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Abstract

Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are
influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable
over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of
understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of
returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine
environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook
salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship
between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative
importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described
using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as
well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did
not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon
spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple
types of data and that no single indicator can represent the complex early-ocean ecology of salmon.
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Introduction

The adult spring run of Chinook salmon (Oncorhynchus

tshawytscha) in the Columbia River, U.S.A. is comprised mostly

of hatchery fish [1], but also includes wild fish from Evolutionarily

Significant Units (ESUs, which are the basic management unit for

Pacific salmonids) listed under the Endangered Species Act [2].

After spending a year in freshwater, these fish migrate downstream

and spend one to five years in the ocean, though the majority

come back to the Columbia River after two years [3]. Recent

research has shown that juvenile salmon survival in the first few

months after leaving freshwater is one of the largest determinants

of cohort size [4–7]. Although size-selective mortality occurs at

least through the first ocean year [8], [9], specific mechanisms of

mortality are not well described, making estimates of the number

of fish returning to the river elusive. Harvest of adults is divided

among Native American ceremonial and subsistence, recreational,

and commercial fisheries [10]. The harvest allocation and

schedule incorporates a sliding scale, dependent on the total run

size of upriver spring Chinook salmon. Therefore, a pre-season

forecast of the number of adult fish returning to the Columbia

River is required each year to determine harvest quotas for the

various user groups.

Successful recovery and conservation of these threatened and

endangered salmon, while maintaining the availability of unlisted

fish for harvest, requires a good understanding of biological,

chemical, physical and hydrological dynamics, each of which can

greatly influence population dynamics [11]. These processes are

often driven by a wide array of biotic and abiotic variables,

resulting in complex interactions between a species and its

environment. Yet common statistical and modeling approaches

encourage relatively simple designs [12] that often limit the

number of predictor variables. As a result, these complex

ecological dynamics are often modeled with a relatively simple

set of predictor variables [13–15]. Moreover, in many ecological

studies, limits on both data availability and mechanistic under-

standing can lead to the use of model covariates somewhat

removed from the specific ecosystem processes involved.

Research and management groups currently make pre-season

predictions of adult salmon returns using methods with varying

degrees of complexity and accuracy. These include moving

averages [14], generalized additive models [15], [16], spawner-

recruit relationships [17], time series analysis [18], [19], and
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neural networks [20]. One of the simplest and most common

methods involves a sibling regression model, which uses the

abundance of returning precocious males (i.e., for spring Chinook,

these are fish that spend only one winter in the ocean, often

referred to as jacks) as an indicator of adult returns. Such models

are based on a correlation between jack counts in one year and

adult counts the following year [13], [21]. These sibling models

have a variable degree of accuracy, mainly due to their reliance on

a stable age structure in salmon populations [10], an assumption

that does not always hold [3]. Furthermore, these models require

waiting until the year prior to the adult return year before making

a prediction. If the marine environment is a large driver of cohort

size, indicators of ocean conditions during the year juvenile salmon

migrate from the river ought to be useful in predicting adult

returns 2 and 3 years later, which would provide managers the

ability to generate multi-year planning scenarios.

In recent years, data representing various aspects and processes

of the marine ecosystem have been collected and are proving to

show strong relationships with salmon survival [22–24]. Although

encouraging, this presents a dilemma for researchers: how does

one incorporate newly-available, often multi-faceted data into

analyses that have traditionally favored simplicity? Complicating

the situation is the fact that many existing predictor variables exist

in long time series’, whereas many of the promising new indicators

of the marine environment only go back a decade or less [24].

Given the vast area and high cost of sampling the coastal

environment, determining direct, causative factors of marine

mortality through experimentation was impractical. Since 2000,

we have surveyed the coastal environment in an attempt to better

understand the physical and biological processes that relate to

early marine survival of Pacific salmonids [24] (Figure 1). Through

this effort, we identified multiple correlates, or ‘‘indicators,’’ of

salmon survival. However, the variance in salmon returns

explained by each of these metrics differs significantly. Moreover,

as each indicator represents part of an ecosystem with multiple

complex interactions, many of these metrics covary (i.e., they are

not independent) and this multicollinearity violates many of the

assumptions in most statistical procedures. We therefore needed

methods to summarize indicators of the marine environment and

examine how they relate to salmon returns.

In an effort to collate diverse and complex information into a

single management tool, researchers at NOAA Fisheries and

Oregon State University used 18 marine indices during the

juvenile migration year in essentially a qualitative manner to

estimate salmon returns (http://www.nwfsc.noaa.gov/

oceanconditions) [24]. This approach has two main benefits: 1)

it avoids the pitfall of relying too heavily on one or two covariates

and 2) it allows prediction two years in advance. However, there

are some aspects of this work that could be improved upon.

First, the covariates, or indicators, included in the above analysis

represent a restricted subset of potential indicators, using measures

of the Pacific Decadal Oscillation (PDO), the Oceanic Niño Index

(ONI), temperature and salinity of coastal waters, coastal

upwelling, copepod community structure, and the catches of

juvenile Chinook and coho salmon in surveys conducted during

their first summer at sea. However, we know that many other

ecological processes, such as predator and forage fish abundance

[25], prey availability [22], [26], [27], and physiological condition

and ontogeny [28], [29], are important to salmon growth and

survival during their first ocean year, and should be useful in

forecasting. These are not used in the Peterson et al. [24]

approach because the time series are not as long as the ones used

in the qualitative forecasting (the 18 indicators used by Peterson

et al. [24] are compiled from 1998 through 2011, whereas many

other indicators only go back to 2000). Second, the non-

parametric ‘‘mean rank’’ method gives equal weight to all of the

indicators, and therefore does not take advantage of the unequal

predictive power of the various indicators, nor does it address the

multicollinearity among indicators.

In this paper, we employ a multivariate statistical technique that

can a) incorporate a large number of potential indicators, b) give

higher weights to indicators that are more related to salmon

returns, and c) appropriately handle the multicollinearity among

indicators. Our goal was to determine the best combination of

indicators to explain the abundance of spring Chinook salmon

returning to the Columbia River each year. The multivariate

techniques we used resulted in two important products: a pre-

season forecast of adult salmon returns, primarily for management

of the fisheries, and a measure of indicator importance, which can

improve understanding of ocean ecology and guide future marine

research. Moreover, the pre-season estimates obtained through

these analyses can be used as a starting point for more detailed in-

season management adjustments [30], [31].

Methods

Data
We collated 31 indicators that represent some aspect of the

physical or biological conditions in the marine environment

(Table 1). We tried to encompass many types of indicators varying

in spatial extent from large portions of the North Pacific Ocean

(e.g., the Pacific Decadal Oscillation (PDO) and Oceanic Niño

Index (ONI)) to local summaries of biological information (e.g.,

copepod species richness off the coast of Newport, OR). Temporal

coverage varied from biweekly research cruise data, to indicators

computed from monthly data (PDO, ONI, upwelling), to

intermittent summer research cruises (Figure 1). We assembled

data for yearling Chinook salmon smolt out-migration years 2000–

2010 (using a 2-year lag, this represents return years 2002 through

2012).

We sorted the indicators into five categories based on spatial

extent and mechanistic relationships with salmon (Table 1,

Figure 2). Category 1 includes the large-scale oceanic and

atmospheric variables such as the PDO and the ONI. Category

2 contains ten indicators that represent more local or regional

variables such as sea surface temperature (SST.Buoy46050,

SST.Nov.Mar, and SST.May.Sep), upwelling (PhysTransition,

UpwellingAnomaly, and UpwellSeasonLength), or deep water

conditions (DeepTemp and DeepSalinity). Two of the Category 2

indicators (DARTFlow and DARTTemp) characterize informa-

tion from the Columbia River (representing the environment that

salmon inhabited just prior to migrating into the ocean). Category

3 (13 indicators) represents ecosystem processes or attributes

related to growth and feeding, such as copepod metrics

(CopRichness, NCopAnomaly, NH05CCI, BioTransition, and

June CCI.BPA), ichthyoplankton (IchthyoBiomass and

IchthyoCI), and salmon diet and condition (MayChDiet, JuneCh-

Diet, MayChCond, JuneChIGF, Age1Anchovy, and JunBongo-

Biomass). Only two indicators (AdultHake and RsalCh) are in

Category 4 (representing predation and disease), exemplifying the

lack of data on salmon predators. Finally, Category 5 contains

three indicators of cohort abundance (JunChCatch, CanChCatch,

and ChJacks). These metrics are counts of siblings (i.e., from the

same cohort as the response variable). We point out the distinction

here between jacks (precocious adult males, ages 1–2), which were

part of the predictor data set, and adult Chinook salmon (age 3–5),

which was the response variable.

Multivariate Models of Salmon Returns
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Each indicator was chosen specifically for its potential

mechanistic relationship to salmon survival. Indicators were used

to describe returns of spring Chinook salmon to specific ESUs (see

below). Many indicator data sets were collected via our coastal

salmon surveys, which have been conducted almost every May,

June, and September since 1998 (Figure 1; see Peterson et al. [32],

Brodeur et al. [33] for details on this survey; data were collected

under Endangered Species Act Section 10 permit #1410-7A).

Other indicator data came from various coastal surveys, and

details regarding these sampling efforts can be found in Emmett

et al. [25]. To maximize performance in multivariate analyses, we

performed an initial check for normality for each indicator,

natural-log transformed those indicators with a non-normal

distribution (Table 1), and scaled all indicator data to have a

mean of zero and standard deviation of one.

In separate analyses, we modeled three response variables

representing different portions of the spring Chinook salmon run

(Table 2). The first was the annual return of adult spring Chinook

salmon, which represents the counts of fish at Bonneville Dam (the

first dam on the Columbia River that salmon must pass during

their return migration to spawn) through June 15th plus the

estimated number of fish harvested in the lower river [10]. Ideally,

we would have modeled marine survival (smolt to adult return

rates), as we believe most of our marine indicators relate most

directly to survival, but the lack of good estimates of smolt

abundance precluded this. However, using adult returns as the

response variable has direct management implications, as pre-

season harvest levels and dates are set based on forecasts of this

quantity.

The other two response variables approximate returns of

specific adult Chinook salmon ESUs. The first was adult salmon

counts at Priest Rapids Dam, which encompass the endangered

Upper Columbia River spring-run Chinook salmon ESU, and the

second was adult counts at Ice Harbor Dam, which encompass the

threatened Snake River spring/summer-run Chinook salmon

ESU. These latter two response variables were subsets of the first,

Figure 1. Map of the study region. Sampling locations are shown for the Salmon and Predator Surveys, the NH05 site, and Buoy 46050.
doi:10.1371/journal.pone.0054134.g001
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Table 1. Name, category, and description of all indicators used in the analysis.

Indicator Description

Category 1– Large-Scale Oceanic and Atmospheric (N = 3)

PDO.Dec.Mar Standardized values for the PDO index, derived as the leading PC of monthly SST anomalies in the North Pacific Ocean, poleward
of 20uN. Values are summed from December the previous year through March of the ocean entry year, http://jisao.washington.
edu/pdo/PDO.latest

PDO.May.Sep Standardized values for the PDO index, derived as the leading PC of monthly SST anomalies in the North Pacific Ocean, poleward
of 20uN. Values are summed from May through September during the ocean entry year, http://jisao.washington.edu/pdo/PDO.
latest

ONI.Jan.Jun Anomaly from the Nino 3.4 region, averaged from January through June of the ocean entry year, http://www.cpc.ncep.noaa.gov/
data/indices/

Category 2– Local and Regional Physical (N = 10)

SST.Buoy46050 Annual anomalies of sea surface temperatures (SST) from Buoy 46050: Stonewall Banks –20 NM west of Newport, OR (Figure 1)

SST.Nov.Mar Average seasonal SST from biweekly cruises off of Newport at NH05 from November the previous year through March of the
ocean entry year (Figure 1)

SST.May.Sep Average seasonal SST from biweekly cruises off of Newport at NH05 from May through September of the ocean entry year
(Figure 1)

PhysTransition The date on which deep water colder than 8uC was observed at the mid shelf (station NH05, Figure 1)

UpwellingAnomaly A measure of upwelling anomalies for 45uN 125uW averaged from April through May of the ocean entry year, http://www.pfel.
noaa.gov/products/PFEL/modeled/indices/upwelling/NA/data_download.html

UpwellSeasonLength Same data as above, but indicates the elapsed time between the begin and end of the upwelling season, estimated from the
cumulative upwelling index following Bograd et al. [54]

DeepTemp Mean temperature at 50-m depth at station NH 05 (Figure 1, average water depth 60 m) averaged over all biweekly cruises from
May to September of the ocean entry year

DeepSalinity Mean salinity at the 50-m depth at station NH 05 (Figure 1) averaged over all biweekly cruises from May to September of the
ocean entry year

DARTFlow Average daily flow at Bonneville Dam during April and May of the ocean entry year, http://www.cbr.washington.edu/dart/river.
html

DARTTemp Average daily temperature at Bonneville Dam during April and May of the ocean entry year, http://www.cbr.washington.edu/
dart/river.html

Category 3– Growth/Feeding (N = 13)

CopRichness Average number of copepod species in a plankton sample averaged from May through September of the ocean entry year at
NH05 (Figure 1), for further detail on the relationships between copepod species richness and oceanographic conditions, see
Hooff and Peterson [55]

NCopAnomaly Biomass anomaly of northern species of copepods, May through September of the ocean entry year

NH05CCI Copepod Community Index (CCI), copepod community composition Non-metric Multidimensional Scaling (NMDS) x-axis scores
of copepod community composition from biweekly surveys at Newport line (NH05; Figure 1), from Keister et al. [56]

BioTransition Day of year when a northern (cold–water) copepod community first appeared at station NH 05 (Figure 1). We call this this
‘‘biological spring transition’’

IchthyoBiomass Average winter ichthyoplankton biomass (mg C61000 m23) from the Newport Line biweekly surveys (Figure 1), January through
March of the ocean entry year, restricted to the top five items in salmon diet

IchthyoCI Winter ichthyoplankton species community ordination score from an NMDS, January through March of the ocean entry year,
restricted to the top five items in salmon diet

MayChDiet May Chinook salmon diet species community [22]. These are ordination scores from an NMDS analysis on species composition –
the particular direction of the association with salmon returns is therefore arbitrary

JuneChDiet June Chinook salmon diet species community [22]. These are ordination scores from an NMDS analysis on species composition –
the particular direction of the association with salmon returns is therefore arbitrary

MayChCond Length-weight residuals, based on all yearling Chinook caught in May during the Salmon Survey

JuneChIGF Average insulin-like growth factor (IGF) from yearling Mid- and Upper Columbia River spring Chinook salmon caught in the
Salmon Survey

JuneCCI.BPA Copepod Community Index (CCI). Consists of vertical net copepod community composition NMDS x-axis score from all June
Salmon Survey stations

JunBongoBiomass* Average biomass in Salmon Survey bongo net hauls, restricted to potential prey items for juvenile salmonids

Age1Anchovy* Age-1 anchovy density (No./km towed ,125 mm FL) caught in May and June during the Predator Survey the year following
salmon ocean entry (these fish represent the survivors of the cohort that would have been salmon prey size (30–80 mm) during
the ocean entry year [57] [No cruises were done in May or June 2010, value for this year was estimated as the mean of all other
years]

Category 4– Predation/Disease (N = 2)

AdultHake* Adult hake density (No./km towed .300 mm SL) caught during the Predator Survey [25]

Multivariate Models of Salmon Returns
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as fish counted at Priest Rapids Dam and Ice Harbor Dams also

contribute to the Bonneville Dam count. We included these ESU-

related response variables to show how different stock groups are

modeled with different variable weighting, and also to allow

between-ESU comparisons, which can be ecologically informative.

For example, some indicators used in the analyses may be more

appropriate for one ESU or the other, and the multivariate

approach described here can help tease this apart. Data from all

three Chinook salmon response variables were natural-log

transformed prior to analysis.

Statistics
As adult return data were not available for the 2010 out-

migration year, we used data from the 2000 through 2009 out-

migration years for model fitting. With 10 years of adult salmon

return data and 31 indicators, multiple regression was not an

appropriate tool. Even if there were only a few indicators, their

potential multicollinearity would present difficulties for a typical

regression analysis. To optimally and appropriately use the

collective information in the indicator data set, we used two

multivariate statistical methods to relate the indicator data to the

salmon return data: principal component regression (PCR) and

maximum covariance analysis (MCA). After extensive testing on

simulated data with known response variables, PCR and MCA

were chosen from a longer list of potential multivariate methods,

including stepwise selection of indicators and partial least squares

regression, because they performed at least as well as the others

but had fewer complications and relied on fewer assumptions.

The first step in PCR is to perform principle component

analysis (PCA) on the indicator variables. The objective of PCA is

to summarize the variance (or structure) in a dataset with as few

dimensions as possible by taking linear combinations of the

original indicators, which are known as principal components

(PCs) [34]. For each PC, the coefficients of the indicators are

known as the PC’s ‘‘loadings’’. For these data, PCA was

appropriate because it can represent almost all of the variance

in the indicators in a small number of new variables. Another

important feature of PCA is that the resulting PCs are orthogonal,

which eliminated the problem of multicollinearity in a regression

using the original indicators.

In a procedure known as principle component regression (PCR),

w used the PCs obtained from PCA as predictor variables in a

linear regression analysis (PCR) of adult salmon returns [35].

Because PCR maximizes variance in the indicator data set without

regard to relationships with the response variable (i.e., adult

salmon returns), it is possible that the first few PCs obtained from a

PCA, although representing the greatest amount of variation in

the indicator matrix, are not the best predictors of salmon returns.

One option in this case is to use backwards stepwise elimination of

PCs, keeping only those that contribute significantly to the

regression [36]. However, there is a trade-off between keeping

more PCs, which improves the model fit, and over-fitting. To

remain conservative in model fitting, we used a backwards

stepwise selection process on the PCs using Akaike’s Information

Criterion corrected for small sample size (AICc) to determine

which subset of PCs fit the data in the most parsimonious way

[36]. We also considered only the first five PCs as potential

independent variables in the PCR, which represented over 88% of

the variance in the original 31 indicators.

The second method, MCA, is similar to PCR except that it first

calculates the covariance matrix between the indicators and the

response, and then runs a PCR on the covariance matrix (as

opposed to the indicator matrix). For any single response vector

(i.e., a particular salmon population), MCA provided only one

principal component. Therefore, there was no need for AICc

selection of PCs, and a simple linear regression was performed

between the lone PC and salmon returns. This analysis is

mathematically identical to calculating a weighted average

indicator vector using the covariance values as weights. In this

sense, it is directly comparable to, yet an improvement upon, the

mean rank analysis currently used [24].

To determine model performance for PCR, we calculated the

fitted R2 of the model. However, it is inappropriate to use the R2

from a fitted MCA model as a measure of model performance

because MCA uses information from the response variable in the

model (via the covariance matrix). We therefore ran a complete

leave-one-out cross-validation for both the PCR and MCA

models. From this, we sequentially removed each year, recalcu-

lated the PCs and reran the regressions, and calculated the root

mean squared error of prediction (RMSEP) to use for model

comparison and performance [37].

To address which indicators, or sets of indicators, best explain

adult spring Chinook salmon returns to the Columbia River, we

quantified the relative contribution to the regression of each of the

indicators [34]. Specifically, we multiplied the squared loadings

from the PCA (since the squared loadings sum to the eigenvalue,

this represents the indicator-specific proportion of overall variance

accounted for by each PC) by the semi-partial correlation

coefficient for each PC (i.e., the correlation between each PC

and the response variable). When summed across PCs (i.e., for

each indicator), this provided the total amount of variance in the

response variable that was explained by each indicator. We

applied the same procedure for MCA, but it was simplified

somewhat because there was only one PC.

Table 1. Cont.

Indicator Description

RsalCh* Renibacterium salmoninarum prevalence in yearling Chinook salmon May through June, obtained from samples collected during
the Salmon Survey

Category 5– Cohort Abundance (N = 3)

JunChCatch* Average catch of Chinook salmon in the June Salmon Survey (fish/km)

CanChCatch* Catch per unit effort for juvenile Chinook salmon off the west coast of Vancouver Island in June and July (median value of the
bootstrap distribution) [52]

ChJacks* Number of spring Chinook salmon jacks (precocious males) counted at Bonneville Dam the year prior to adult returns (same
cohort as response variable, lagged by 1 year), http://www.cbr.washington.edu/dart/river.html

*variables were natural-log transformed prior to analysis.
doi:10.1371/journal.pone.0054134.t001
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As many of the indicators are similar in spatial/temporal scale

and some have a similar ecological interpretation, we averaged the

indicator importance values by category. We used the indicator

importance from MCA in this summary for two reasons. First,

loadings obtained from PCR can be sensitive to inclusion/

exclusion of particular indicators. In contrast, the loadings

obtained from MCA, which are directly related to the covariance

between each indicator and the response variable, are less likely to

shift around in future analyses. Second, variable importance values

from MCA were specific to the response variable used (because the

loadings were informed by the response), which allowed us to

compare the relative importance of indicators across response

variables.

Results

There was a high degree of multicollinearity within the

indicator data set, which resulted in an efficient reduction of

dimensions using PCA. Statistically, only the first PC was

significant (determined through a Monte Carlo randomization

test [38], not shown), accounting for over 52% of the variance in

the original indicator space (Figure 3). Comparison of model fit

using AICc also suggested that only PC1 should remain in the

Figure 2. Time series of the 31 indicators, organized by category. All indicator data were scaled to have a mean of 0 and a standard deviation
of 1. Indicator categories include 1) large-scale oceanic and atmospheric, 2) local and regional physical, 3) growth/feeding, 4) predation/disease, and
5) cohort abundance.
doi:10.1371/journal.pone.0054134.g002

Multivariate Models of Salmon Returns
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models. It should be noted, however, that some of the less

significant PCs were also correlated with the salmon return data

(with just 10 data points, AICc penalized the model greatly for

each additional parameter). Although all 31 indicators contributed

to PC1, there was more than an order of magnitude difference

among the relative contributions, exemplifying the power of this

analysis over taking a simple average of the indicators.

Model fits were strikingly similar between PCR and MCA

(Table 3), despite the different weighting schemes used by these

two methods. Predictions, 95% prediction intervals, and RMSEPs

were almost identical between PCR and MCA. We scaled the

RMSEP to the average observed returns so we could compare

relative model performance across response variables. The models

performed much better for the two response variables of greater

magnitude (larger returns); the scaled RMSEPs from both PCR

and MCA were 0.2 for spring Chinook salmon entering the mouth

of the Columbia River and 0.17 (PCR) and 0.18 (MCA) for counts

at Ice Harbor Dam (Table 3). For counts at Priest Rapids Dam,

the scaled RMSEPs were about twice as large, at 0.38 and 0.37.

Whether this was due to higher interannual variation (i.e., random

noise or observation error) in the smaller stock, a poorer

relationship with the indicators, or some combination of these is

Figure 3. Proportion of variance explained. Proportion of variance in the original indicator dataset explained in by each principal component.
doi:10.1371/journal.pone.0054134.g003

Table 2. Chinook salmon adult return data.

Juvenile migration Year Adjusted Counts at Bonneville Dam Counts at Ice Harbor Dam Counts at Priest Rapids Dam

2000 335,214 111,814 34,066

2001 242,605 99,044 17,441

2002 221,675 89,970 12,890

2003 106,911 36,866 14,148

2004 132,583 33,974 8,535

2005 86,247 36,063 6,708

2006 178,629 76,809 11,784

2007 169,296 79,291 13,469

2008 315,345 130,771 30,539

2009 221,157 96,064 15,246

2010 203,063 86,139 19,495

Mean 201,157 79,710 16,756

Spring Chinook salmon counts at Bonneville Dam from Jan 1st through Jun 15th adjusted by estimated lower river harvest (wdfw.wa.gov/fishing/cre/staff_reports.html),
counts at Ice Harbor Dam from Jan 1st through Aug 11th, and counts at Priest Rapids Dam from Apr 15th through Jun 13th (www.cbr.washington.edu/dart/adultruns.
html). All Chinook salmon counts were natural-log transformed for analysis.
doi:10.1371/journal.pone.0054134.t002

Multivariate Models of Salmon Returns
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not known. There were two years in particular (2000 and 2002)

with large prediction errors for counts at Priest Rapids Dam. The

two response variables representing interior stocks of salmon were

correlated with each other through time (evident in Figure 4) and

predictions for return year 2012 were within the respective ranges

of observed values during the previous 10 years for all three data

sets (Figure 4).

None of the indicators included in the analysis clearly stood out

as the best predictor of salmon returns; there was a broad

distribution of contributions to model fits from the indicators

(Figure 5). Yet, a few significant results emerged from the variable

importance values. Among the top contributing indicators to

spring Chinook salmon were several measures of potential salmon

prey and salmon growth (e.g., JuneCCI.BPA, IchthyoCI, and

JuneChIGF) as well as some indices representing large-scale sea

surface temperatures (PDO.May.Sep and ONI.Jan.Jun). For all

three response variables, indicators in Categories 3 (growth/

feeding) and 1 (large-scale ocean and atmospheric) had the highest

average importance (Table 4).

In contrast, most indicators in Category 2 (local and regional)

played a small role. For each of the three response variables, there

was only one local and regional indicator (SST.Nov.Mar) that

ranked among the top ten. Interestingly, this particular indicator

represented the temperature during the winter prior to ocean

entry, suggesting that the relationship between winter ocean

temperature and salmon survival is indirect, and perhaps operates

mechanistically by mediating ocean productivity or prey resources

the following spring, as suggested by Logerwell et al. [39].

Supporting this concept is the lower rank of the sea surface

temperature indicator from May through September (Figure 5).

Contributions from measures of cohort abundance (Category 5)

were surprisingly mediocre, with the indicator for jack abundance

in the year prior to adult return (ChJacks) ranking 11th to 18th out

of 31 indicators. Indeed, many of the indicators that had been

found significant in other modeling efforts [10], [13], [19] showed

little contribution in this analysis. Indicators representing the

Columbia River environment ranked between 22st and 24th

(DARTTemp) or were near the bottom of the ranking (DART-

Flow) in all three MCA analyses. Similarly, the two upwelling

indices (UpwellSeasonLength and UpwellingAnomaly) had very

low weights in all three analyses.

Discussion

We found that almost all indicators related to feeding and

growth (Category 3) were important in forecasting adult returns to

the Columbia River. Although inferential, this information helps

fill gaps in our understanding of salmon marine ecology. For many

Figure 4. Observed and predicted spring Chinook adult returns. Observed spring Chinook adult returns (solid circles) and leave-one-out
predictions (open diamonds) with 95% prediction intervals obtained from MCA. Predicted returns in 2011 and 2012 (2009 and 2010 juvenile
migration year) are shown with 95% prediction intervals (grey diamonds).
doi:10.1371/journal.pone.0054134.g004

Table 3. Model performance and predictions (in thousands of fish) for fish returning in 2012.

Prediction
Prediction
Interval RMSEP Scaled RMSEP Fitted R2

Bonneville Dam (adjusted for downstream harvest) PCR 178 118-268 39 0.20 0.86

MCA 179 126-256 39 0.20

Ice Harbor Dam PCR 68 43-110 13 0.17 0.85

MCA 68 46-102 14 0.18

Priest Rapids Dam PCR 14 7-28 6.3 0.38 0.69

MCA 14 8-26 6.1 0.37

Root Mean Squared Error of Prediction (RMSEP) is from leave-one-out cross validation, scaled RMSEP = RMSEP/mean observed returns.
doi:10.1371/journal.pone.0054134.t003
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salmon species, we know that larger and faster-growing fish tend to

survive better in marine waters [8], [9], but we know less about

precisely when this mortality occurs. Both copepods and

ichthyoplankton metrics, which are known to contribute to

Chinook salmon diets [22], were important here. Furthermore,

diet composition was much more important in May than in June

(Figure 5), representing the importance of the timing of the onset

of piscivory. We also know that abundance of yearling Chinook in

our coastal survey conducted in June is more correlated with adult

returns than the same survey conducted in May (unpublished

data). Moreover, Tomaro et al. [40] showed that size at marine

entry was not related to adult returns, but size about one month

later was significantly related to returns. Together, these results

suggest that feeding, growth, and concomitant mortality between

May and June are important drivers for setting salmon year-class

strength.

It should be noted, however, that these growth-centric, bottom-

up results do not necessarily diminish the importance of top-down

drivers of yearling Chinook salmon survival. Choosing between

movement and predator avoidance is often a tradeoff [41]. Fish

that exhibit a strong northward migration, as these fish do in the

marine environment, may be more susceptible to coastal or pelagic

predators. Due to data paucity, we included only one predator

data set (AdultHake; see [42]), which performed better than

average in terms of variable importance, particularly for Upper

Columbia River spring Chinook salmon. Inclusion of additional

Figure 5. Indicator importance values. Percent of variance in salmon returns explained in the MCA analysis that can be attributed to each
indicator (Table 1).
doi:10.1371/journal.pone.0054134.g005

Table 4. Variable importance by category and response variable.

Large-scale ocean and
atmospheric

Local and regional
physical Growth and feeding

Predation and
disease Cohort abundance

Adjusted counts at Bonneville Dam 4.45 1.77 3.63 2.12 2.59

Counts at Ice Harbor Dam 4.16 2.44 3.19 2.39 2.38

Counts at Priest Rapids Dam 3.79 1.53 3.07 2.18 2.80

Values represent the average weight of all indicators within a category.
doi:10.1371/journal.pone.0054134.t004
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predator data sets, when available, could better inform these

results. For example, large numbers of piscivorous seabirds occupy

the Columbia River estuary, plume, and coastal environments

[43]. These birds consume salmonids and likely affect adult return

rates, but time series of bird abundance for this area were too short

to be included in the current analysis.

We also found that large-scale oceanic and atmospheric

indicators (Category 1) accounted for a large amount of the

variability in adult returns. The populations of salmon modeled

here quickly migrate north after emigrating from the Columbia

River [44–46] and experience conditions across a wide spatial

extent. Therefore, large-scale patterns of ocean temperature

(represented by the PDO and ONI indices) and resulting

ecosystem processes have the potential to influence salmon during

a vastly longer time period than many of the other indicators,

which likely contributed to their high weights in our models

(Figure 5). The relationship between PDO and salmon has been

explored extensively [15], [47] and some of the biggest changes in

marine survival are observed during regime shifts [48], [49]. The

last major regime shift in the North Pacific occurred in 1998 [50],

which was prior to the data in this analysis. Therefore, as a note of

caution, the effect of PDO and other large-scale atmospheric

metrics on salmon returns in our model is dependent on being in

the current regime and when a new regime is entered, forecasts

would benefit from a refitting of the model. Ideally, this would

involve a model structure that accommodates regime shifts

directly, though in some cases it may be enough to refit the

model with data before and after the regime shift. The magnitude

and direction of the effect of PDO found here matches

qualitatively with what has been shown from analyses straddling

a regime shift [24].

Category 2 (local and regional physical) indicators did not fare

as well as the large-scale indicators, likely because fish reside in

these areas for only a limited time. Therefore, abiotic conditions

off of Oregon and Washington are potentially important only for

short periods of time or in indirect ways, particularly in their

relationship with marine productivity and the prey biomass

supported at lower trophic levels. As an example, salmon are

known to behaviorally thermoregulate [51], suggesting direct

effects of suboptimal temperature can be, to some degree,

minimized through behavior. Yet food resources such as larval

fish may not have as much behavioral flexibility, allowing

temperature to indirectly affect salmon growth and survival

through its effect on prey resources. However, it is not possible

to capture this fine-scale environmental variance and associated

predator and prey behaviors in a regional index. Although growth

and mortality are almost certainly related to local conditions, local

and regional indicators may be less useful for predictive models

than large-scale indicators, at least for the stocks analyzed here.

These results support the proposition by Peterman et al. [17] to

use only covariates in salmon forecasting models whose correlation

extends over geographic areas at least as large as the response

variable. In this regard, we hypothesize that other stocks of

Chinook salmon or other salmonid species, whose spatial

distribution may be more limited [52], will show higher weights

for local and regional indicators.

Using the combined information contained in 31 potential

indicators of salmon ocean survival, we were able to model spring

Chinook salmon adult returns quite well, with a coefficient of

determination of 0.86 (from PCR) for spring Chinook salmon

returning to the mouth of the Columbia River through 2011. In

addition to predicting the 2012 adult return year, it is important to

note that predictions for the 2011 return year (created during the

leave-one-out procedure) were based solely on data previous to

that year, resulting in two true forecasts (i.e., for the 2011 and

2012 adult return years). In 2011, observed adult returns were just

over 221 thousand fish, which is almost exactly what the model

predicted (the prediction was off by 6 fish; Figure 4). In 2012,

observed returns to Bonneville Dam were just over 186 thousand,

and a preliminary estimate of harvest downstream of Bonneville

Dam was just over 16 thousand fish (Enrique Patino, NOAA

Fisheries, unpublished data), suggesting that the final return of

adult spring Chinook salmon to the mouth of the Columbia River

in 2012 was approximately 203 thousand fish. The predictions for

adult returns in 2012 from the current effort was 179 thousand, an

error of 11.8%. The accuracy of this model stems, in part, from

the inclusion of indicators representing many different aspects of

the marine environment. Indeed, models that used a smaller

number of ocean indicators suggested that 300 to 600 thousand

spring Chinook salmon would return in 2012 (http://www.cbr.

washington.edu/crisprt/adult_preseason.html).

Counts at Ice Harbor Dam were underestimated in both 2011

(86 thousand predicted versus 96 thousand observed) and 2012 (68

thousand predicted versus 86 thousand observed), an average

error of just over 15%. Counts at Priest Rapids Dam were

overestimated in 2011 (17.8 thousand predicted versus 15.2

thousand observed), but underestimated in 2012 (14.4 thousand

predicted versus 19.5 thousand observed), an average error of just

over 21%. For both populations, these observed returns in 2012

were similar to the average over the last decade (Figure 4).

Most interior Columbia River spring Chinook salmon enter the

ocean in May or June and migrate north towards Canada and

Alaska [44], [52]. Juvenile fish from the Upper Columbia River

spring and the Snake River spring/summer Chinook salmon

ESUs have similar marine distributions shortly after ocean entry

(David Teel, NOAA Fisheries, unpublished data). This suggests

that the marine environment could have a comparable influence

on their growth and survival (see [53] for an example of this in

sockeye salmon). Indeed, we observed a correlation of 0.81

between the importance of indicators for adult returns from

analyses of these two ESUs. However, there were some differences

as well. Catches of yearling Chinook salmon during our June

coastal salmon survey (JuneChCatch) were better predictors for

returns to Priest Rapids Dam (Upper Columbia River spring

Chinook salmon) than for returns to Ice Harbor Dam (Snake

River spring/summer Chinook salmon). This could be due in part

to the timing of our coastal survey relative to juvenile salmon

migration or to potentially different marine migration rates

between the two ESUs. Similarly, temperatures during the

previous winter (SST.Nov.Mar) appeared more important for

Snake River fish than Upper Columbia River fish, though the

mechanisms for this difference are unclear.

There is an important difference between PCR and MCA that

has implications for these results and their use in management. In

PCR, the first step is to run a PCA on the indicators, which

reduces the dimensions of the indicators without regard to their

relationship with the response variable. Consequently, if applied to

multiple stocks or species, the PCR loadings for each indicator will

be constant across response variables, and the only refinement

possible is the inclusion or exclusion of particular PCs. On the

other hand, MCA allows the response variable to influence the

weighting function (through the covariance matrix). Therefore,

application of MCA to multiple stocks or species can result in a

fine-tuning of the indicator data to maximize relationships to the

appropriate response variable. As an example, SST.Nov.Mar was

weighted highest for adult returns to Ice Harbor Dam, which

represent the Snake River spring/summer Chinook salmon ESU.

However, SST.Nov.Mar was relatively less important for the other
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two adult return groups (Figure 5). If the goal of management is to

summarize the ocean environment in general terms for manage-

ment of multiple stocks, PCR may be the appropriate choice of

methods. However, if the management goal is to make forecasts of

individual stocks, MCA provides the flexibility to weight the

indicators specifically for that stock.

The modeling approach demonstrated here promises to be

important to salmon management in the Pacific Northwest. Many

current forecasting models rely on one or two indices to predict

returns for the following year. Yet, ocean survival is the result of

complex interactions among the physical environment and

organisms at multiple trophic levels; thus ocean survival is driven

by temporal and spatial dynamics that cannot be summarized by

just a couple indices of the physical environment. By combining a

large number of indicators, particularly ones with a direct link to

growth or survival such as predator or prey resources, this

approach avoids the pitfalls of relying too heavily on any one

indicator.

We made several attempts to simplify the set of indicators

through model selection techniques. However, we strongly

recommend against this practice when using a large number of

indicators. As an example of the danger of post hoc indicator

selection, we ran a leave-one-out (LOO) analysis on the indicators

(sequentially removed each indicator and ran the full model,

keeping track of the improvement in RMSEP). After removing the

indicator whose absence made the most improvement in model fit,

we ran the LOO procedure again. This process was continued

until no further reduction of the RMSEP could be obtained. In a

simple linear model, this process would be comparable to a

backwards selection of predictor variables. Yet when using PCR

and MCA, this process lead to combinations of indicators with

spurious relationships to the response variable. To convince

ourselves of this, we randomized the indicator data (within each

indicator, among years) and ran the above analysis. Using these 31

randomized variables, the resulting model correlated with

observed salmon counts with an R2 of greater than 0.9. We

therefore suggest all indicator selection be done a priori when using

these multivariate methods.

Finally, the expectation of future data collection can play a

critical role. Many of the indicators in this analysis were obtained

at great cost (in both time and money), while others can be

obtained remotely via satellites or from various websites (PDO,

ONI, upwelling, river flow). Therefore, the decision of whether or

not to include a particular indicator depends on the goal of the

research and expected future applications of the model. However,

restricting analyses to just those indicators likely to exist in the

future can greatly influence model forecasts. As an example, we

ran the MCA analysis on a simplified set of 9 indicators that will

almost certainly be available for many years (PDO.Dec.Mar,

PDO.May.Sep, ONI.Jan.Jun, SST.Buoy46050, UpwellingAno-

maly, UpwellSeasonLength, DARTTemp, DARTFlow, and

ChJacks). Compared to the full set of 31 indicators, the RMSEP

(average error in predictions) almost doubled. In addition,

prediction intervals were larger by about 25%, suggesting that

the less certain (and costlier) indicators significantly improve

forecasts. That stated, the current list in our analysis is by no

means definitive, nor is it comprehensive (e.g., there is a distinct

lack of salmon predator indicators). Future efforts will focus on

techniques to refine the set of included indicators. We also note

that using measures of marine survival directly would be a more

appropriate response variable than using counts of returning

adults. However, survival estimates require both smolt abundance

and adult age structure data, which do not exist for many of these

populations. As these data become available, model fits and

forecasting ability will likely improve.

Each year, fisheries management agencies set a fishing quota for

each stock of Pacific salmon in the Columbia River, which is then

divided among recreational, commercial, and tribal fishers. Not

only is this a multi-million dollar fishery, but most of the stocks in

this analysis are listed under the Endangered Species Act as either

threatened or endangered [2]. Therefore, the cost of inaccurately

predicting returns, to fish and fishers, is significant. By optimizing

the available information to estimate the number of fish that will

return one to two years in the future, managers can more

efficiently apportion catch and plan for future scenarios, resulting

in more equitable fisheries and a better chance of recovering these

threatened and endangered species.
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