotype descriptions, usually reported as free-text entries,

similar to typical clinical summaries (see, for example, the Online

Mendelian Inheritance in Man (OMIM) knowledge base [2]).

More concretely, they take the shape of statements that describe

qualitative aspects (or sometimes abnormalities) of biological

states, or in our case, of anatomical entities, e.g., middle phalanges

of the hand are short. In order to take full advantage of this knowledge

and to work towards enabling diverse automated and rich

processing services, we first need to close the gap between their

plain textual representation and a machine-processable format.

More concretely, we need to perform the task of biomedical

named entity recognition (Bio-NER), with a focus on phenotype

descriptions. This would enable, among other services, genotype–

phenotype or disorder–phenotype correlation analysis and rea-

soning, i.e., the analysis of associations between gene mutations

and observed phenotypic characteristics – e.g., a mutation in the

FGFR3 gene leads to short stature, or of associations between

observed phenotypic features and disorders – e.g., short stature is

a feature of Achondroplasia.

There has been a significant amount of research performed,

over the course of the last few years, on modelling and formalising

phenotype descriptions. For example, the Human Phenotype

Ontology (HPO) project [3] has curated the most comprehensive

ontology of human phenotype descriptions to-date, consisting of

over 10,000 terms. Similar other projects have followed, e.g., the

Mammalian Phenotype Ontology [4]– concentrated on mamma-

lian phenotype descriptions – or the Elements of Morphology

Project [5]– focusing on phenotypic variations of the head and

face. Formalised phenotypic descriptions have then been success-

fully used for studying cross-species phenotype networks [6,7],

linking human diseases to animal models [8] or predicting

diagnoses using semantic similarity measures [9,10]. However,

all of the above-mentioned projects have either curated phenotype

descriptions manually, or have built tools that support the manual

curation process – we are currently not aware of any attempt to

extract such descriptions automatically from scientific literature.

The context of our research is provided by the SKELETOME

project [11], which aims to create a community-driven knowledge

curation platform for the skeletal dysplasia domain. Bone

dysplasias are a group of heterogeneous genetic disorders that

affect predominantly the skeletal development. Patients diagnosed

with such disorders suffer from complex medical issues that can be

described via clinical findings, e.g., pains in limbs, radiographic

findings, e.g., bilateral arachnodactyly and genetic findings, e.g.,

deletion mutation in FGFR3. One of the main features of the

SKELETOME platform is the semantic annotation of clinical

summaries (i.e., automatic extraction of and annotation of clinical

summaries with ontological entities), process that is currently

limited to concepts defined by HPO. We are, hence, interested in

developing mechanisms that identify skeletal phenotype descrip-

tions independently of their presence in a particular ontology.

Nevertheless, the same mechanism can also be employed to enrich

or populate current phenotype ontologies, or as a pre-processing
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step in mining disorder-phenotype associations in domains focused

on the skeletal and muscular system.

The task of biomedical named entity recognition aims to

automatically analyse free text (usually in the form of scientific

publications) and to extract ‘‘named entities’’ specific to a partic-

ular domain and goal. It is, in principle, the prerequisite step for

any advance processing tasks, including ontology population (i.e.,

creating instances of particular concepts in a given ontology) or

relation extraction (e.g., more concretely protein-protein interac-

tions). Over the past years, the Bio-NER field has flourished,

especially in areas such as gene/protein mention tagging or gene

normalisation, with an impressive number of approaches being

proposed. Currently, the state-of-the-art F1 scores are in the range

of 86%–87% and come closer to 90% if post-processing steps are

used [12].

In general Bio-NER represents a complex task due to non-

standardised naming schemes, ambiguity and evolution. However,

our goal of recognising phenotype descriptions adds a series of

additional domain-specific challenges, as listed next: [(i)] ambi-
guity, i.e., the same term may refer to multiple different entities –

for example, irregular ossification of the proximal radial metaphisis vs.
radial club hand – radial refers to the anatomical entity radius in the

former case and the anatomical coordinate radial in the latter, or

short long bones vs. long metacarpals – long acts as part of an

anatomical entity name in the former and represents a quality in

the latter. This domain also suffers from a special case of semantic

ambiguity in which the text requires human interpretation to

judge whether it represents or not a phenotype description that is

worth noting – e.g., 11 pairs of ribs or 6 fingers. use of
abbreviations – for example, segmentation defects in L4 - S1 use
of metaphorical expressions – e.g., bell-shaped thorax,

hitchhiker thumb, bone-in-bone appearance use of hedging
and various forms of qualifiers – e.g., subtle flattening and

squaring of the metacarpal heads, segmentation defects appear to affect L4-

S1 complex intrinsic structure – the lexical structure of

phenotype descriptions may take several forms. They may have

a canonical form, i.e., a conjunction of well-defined quality-entity

pairs – bell-shaped thorax or a non-canonical form, in which entities

and qualities are associated either via verbs (e.g., Vertebral-

segmentation defects are most severe in the cervical and thoracic regions) or

via conjunctions (e.g., short and wide ribs with metaphyseal cupping). At

the same time, each component of a phenotype description may

have a nested structure, as in flattening, underdevelopment, and squaring

of the heads of the metacarpal bones, particularly at metacarpal IV bilaterally.

All these challenges, and in particular the latter three, makes the

identification of the boundaries of phenotype descriptions partic-

ularly difficult.

As mentioned, the Bio-NER field consists of a wealth of

algorithms and methods, which can usually be classified into three

categories: dictionary-based, rule-based and statistical machine

learning methods. Dictionary and rule-based approaches achieve

satisfactory results, especially in the context of gene/protein

mention tagging, and rely on thesauri and manually crafted rules

to perform exact or partial matching. Unfortunately, such methods

(on their own) are not feasible for skeletal phenotype descriptions,

due to the ambiguous nature and complex intrinsic structure of

such descriptions. A combined approach could be envisioned, by

using manually created rules to recognise the structure of the

phenotype descriptions and complement them with quality and

anatomical dictionaries to spot the key concepts. However, such

rules are hard to maintain and even harder to create for complex

nested skeletal phenotypes.

A set of approaches that have proved to perform extremely well

in Bio-NER are the machine learning (ML) methods. They are

robust and versatile, and are capable to detect patterns that cannot

be easily expressed in rules and concepts that are not present in

dictionaries. The main drawback of ML methods is the necessity of

training data (that has to contain, in principle, a fair distribution of

positive and negative examples for the target classes), which in

some domains exist in abundance (see gene/protein NER [13,14])

while in others, e.g., our domain, is completely absent. As a side

remark, one could use HPO, for example, as a bootstrapping

dictionary in the training phase. However, this comprises only

clean and mostly canonical phenotype descriptions, and thus

covers only a fraction of all possible forms. HPO concepts cannot

be directly used for recognition in free text because they are

missing the surrounding context. Although the process of creating

a training corpus is cumbersome, and many see it as complex as

creating and maintaing rules in a rule-based approach, current

ML algorithms provide a much better value than any other

methods, even for smaller sized training corpora.

Most of the existing Bio-NER ML approaches create and use

models for a particular technique, such as, Support Vector

Machines (SVM) [15], Conditional Random Fields (CRF) [16],

Hidden Markov Model (HMM) or Maximum Entropy (MaxEnt)

(e.g., [17], [18], [19]). Lately, the research has shifted towards

combining several such methods into ensembles of classifiers, with

the goal of achieving higher performances [20]. Continuing this

trend, we propose an ensemble of four classifiers (two CRF and

Table 1. Statistics of the phenotype descriptions corpus.

Total number of figure captions 1,194

Total number of tokens 64,052

Average number of tokens per caption 53

Total number of phenotype descriptions 5,423

Average number of phenotype descriptions per caption 4

Average number of tokens per phenotype description 5

Maximum number of tokens in one phenotype description 31

Minimum number of tokens in one phenotype description 1

The corpus used for training the classifiers has been manually compiled from
395 random publications from three different academic journals. It consists of
1,194 image captions that describe 5,423 phenotype descriptions. The total
number of tokens in the corpus is 64,052, with an average of 5 tokens per
phenotype description. The longest phenotype description comprises 31
tokens, while the shortest consists of only one token.
doi:10.1371/journal.pone.0055656.t001

Table 2. Evaluation results for individual classifiers – with and
without domain-specific dictionaries.

Method Without dictionaries With dictionaries

P (%) R (%) F-1 (%) P (%) R (%) F-1 (%)

Mallet 76.93 65.51 70.76 74.91 63.99 69.02

CRF++ 41.71 53.65 46.93 41.33 53.58 46.66

YamCha1vs1 67.48 62.38 64.83 68.43 63.36 65.80

YamCha1vsAll 68.61 62.17 65.23 68.62 62.48 65.40

We can see that MALLET constantly outperforms all the other approaches, with
a margin of almost 5% without using dictionaries and almost 3% when using
domain-specific dictionaries. The surprising aspect is the decrease in
performance when using dictionaries as opposed to the setting that omits
them.
doi:10.1371/journal.pone.0055656.t002
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two SVM), in addition to experimenting with multiple aggregation

strategies, such as simple and paired set operations or simple

voting mechanism with veto.

This paper brings two general contributions to the phenotype

modelling and analysis domain: [(i)] we introduce and make

available an annotated corpus of skeletal phenotype descriptions –

to be used by researchers to advance Bio-NER methods in this

area, and we propose a first hybrid method for mining phenotype

descriptions from free text. As we will show, our approach achieves

very promising results, 71.52% F-1 score, comparable with the

state-of-the-art in other biomedical domains, where training data

does not represent an issue.

Finally, for clarification purposes, we need to underline that the

focus of our research described in this manuscript is the

recognition of phenotype descriptions in free text. Subject to the

specific goal, this step can then be followed by segmentation, if one

is interested in capturing entity-quality statements, or alignment, if

the goal is mapping to ontological concepts. As such, each of these

aspects represent research topics on their own and are, thus, out of

the scope of this manuscript.

Materials and Methods

Data
In order to train and test the classifiers used for recognising

phenotype descriptions, we have manually compiled a corpus of

figure captions from 395 random publications from the Springer

Paediatric Radiology Journal, the American Journal of Human

Genetics and the American Journal of Medical Genetics Part A.

We chose to use figure captions because: (i) they are easier to

collect and compile into a corpus, and (ii) phenotype descriptions

present within them follow the same structure and format as in

clinical summaries or main bodies of scientific publications. As

a remark, all figure captions are represented by plain text and do

not have a particular structure or format, except for the figure

number, which is not necessarily always present.

Statistics on the corpus are available in Table 1. It consists of

1,194 figure captions that capture a total of 5,423 phenotype

descriptions. On average, a figure caption has 53 tokens, i.e.,

around three sentences, and contains four phenotype descriptions.

Phenotype descriptions have, in average, five tokens per entry,

with the size ranging from one to 31. The corpus is available at:

http://purl.org/skeletome/corpora/pheno_corpus.

Composite set aggregations achieve a lower performance than

direct set operations, due to the use of the entire ensemble of

classifiers. The best result is, nevertheless, fairly close to the best

individual classifier performance. An interesting aspect is the

corrective role carried by MALLET in intersection settings. The

highest precision (70.34% and 70.02%) is achieved by combining

the intersection of MALLET with CRF++ (which has the lowest

individual results –35% less precision than MALLET) with the

intersection of the two YamCha classifiers, which behave fairly

similar.

The annotation of the phenotype descriptions has been

performed by a clinical geneticist, expert in bone dysplasias, using

the DOMEO [21] annotation platform. DOMEO provides

a versatile environment to collaboratively create and share

discourse or domain-driven stand-off annotations. No particular

annotation guidelines have been created for this task since, as

mentioned, the textual representation of phenotype descriptions in

figure captions is the same as in clinical reports or case studies

listed in publications, and the marking has been performed by an

expert. Also, from an expert interpretation perspective – similar to

gene or protein mentions – there are, in principle, no ambiguity

issues. The only two aspects that have been specified in the context

of the actual annotation process were the following: (i) leading

articles should be left out since they don’t provide any insights into

the semantics of the phenotype descriptions, and (ii) phenotype

descriptions, in particular the ones taking a non-canonical form,

should be complete, in order to enable further processing of their

semantics – e.g., including the verb that connects an anatomical

entity to a quality or that confirms or negates the phenotype

description. This last aspect is crucial for a correct automatic

segmentation, and later interpretation, of the phenotype descrip-

tions, and it is the one that makes the recognition process

particularly difficult.

Methods
Our method relies on an ensemble of four classifiers, trained

and tested on the above-described corpus. For training purposes,

phenotype descriptions within the corpus have been labelled

according to the BIO scheme, i.e., B – beginning of a phenotype

description; I – inside a phenotype description; O – outside

a phenotype description. Tests have been performed by training

individually each classifier via a ten-fold cross-validation with

stratification.

Classifiers. We have used the following packages to build the

four divergent classifiers:

N two Conditional Random Fields (CRF) chunkers: MALLET

[22] and CRF++ (http://crfpp.googlecode.com/). Both

packages are freely available and were used to train forward

parsing chunkers. MALLET has been trained without feature

induction and with the heuristic option for weights selection

(some-dense), while the CRF++ chunker has been trained with

the hyperparameter set to 3.5.

N two Support Vector Machines-based chunkers provided by the

YamCha package [23], both using multi-class classifiers

trained with a second degree polynomial kernel. The

difference between the two was the training method: one

was trained using the one vs. one method, while the other

using the one vs. all method.

Table 3. Evaluation results for the simple set aggregation
technique – with and without domain-specific dictionaries.

Aggregation Without dictionaries With dictionaries

P (%) R (%) F-1 (%) P (%) R (%) F-1 (%)

Mallet |
YamCha1vs1

64.61 78.44 70.86 64.24 78.49 70.66

Mallet |
YamCha1vsAll

65.42 78.33 71.30 64.58 77.90 70.62

YamCha1vs1 |
YamCha1vsAll

66.25 64.85 65.54 67.02 64.79 65.89

YamCha1vs1 \
YamCha1vsAll

70.74 59.71 64.76 70.80 61.05 65.57

Mallet \
YamCha1vsAll

89.06 49.35 63.51 87.91 48.57 62.57

The best scoring direct set operations are those that include MALLET in their
composition, which is in line with the individual classification results. The
italicised results demonstrate the effect of the set operations: union increases
the recall with almost 13%, while intersection increases the precision with
around 12%.
doi:10.1371/journal.pone.0055656.t003
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Aggregation strategies. In addition to individual chunking/

classification, we have also experimented with two different

aggregation schemes:

N set operations – results of the individual classifiers have been

treated as sets, which have then been combined using direct or

aggregated operations. Direct operations refer to union and

intersections between pairs of classification results (e.g.,

CFR++ | MALLET), while aggregated operations refer to

combinations of unions and/or intersections of paired

classification results (e.g., (CRF++ | MALLET) \ (Yam-

Cha1vs1 | YamCha1vsAll)).

N simple majority voting with veto – the winning result within

a simple majority voting is the one that receives 50% or more

votes. Since we have an even number of classifiers, we’ve

introduced the veto option, i.e., in the case of a tie or of

a complete disagreement, the winning result is provided by the

veto owner.

Features for classification. We used four types of features

to build classification models, detailed in the rest of this section.

Simple features consider the basic elements of a token, such as, the

prefix, suffix, lemma and part of speech. There are six particular

features we have used:

N the prefix of the token, i.e., the first n adjacent characters of the

token, for a variable n. For example, for n= 5 and the

‘‘flattening’’ token, the prefix would be: f fl fla flat flatt

N the suffix of the token - similarly to the prefix, but considering

the last n adjacent characters. E.g., g ng ing ning ening – for n= 5

and the token ‘‘flattening’’.

N two lemma features, one provided by a typical shallow natural

language processing framework (we’ve used GATE [24]) and

one provided by SPECIALIST Lexicon [25]

N two part of speech tag features, again, one provided by the

same shallow NLP toolkit, and one by the SPECIALIST

Lexicon.

Morphological features consider the internal structure of the token.

Here, we were interested in the presence of digits, vowels and

punctuation. Five features have been used:

N punctuation – signals the presence of punctuation characters in

the token, e.g., comma, period, etc.

N vowels – builds the shape of the token by replacing all

consonants with an arbitrary character. For example, ‘‘flat-

tening’’ is represented by –a–e-i–.

N digits – all digits in the token are replaced by an arbitrary

character (e.g., ‘*’). If no digits are present, the entire token is

replaced by a standard one, e.g., no*

N the shape of the token – formed by replacing all capital letters

with an arbitrary capital letter (e.g., ‘A’), all non-capital letters

by an arbitrary non-capital letter (e.g., ‘a’) and all digits by an

arbitrary digit (e.g. ‘0’). For example, the token ‘‘Flattening’’

would have the shape Aaaaaaaaaa.

N the brief shape of the token – a compressed version of the

shape where all the same adjacent characters are compressed

into one, e.g., for ‘‘Flattening’’ – Aa.

Dictionary-based features use external resources to signal the

presence of specific elements within the tokens. We’ve experi-

mented with six dictionaries, four generic ones and two domain

specific:

N ordinals – denotes the presence of ordinals, e.g., 1st, 2nd, etc

N conjuctions – denotes the presence of conjunctions, e.g., and,

or

N connectives – signals connective tokens, e.g., at, in, of, etc

N coordinates – shows the presence of coordinates, e.g., central,

left, etc

N anatomy – an unigram dictionary compiled from the

Foundational Model of Anatomy (FMA) [26] denoting

anatomical concepts.

N quality – an unigram dictionary compiled from the Phenotype

and Trait Ontology (PATO) [27] denoting qualities.

Token contexts. In addition to single token features, we’ve

experimented also with n-gram token contexts of variable sizes.

The context of a token is provided by the window of size n,

centred in the current token and considering the n=2{1
neighbouring tokens to the left and to the right. Within our

experiments, we’ve used window sizes ranging from 1 to 5.

Neighbouring tokens can be considered individually, thus resulting

in unigram contexts, two at a time – resulting in bigram contexts,

or three at a time – resulting in trigram contexts. There could be

Table 4. Evaluation results for the paired set aggregation technique – with and without domain-specific dictionaries.

Aggregation Without dictionaries With dictionaries

P (%) R (%) F-1 (%) P (%) R (%) F-1 (%)

(Mallet | YamCha1vs1) \ (CRF++ | YamCha1vsAll) 70.06 66.75 68.36 69.62 67.53 68.56

(Mallet | YamCha1vsAll) \ (CRF++ | YamCha1vs1) 70.05 66.97 68.48 69.76 67.53 68.62

(Mallet \ CRF++) | (YamCha1vs1 \ YamCha1vsAll) 70.34 65.91 68.06 70.02 66.72 68.33

doi:10.1371/journal.pone.0055656.t004

Table 5. Evaluation results for the voting aggregation
technique – with and without domain-specific dictionaries.

Veto owner Without dictionaries With dictionaries

P (%) R (%) F-1 (%) P (%) R (%) F-1 (%)

Mallet 66.14 77.84 71.52 65.29 77.95 71.06

CRF++ 44.10 70.73 54.33 43.78 71.53 54.31

YamCha1vs1 67.42 68.79 68.10 67.52 69.21 68.35

YamCha1vsAll 68.38 68.70 68.54 68.06 68.82 68.44

The results of the voting method are in line with the rest of the aggregation
methods. The highest score (71.52%/71.06%) is achieved by using MALLET as
veto owner.
doi:10.1371/journal.pone.0055656.t005
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multiple other configurations, however, we’ve only used these

three.
Results and Discussion

Experimental Results
We have performed an extensive evaluation of the ensemble

of classifiers by taking into account different combinations of

features, and hence different classification models. The evalu-

ation procedure was via ten-fold cross-validation with stratifica-

tion, to eliminate a possible bias. For each fold we have

calculated the Precision, Recall and F-1 score, while the final

evaluation metrics are represented by the average across the ten

folds. In the following sections we discuss the best-achieving

models within each category of aggregation techniques.

Figure 1. Evaluation results for MALLET ten-fold cross validation using single features. The graph groups the features according to the
categories used to describe them in the Materials and Methods section. We can observe that the simple and morphological features perform the best,
with the Prefix feature achieving an F-1 score of 66.22%. Among the token context features, the token bigrams with a window of 3 provides the best
configuration (almost 30% F-1). Dictionary-based features, both generic and domain-specific, have a poor performance, which is associated with their
lack of discriminative power.
doi:10.1371/journal.pone.0055656.g001

Table 6. Evaluation results for MALLET ten-fold cross
validation with leave-one-out feature.

Feature P (%) R (%) F-1 (%)

Prefix 61.59 52.59 56.74

Root (NLP) 75.72 64.50 69.66

M_Punct 75.06 64.17 69.19

M_Vowels 76.65 64.93 70.30

Root (LEX) 72.90 62.32 67.20

Suffix 76.07 65.60 70.43

POS (LEX) 75.01 64.48 69.34

M_Digits 75.69 64.98 69.93

M_Shape 76.66 64.50 70.06

M_Bshape 75.34 65.92 70.31

POS (NLP) 75.50 65.40 70.09

Token_Bi3 65.05 49.53 56.24

D_Generic 75.72 64.57 69.70

D_Domain 76.93 65.51 70.76

This overview shows the individual importance of each of the features in the
overall classification model. The large majority of features have very little
impact over the model, i.e., a decrease in performance of 1–2%. The only two
features that make a difference are the Prefix and the token context (Token_Bi3)
that affect the overall performance with almost 15%.
doi:10.1371/journal.pone.0055656.t006

Table 7. Comparative overview of the evaluation results –
with and without domain-specific dictionaries.

Veto owner Without dictionaries With dictionaries

P (%) R (%) F-1 (%) P (%) R (%) F-1 (%)

Individual
classification (Mallet)

76.93 65.51 70.76 74.91 63.99 69.02

Simple set operation 65.42 78.33 71.30 64.24 78.49 70.66

Aggregated set
operation

70.05 66.97 68.48 69.76 67.53 68.62

Voting 66.14 77.84 71.52 65.29 77.95 71.06

This comparative overview shows the difference in performance between all
aggregation techniques. We can see that this difference is of almost 1%
between the best performing individual classifier and the best aggregation
technique – the voting mechanism.
doi:10.1371/journal.pone.0055656.t007
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Individual classifiers. Table 2 lists the results achieved by

the individual classifiers with and without the use of the two

domain-specific dictionaries (i.e., anatomy and quality). We can

see that MALLET has constantly outperformed all the other

methods, with F-1 scores of 70.76% and 69.02% respectively,

which demonstrates the superiority of the CRF package in tag

labelling. The surprising aspect of this round of tests has been the

decrease in performance of the MALLET chunker when using

domain-specific dictionaries (21.74%). The same phenomenon

also appears in the case of CRF++, while the two YamCha

classifiers had an opposite behaviour – behaviour which we would

have considered more natural.

These results have been achieved using the following combina-

tions of features:

N MALLET: all simple and morphological features, the generic

dictionaries and a single token context feature comprising of

token bigrams with a window of 3;

N CRF++: all simple and morphological features, the generic

dictionaries and two token context features: token bigrams

with a window of 3 and token unigrams with a window of 5;

N YamCha1vs1 and YamCha1vsAll: all simple and morpholog-

ical features, the generic dictionaries and a single token context

feature: token unigrams with a window of 5.

Set operations. Two types of aggregation techniques have

been used in the context of set operations: simple set operations

between pairs of classifiers and composite set operations between

pairs of simple set operations. In addition, two set operators have

been used: union and intersection. The union of two classification

results considers all outcomes to be correct and hence maintains

everything. The effect of the union operator is usually visible in the

increase of recall. On the other hand, intersection retains only

those outcomes that are present in both classification results, hence

increasing the overall precision.

Table 3 presents the results achieved via direct set operations.

Naturally, the best results have been achieved by pairs that

contained the MALLET chunker – the best in the individual

category. The results of both unions of MALLET with the

YamCha classifiers outperform the individual classification with

0.10% and 0.54% without using domain-specific dictionaries, and

with 1.64% and 1.62% when using the dictionaries. The effect of

the set operators can be clearly seen in these results. The union

operations have increased the recall with almost 13% when

compared against the individual MALLET results, at the expense

of precision, which has dropped proportionally. Similarly, the

intersection of MALLET with any of the YamCha classifiers has

boosted the precision, reaching almost 90% without the use of

domain dictionaries.

The second category of set operations has achieved scores lower

that the direct one, because of the presence of CRF++ in the

aggregation. Table 4 lists a series of composite set operations.

Among these, the best scoring one is the intersection between the

unions of MALLET and YamCha1vAll, and CRF++ and

YamCha1vs1, respectively (68.48% F-1), which came close to

the best F-1 achieved individually by MALLET. An interesting

result was the third one in Table 4, where we can see the highest

achieved precision (with or without dictionaries) in this round of

tests. Taking into consideration the results of the direct set

operations, it seems that intersection of MALLET with any of the

other classifiers performs extremely well, even if the initial

precision of the individual classifiers is fairly low – this has been

the case of CRF++ that achieved a 41.71% precision, however,

when combined with MALLET, the resulting precision reached

87%. Consequently, we can can conclude here that MALLET is

an extremely valuable tool for the chunking task in scenarios that

require a very high precision.

Voting mechanism. As already mentioned, the voting

mechanism used a simple majority aggregation, with a veto

option in the case of a perfect tie or complete disagreement.

Results of this scheme are presented in Table 5, listed according

to the veto owner. Again, the best achieving classifier is the one

having MALLET as the veto owner, in both categories (with or

without domain-specific dictionaries). There are two remarks

that are worth noting here: (i) when MALLET is the veto

owner, the voting mechanism produces a reverse of scores in

precision and recall – more concretely, the precision has

dropped almost perfectly proportional with the increase in

recall; and (ii) the increase in F-1 when compared against the

individual classification results has been more remarkable when

CRF++ is the veto owner, with almost 8% than in the case of

the ensembles having the other classifiers as veto owner, i.e.,

YamCha1vs1 and YamCha1vsAll (almost 3%) and MALLET

(almost 1%).

Discussion

In order to get a better understanding of the role and

importance of the features used for classification, we’ve performed

two additional experiments with the MALLET chunker. In the

first experiment we’ve trained MALLET with each individual

feature from the overall best model (in addition to a couple more

that were part of the models of the other classifiers), while in the

second experiment, we’ve trained MALLET using a leave-one-out

setting, i.e., we’ve used the best MALLET model from which

we’ve left out one feature at a time. Both experiments used a ten-

fold cross validation with stratification.

Figure 1 depicts the F-1 scores achieved in the one-feature

setting. For an easier analysis, we’ve grouped the features

according to the categories used to describe them in the previous

section. It can be clearly seen from this graph that the most

important feature of the model is the Prefix feature, which alone

has achieved an F-1 score of 66.22% – i.e., around 5% less than

the entire MALLET model. On the other hand, it seems in

general that most of the simple and morphological features achieve

reasonable results, in the range of 40% F-1, exceptions being the

digits and punctuation features that have performed far less

satisfactory. This is, however, not surprising since the elements

that compose these features are not as present in the data as are

the elements targeted by the other features. A particularly negative

result has been the one of the Root (LEX) feature, which we have

expected to perform at least as good as the Root (NLP) feature. A

closer look into this aspect has revealed that the vast majority of

words present in the corpus were, in reality, absent from the

SPECIALIST lexicon, and consequently have been represented in

the model by the same token (i.e., @). Good results are achieved

by the most discriminant features, and hence the uniform

representation of the tokens by this feature has provided a clear

explanation behind the poor F-1 score. A similar behaviour (yet

with a smaller difference) is observable also in the case of POS

(LEX) vs. POS (NLP). Here, the difference has been provided by

the wealth of representations used by the features: the SPECIAL-

IST lexicon represents part of speech tags via a fairly concise set of

tags (e.g., noun, adj, …), while an NLP framework (GATE, in our

case) uses a more varied and specific set of tags (e.g., NN, NNP or

NNS – all denoting nouns).

In the token context category, we’ve experimented with

different configurations – the graph depicts only the best
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performing configurations in the unigram, bigram and trigram

settings. We can see that the Token_Bi3 configuration outper-

forms the other two, and overall it has actually improved the final

classification results, unlike the other options (or combinations of

them) that have decreased the performance. Finally, the graph

shows that all the dictionary features achieve poor results,

although not surprisingly since they suffer from the same issue

like the POS (LEX) or Root (LEX) features.

An even better view of the role of the features in classification is

provided by the leave-one-out setting. Table 6 lists the achieved F-

1 scores, where the Feature column presents the feature that has

been left out. Here, we can clearly see the decrease in performance

when the Prefix or Token_Bi3 features are left out, hence proving

their importance for the classification model. It is also interesting

to observe that the model without the Prefix feature performs

worse than the Prefix feature alone. The rest of the features have

little impact over the model providing an increase of up to 1% to

the overall F-1 score.

The experiments presented in these sections lead to a series of

major conclusions. Firstly, hybrid classification methods depend

heavily on the individual performance of the underlying classifiers

used for aggregation. On the other hand, such ensembles of

classifiers are able to exploit the diversity and consistency among

the individual elements to reach a final decision, which is usually

better than the one of these single classifiers. In our case (see

Table 7), two aggregation schemes – the direct set operations and

the voting mechanism – have performed better than the best

individual classifier, with the remark that the third one would have

achieved similar results if it wouldn’t have relied also on the worst

performing classifier (i.e., CRF++). Nevertheless, the efficiency and

applicability of such hybrid methods requires consideration on

a per use-case basis.

Secondly, as already noted, our experiments have showed that

MALLET performs consistently, in addition to achieving excellent

precision results in diverse aggregation schemes, and hence, should

be always considered as foundation for any ensemble. Finally, as

we have shown, the use external domain specific dictionaries has

very little impact over the classification results. Furthermore, this

impact can be sometimes negative, thus making the presence of

such features, in practice, undesirable, while on the positive side,

eliminating dependencies on domain-specific features.

Conclusion
In this paper, we have introduced the first annotated corpus of

phenotype descriptions and provided a first hybrid method for

recognising such features in free text. Our hybrid method relies on

an ensemble of four classifiers (two CRF and two SVM) and has

used different aggregation techniques to improve the performance

when compared against the one of the individual classifiers.

Experimental results have showed that, without using domain-

specific dictionaries the best hybrid approach can achieve an F-1

score of 71.52%, which decreases with the introduction of such

dictionaries. Overall, our experiments lead to the conclusion that

using an ensemble of classifiers for chunking tasks may improve

the overall accuracy, however, their performance is dependent on

the goal and underlying data characteristics.

For the near future, we plan to enrich the phenotype

descriptions corpus with annotated case studies extracted from

scientific publications. In addition, we will make the ensemble

available as a REST service and as an integrated module of the

upcoming DOMEO [21] v2 platform.
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