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Abstract

Trypanosoma brucei is a unicellular flagellated eukaryotic parasite that causes African trypanosomiasis in human and
domestic animals with devastating health and economic consequences. Recent studies have revealed the important roles of
the single flagellum of T. brucei in many aspects, especially that the flagellar motility is required for the viability of the
bloodstream form T. brucei, suggesting that impairment of the flagellar function may provide a promising cure for African
sleeping sickness. Knowing the flagellum proteome is crucial to study the molecular mechanism of the flagellar functions.
Here we present a novel computational method for identifying flagellar proteins in T. brucei, called trypanosome flagellar
protein predictor (TFPP). TFPP was developed based on a list of selected discriminating features derived from protein
sequences, and could predict flagellar proteins with ,92% specificity at a ,84% sensitivity rate. Applied to the whole T.
brucei proteome, TFPP reveals 811 more flagellar proteins with high confidence, suggesting that the flagellar proteome
covers ,10% of the whole proteome. Comparison of the expression profiles of the whole T. brucei proteome at three typical
life cycle stages found that ,45% of the flagellar proteins were significantly changed in expression levels between the three
life cycle stages, indicating life cycle stage-specific regulation of flagellar functions in T. brucei. Overall, our study
demonstrated that TFPP is highly effective in identifying flagellar proteins and could provide opportunities to study the
trypanosome flagellar proteome systematically. Furthermore, the web server for TFPP can be freely accessed at http:/
wukong.tongji.edu.cn/tfpp.
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Introduction

The flagellated protozoan parasite Trypanosma brucei is

a pathogen agent of human African trypanosomiasis, also known

as sleeping sickness. Though the parasite has been known for more

than a century, the disease control remains poor and the drugs

currently used are highly toxic with serious side effects [1,2]. T.

brucei has a digenetic life cycle alternating between a tsetse fly and

a mammal host, and motility of the extracellular pathogen is

pivotal to the life cycle development and disease pathogenesis. In

recent years, the single flagellum of T. brucei has been demon-

strated as an essential and multifunctional organelle with critical

roles in motility, host cell attachment, sensory perception, cell

morphogenesis, cell division and host-parasite interaction ([3,4]).

In addition, recent studies have revealed that the flagellar motility

is required for the viability of both the insect-form and the

bloodstream-form T. brucei [5,6,7], suggesting that flagellar

function analysis may uncover potential novel drug targets.

Besides some unique features which may be exploited as drug

targets, the T. brucei flagellum possesses a canonical 9+2

microtubule axoneme which is conserved among the flagellated

eukaryotes. Functional analyses of trypanosome flagellar proteins

have provided novel insights into flagellum functions as well as

human ciliary diseases, indicating that T. brucei provides an

excellent model system for dissecting flagellum biology in

eukaryotes [3,5,8].

Though many studies have revealed the multifunctional nature

of the trypanosome flagellum as stated above, the underlying

molecular mechanisms are still unclear and the component of the

flagellar proteome needs to be identified. As we know, flagellar

proteins are all nucleus-encoded, initially synthesized in cytoplasm

and then transported to the flagellum. In the past decade, a variety

of computational methods have been developed for predicting

protein subcellular localization [9,10,11,12,13]. However, most of

the existing tools focus on proteins targeted to major locations such

as endoplasmic reticulum, mitochondria, nucleus, and so on.

These tools do not provide any information on proteins targeted to

more specialized organelles like flagellum. To the best of our

knowledge, only a few methods provide predictions for flagellar

proteins in prokaryotes [14,15]. Moreover, no similar prediction

tools are available for eukaryotic flagellar proteins. Flagellum is

a relatively ‘‘closed’’ organelle and can best be compared with the

nucleus considering the entry and exit activities [16]. Though the

flagellar membranes are contiguous with the plasma membrane,

they are functionally distinct membrane domains with distinct

composition and biochemical properties [3]. Therefore, there

must be specific targeting and importing mechanisms for flagellar

proteins, which are still unknown. Recent proteomic studies have
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revealed a large number of flagellar proteins in trypanosomes,

greatly expanding the inventory of known flagellar proteins

[5,17,18]. However, due to technical limitations for purification

of the intact flagellum from T. brucei, a lot of flagellar proteins fail

to be detected and many detected proteins can not be assigned to

flagellum with certainty.

In this study, we developed a computational method TFPP to

identify flagellar proteins in T. brucei based on sequence-derived

features. We collected a set of flagellar and non-flagellar proteins

that have been annotated with high confidence, and selected

a number of discriminating properties from various sequence and

structural features using a feature selection procedure. On the

basis of these features, we developed a support vector machine

(SVM)-based classifier to predict flagellar proteins in T. brucei. Our

results indicate that our method performs well in identifying

flagellar proteins and would help to uncover the flagellar proteome

in T. brucei. We compared the expression profiles of the T. brucei

proteome at three important life cycle stages, and found that the

expression of ,45% of the expressed flagellar proteins changes

greatly during life cycle, indicating life cycle stage-specific

regulation of flagellar functions in T. brucei which is consistent

with previous studies [3].

Materials and Methods

Data collection
Data used in this study were retrieved from GeneDB [19] by

June 2012. To ensure data quality, we took the information of

‘‘Curation’’ and ‘‘Gene Ontology’’ from GeneDB into account,

and only selected the proteins with consistent supporting

information. Finally, 156 T. brucei proteins were collected as

flagellar proteins of high quality based on the comprehensive

annotation from GeneDB. To generate a negative dataset for the

classification, we extracted T. brucei proteins containing annotation

for ‘cellular component’ from GeneDB together with the

mitochondrial proteins collected in our previous study [9]. This

set was filtered by removing the entries either annotated as

flagellar related or with low confidence such as ‘‘by similarity’’,

‘‘potential’’ and ‘‘probable’’. We retained 652 proteins as non-

flagellar proteins with high confidence. To obtain a non-redun-

dant dataset, BLASTclust [20] was used to remove redundant

proteins with sequence identity higher than 30%, and 8 flagellar

and 60 non-flagellar proteins were discarded from the collected

dataset. Thus, 148 flagellar and 592 non-flagellar proteins were

finally used as our positive and negative sets, respectively.

Systematic IDs of these positive and negative samples are listed

in Table S1.

We randomly selected 3/4th of the positive and negative data as

the training set. The remaining data were used as the test set. To

assess the performance and stability of the prediction model, we

repeated the random sampling process fifty times, and obtained 50

groups of training and test sets.

Feature construction
We examined a number of features which are potentially useful

for the identification of flagellar proteins based on the general

understanding of protein subcellular localization. The initial

features can be grouped into five categories: (a) basic sequence

attributes such as sequence length, amino acid composition and di-

peptide composition; (b) physicochemical and biochemical prop-

erties, such as extinction coefficient, instability index, aliphatic

index, and various amino acid propensities obtained from

AAindex (http://www.genome.ad.jp/aaindex) [21]; (c) structural

properties such as secondary structural content [22], unfoldability

and disordered regions [23]; (d) signal peptide [24] and

transmembrane topology [25,26]; (e) post-translational modifica-

tions such as phosphorylation [27], acetylation [28] and

palmitoylation [29]. Amino acid composition reflects the fraction

of amino acids in a protein sequence, while di-peptide composition

also encapsulates information about the local order of amino acids

in a protein sequence. AAindex is a database of numerical indices

representing various physicochemical and biochemical properties

of amino acids, currently containing 544 amino acid indices

derived from published literature. 544 properties were obtained

for each protein by calculating the average value of each amino

acid index across the whole protein sequence. The details of the

initial features and the computer programs used to calculate them

are listed in Table S2. Note that some of these features are

represented by multiple feature elements. For example, the amino

acid composition of a protein sequence is represented by 20

feature elements. In total, 21 features are considered in our initial

feature list, which are represented using 1000 feature elements

(Table S2).

Feature selection and classification
Support vector machine (SVM) is a very useful machine

learning method, which has been widely used to solve biological

problems such as protein-protein interaction prediction [30],

protein subcellular localization prediction [9], post-translational

modification recognition [31], biomarker identification in cancer

research [32], etc. In this study, SVM with the popular non-linear

Gaussian Radial Basis Function kernel (RBF) was used to build the

classifier for distinguishing flagellar proteins from non-flagellar

proteins. The SVM software we used is LIBSVM (http://www.

csie.ntu.edu.tw/,cjlin/libsvm/) which is currently one of the most

widely used SVM software. A grid search-based method was used

to automatically optimize the two parameters C and c in the

training procedure of each SVM classifier, and the search spaces

for C and c are 215,2{5
� �

and 2{5,2{15
� �

with steps being 2{1

and 2, respectively. Codes for parameter selection are publicly

available from LIBSVM package.

It is widely appreciated that feature selection in classification is

very important not only for reducing running time but also for

improving performance and mining useful feature elements which

are really relevant to the classification problem. We proposed

a feature-selection procedure combining filter and wrapper

methods to select a subset of feature elements which can make

the classifier achieve best prediction performance. In the first step,

F-score was used to measure the discriminative power of each

feature element between the positive and negative sets, which is

defined as follows,

F (i)~
(�xx(z)
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where �xxi, �xx(z)
i and �xx({)

i are the average value of the ith feature

over the whole, positive and negative datasets, respectively; x
(z)
k,i

and x
({)
k,i are the ith feature of the kth protein in the positive and

negative datasets, respectively; and nz and n{ are the numbers of

proteins in the positive and negative datasets, respectively. The

larger an F-score is, the more discriminative the feature is. In the

first round, feature elements with F-scores above a pre-selected

threshold were retained and used in the next step feature selection.

The F-score threshold was selected based on the distribution of the

sorted F-scores of all feature elements, and the cross-validation
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accuracy of the SVM-based classifier with the retained feature

elements should be no worse than that with all of the initial feature

elements. The goal of the F-score-based feature selection is to

reduce search space by removing a large number of feature

elements irrelevant or negligible to our classification problem.

In the second step, we utilized an SVM-based wrapper method

using sequential backward selection (SBS) search strategy to find

an optimal subset of feature elements that gives the highest cross-

validation accuracy of the SVM classifier. Basically, the SBS

algorithm starts with the feature set obtained from the F-score-

based selection step, and for each iteration, the worst feature

element (concerning the cross-validation accuracy of the SVM

classifier) is eliminated from the current feature set until only one

feature element left. Based on the results of all iterations, the set of

feature elements which gives the best performance will be used to

build the final classifier model.

Performance evaluation
Using the selected feature set, SVM-based classifiers were

obtained by training on the training sets and were tested on the

corresponding test sets. Four common measures were used to

evaluate the prediction performance of the trained classifiers,

namely sensitivity, specificity, accuracy and the Matthews

correlation coefficient (MCC) [33]. MCC is a comprehensive

indicator of prediction performance, besides, it can well reflect the

balance between the sensitivity and the corresponding specificity.

MCC = 1 indicates a perfect prediction, while -1 indicates

a completely opposite prediction. Thus, the classifier with the

highest MCC was selected as the final prediction model, which is

referred to as trypanosome flagellar protein predictor (TFPP for

short).

To evaluate the reliability of the predicted result, we analyzed

the correlation between the prediction score (s) and prediction

precision (PP) based on the prediction result of the whole positive

and negative sets. Prediction score, that is the decision value

obtained from the SVM classifier, reflects the distance between the

input vector and the decision plane, thus it is closely related with

the prediction reliability. Generally, the higher the absolute

decision value is, the more reliable the prediction is. Prediction

precision is also known as positive predictive value for positive

prediction and negative predictive value for negative prediction

respectively, which is calculated as follows:

PP~
tp=(tpzfp) if sw0

tn=(tnzfn) if sƒ0

�
, ð2Þ

where tp and fp are the numbers of true and false positive samples

respectively, while tn and fn are the numbers of true and false

negative samples respectively. We defined three levels of predic-

tion confidence based on prediction precision, namely high with

PPw0:9, medium with 0:7ƒPPv0:9 and low with PPƒ0:7.

Results and Discussion

Feature contribution
Based on previous studies and our understanding on protein

subcellular localization, we collected various types of features that

may be relevant to the targeting of flagellar proteins. In total, 21

features represented by 1000 feature elements from all data were

taken into account in our initial feature list (Table S2). To

ascertain which of the initially considered features are actually

effective in discriminating flagellar proteins from non-flagellar

proteins, we used an effective feature selection method introduced

in the ‘‘Materials and Methods’’ section to remove features

irrelevant or negligible to our classification problem. Using this

method, a total of 37 feature elements were selected to train the

final classifier. Details about these selected feature elements with F-

scores and p-values by ANOVA are available in Table S3, and all

of these features show significant differences (p-value,1025)

between flagellar and non-flagellar proteins. Among these selected

features, we found that physicochemical properties play dominant

roles in distinguishing flagellar proteins from the other proteins.

Flagellar proteins tend to be negatively charged, hydrophilic and

thus show higher surface accessibility. Besides, flagellar proteins

are rich in the negatively charged residue, glutamic acid. As

revealed by an early study, glutamic acid is involved in

glutamylation that extensively exists in subpellicular and flagellar

microtubules [34].

Performance of the classifier
SVM-based classifiers were built using the 37 selected feature

elements which are closely related to the targeting of flagellar

proteins. To assess the effectiveness of the selected features as well

as the stability of the prediction performance, we trained 50 SVM-

based models using the randomly selected training sets and tested

these models on the corresponding test sets. As shown in Table 1,

the performances of these classifiers are generally consistent with

MCC ranging from 0.546 to 0.717. Our final classifier model,

TFPP, achieves a total prediction accuracy of 90.3% with

sensitivity being 83.8% and specificity being 92.6%. Based on

the receiver operating characteristic (ROC) curve, the AUC of

TFPP is 0.927, indicating its good performance in recognizing

both flagellar and non-flagellar proteins (Figure 1).

As shown in previous studies, SVM method based on amino

acid composition (termed as SVMaac hereinafter) performs

relatively well in prediction of protein subcellular localization

[35,36]. To test the performance of SVMaac in prediction of

flagellar proteins, we applied it to the same training and test

datasets used in our method. Parameters required for SVM

models in training SVMaac were selected using the same method

as introduced in ‘‘Materials and Methods’’ section. The prediction

performance of SVMaac on 50 test sets was shown in Table S4.

We found that the accuracy of SVMaac is acceptable, but the

sensitivity is quite low. For all the test sets, less than 60% flagellar

proteins can be successfully predicted by SVMaac, which is much

lower than the sensitivity of TFPP (83.8%). This is likely due to the

intricate sorting system of flagellar proteins. The prediction of

flagellar proteins is relatively more complex, and thus amino acid

composition alone cannot characterize them well. These results

demonstrate that SVM method based on the selected features

performs much better than that based on amino acid composition,

and thus further confirmed the effectiveness of the selected

features.

When a protein is predicted to be flagellar or non-flagellar

protein, it’s important to know how confident the prediction is.

Thus, we analyzed the relationship between the prediction score

and the prediction precision based on the predicted result on the

whole dataset. As shown in Figure 2, we can evaluate the reliability

of the predicted result as: (1) flagellar protein with high confidence

when sw0:85, (2) flagellar protein with medium confidence when

0:65vsƒ0:85, (3) flagellar protein with low confidence when

0vsƒ0:65, (4) non-flagellar protein with medium confidence

when {0:5ƒsƒ0, (5) non-flagellar protein with high confidence

when sv{0:5. For the whole dataset, TFPP can correctly identify

90.5% flagellar proteins and 96.3% non-flagellar proteins. 88.1%

of the predicted flagellar and 93.7% of the predicted non-flagellar

proteins have a high confidence value (Table S5).

TFPP: Trypanosome Flagellar Protein Predictor
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TFPP server
To make the software available for users, we developed an

online web server for TFPP. It can be freely accessed academically

at http:/wukong.tongji.edu.cn/tfpp. TFPP provides an easy-to-use

and highly effective platform for identifying flagellar proteins in T.

brucei. To predict if a protein is targeted to the flagellum or not, the

only input of TFPP is the amino acid sequence of the protein.

Users can paste the input sequences in the textbox or upload

a sequence file in FASTA format. TFPP also provides email

notification, it will inform the user when the result is ready. This is

very useful especially for a large number of input sequences. As

a prediction tool, it is important to tell if the prediction result can

be trusted or not. TFPP provides the estimated reliability for each

prediction result. Users can selectively use the prediction results

with different confidence levels as needed. Moreover, some useful

features such as the content of amino acid E, di-peptide EE and

exposed amino acids, and surface accessibility information are

displayed together with prediction result for each query sequence.

To the best of our knowledge, TFPP is the first available

computational method for the identification of flagellar proteins

in T. brucei, and we believe it will greatly benefit research of

flagellar biogenesis in trypanosomes.

Regulation of flagellar proteins during development
As an application, TFPP was used to predict the flagellar

proteome in T. brucei. The T. brucei proteome was downloaded

from TriTrypDB Version 4.1 containing 9826 proteins. 8865

proteins were retained after removal of the incomplete entries such

as those not beginning with ‘‘M’’, containing ‘‘*’’ or ‘‘X’’

characters, and less than 50 amino acids in length. Besides the

148 known flagellar proteins, 811 more proteins are assigned to

the flagellum with high confidence by TFPP. Moreover, the 8

flagellar and 60 non-flagellar proteins which are removed from our

Figure 1. ROC curve of TFPP. AUC is 0.9272.
doi:10.1371/journal.pone.0054032.g001

Table 1. Prediction performance on 50 test sets.

Sensitivity1 Specificity2 Accuracy3 MCC4

Best 0.838 0.926 0.903 0.717

Worst 0.730 0.865 0.838 0.546

Mean 0.758 0.888 0.862 0.605

Standard
deviation

0.021 0.017 0.041 0.033

Best and worst performance are selected based on MCC.
1Sensitivity~tp=(tpzfn).
2Specificity~tn=(tnzfp).
3Accuracy~(tpztn)=(tpzfnztnzfp).
4MCC~ tp|tn{fp|fnð Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tpzfp)(tpzfn)(tnzfp)(tnzfn)

p
.

doi:10.1371/journal.pone.0054032.t001
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dataset in the redundancy handling process were correctly

recognized with high confidence respectively. This suggests that

the flagellar proteome of T. brucei may contain at least 959

proteins, covering ,10% of the whole proteome.

As observed in previous studies, the single flagellum of T. brucei

changes in morphology and function during the life cycle

alternating between a tsetse fly and a mammal host [3,37]. A

recent study analyzed the expression profiles of the T. brucei

proteome at three important life-cycle stages, namely long slender

and short stumpy bloodstream forms in the mammalian host and

the procyclic form in the midgut of the tsetse fly [38]. Considering

uniquely mapped reads, 800 (83.4%) flagellar genes were detected

to be expressed in at least one of the three stages. Differentially

expressed genes were defined to be those two-fold up- or down-

regulated at two stages with pƒ0:001 according to the Audic and

Claverie test [39]. In total, 363 flagellar protein-encoded genes

significantly changed expression levels in at least one of the three

stages, accounting for ,45% of the expressed flagellar proteins

(Table 2). As expected, much more flagellar genes changed their

expression levels in procyclic form when compared with the other

two bloodstream stages. As T. brucei lives in from the tsetse fly to

the mammal host, the parasite needs more genes to be regulated to

adapt to host change for survival. We found that most of these

differentially expressed genes were up-regulated in the procyclic

form when compared with the long slender and short stumpy

bloodstream form. This is not surprising, as we know that the

flagellum-mediated migration between the midgut and salivary

glands of its tsetse fly vector is essential for the progression of its life

cycle [3,40]. When compared with the short stumpy bloodstream

form, we found much more flagellar genes were up-regulated in

the long slender and procyclic forms. This may due to the

important roles of the single flagellum in cell division as

demonstrated by previous studies [5,40,41,42], while both the

long slender bloodstream form and the procyclic form are

proliferative forms. These results indicate life cycle stage-specific

regulation of flagellar functions in T. brucei.

Conclusions

The available evidence indicates the multifunctional nature of

the single flagellum in T. brucei, and suggests a new way to uncover

novel drug targets for sleeping sickness. In this study, we developed

a novel computational method TFPP to recognize flagellar

proteins in T. brucei. TFPP effectively identifies a large number

of flagellar proteins with high confidence, many of which are

reported first time in our study. Expression profiles of the flagellar

proteome show that ,45% flagellar proteins are significantly

regulated during life cycle, indicating life cycle stage-specific

regulation of flagellar functions in T. brucei. We further developed

a web server for TFPP with free access. Therefore, TFPP will

Figure 2. Statistical relationship between the prediction precision and the prediction score. For the purpose of display, the x-axis is the
absolute value of prediction score.
doi:10.1371/journal.pone.0054032.g002
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largely facilitate identification and functional study of flagellar

proteins. Moreover, the approach proposed in this study can be

extended for application in other flagellated organisms especially

trypanosome related species.
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