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Abstract

Sentence processing takes place in real-time. Previous words in the sentence can influence the processing of the current
word in the timescale of hundreds of milliseconds. Recent neurophysiological studies in humans suggest that the fronto-
striatal system (frontal cortex, and striatum – the major input locus of the basal ganglia) plays a crucial role in this process.
The current research provides a possible explanation of how certain aspects of this real-time processing can occur, based on
the dynamics of recurrent cortical networks, and plasticity in the cortico-striatal system. We simulate prefrontal area BA47 as
a recurrent network that receives on-line input about word categories during sentence processing, with plastic connections
between cortex and striatum. We exploit the homology between the cortico-striatal system and reservoir computing, where
recurrent frontal cortical networks are the reservoir, and plastic cortico-striatal synapses are the readout. The system is
trained on sentence-meaning pairs, where meaning is coded as activation in the striatum corresponding to the roles that
different nouns and verbs play in the sentences. The model learns an extended set of grammatical constructions, and
demonstrates the ability to generalize to novel constructions. It demonstrates how early in the sentence, a parallel set of
predictions are made concerning the meaning, which are then confirmed or updated as the processing of the input
sentence proceeds. It demonstrates how on-line responses to words are influenced by previous words in the sentence, and
by previous sentences in the discourse, providing new insight into the neurophysiology of the P600 ERP scalp response to
grammatical complexity. This demonstrates that a recurrent neural network can decode grammatical structure from
sentences in real-time in order to generate a predictive representation of the meaning of the sentences. This can provide
insight into the underlying mechanisms of human cortico-striatal function in sentence processing.
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Introduction

One of the most remarkable aspects of language processing is

the rapidity with which it takes place. This is revealed perhaps

most clearly in event related brain potential (ERP) studies in which

a word that violates predictions about the developing meaning or

grammatical structure can yield brain responses to that word as

rapidly as 200–600 ms [1–3]. Interestingly, it has been demon-

strated that these effects can span multiple sentences. That is,

information that is provided by a sentence earlier in the discourse

can cause an on-line conflict response to a word that occurs several

sentences later in the discourse [3–5]. This suggests that the brain

is accumulating evidence on-line in real-time, and predicting or

generating expectations about the subsequent structure of the

incoming sentence. It also indicates that the brain is making that

accumulated knowledge available in real-time, and that it is

continuously revising its predictions based on the interaction

between incoming information, and the context formed by earlier

inputs.

Converging evidence indicates that it is not the cerebral cortex

alone that is responsible for this processing, and that indeed the

cortico-striatal system (made up of cortex and striatum, the cortical

input nucleus of the basal ganglia) plays a significant role in

language processing. Moro et al. [6] observed significant activa-

tion of left cortical area BA45 (part of Broca’s area), and of the left

caudate nucleus of the striatum under conditions that specifically

required syntactic processing. Similarly, during the processing of

syntactic anomalies, Friederici & Kotz [7] observed cortical

activity in the left posterior frontal operculum adjacent to BA 44

(part of Broca’s area) and in the putamen of the left basal ganglia.

Likewise, studies of patients with dysfunction of the striatum

provide support for the hypothesis that the cortico-striatal system

plays a role in language processing. Hochstadt [8] examined

performance in syntactic comprehension and cognitive set-switch-

ing, verbal working memory, and articulatory rehearsal in

a population of 41 Parkinson patients and observed a syntactic

comprehension deficit for complex sentences in these patients.

This suggests that an intact basal ganglia is required for aspects of

syntactic processing. In this context, Ullman has suggested, at the

word level, that a form of procedural memory in the cortico-

striatal system is responsible for the application of grammatical

rules [9,10].
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Friederici and colleagues have taken a complimentary approach

to investigating basal ganglia function in language processing

through the analysis of brain activity in Parkinson’s patients during

syntactic processing [11]. These authors examined PD patients

and age-matched controls in an auditory sentence comprehension

task, and analysed ERP responses (recorded by scalp electrodes)

related to early ‘‘first pass’’ syntactic processing (revealed by the

early left anterior negativity or ELAN), and to the later syntactic

integration (revealed by the P600). The P600 is a well-defined

brain response to syntactic complexity and/or syntactic violations,

around 600 ms after the violating word [2,7,12–14]. Interestingly,

PD patients did not differ from controls with respect to the ELAN.

However, their P600 response was significantly reduced compared

to that of controls [11]. Similar studies in patients with lesions of

the basal ganglia revealed that these subjects failed to produce

a normal P600 in response to syntactic anomalies [12,15]. These

data argue that the intact striatum is required for generation of the

P600 response. This raises the question of the role of striatum in

the P600. It is likely that the P600 does not originate in the

striatum, but rather in the cortex, possibly under the influence of

the striatum via the cortico-striato-thalamo-cortical (CSTC) loop.

Magneto-encephalogram (MEG) source localization studies have

localized the origin of the P600 as bilateral cortical sources in the

temporal lobe [16]. Temporal cortex has a strong anatomical

connectivity with the striatum [17] which, via disinhibition in the

striato-nigral circuit [18], can activate thalamic nuclei that project

back to temporal cortex [19] in non-human primates. Via this

CSTC loop, striatum influences temporal cortex. The functional

correlate of this CSTC interaction has been demonstrated in

humans using fMRI [20]. It is thus likely that the striatum

contributes to the P600, as observed in human clinical studies

[11,12,15], through striatal influence on cortex via the CSTC

circuit. This would predict that activity within the striatum

contributes to the generation of the cortical P600.

Interestingly, the P600 is not restricted to grammatically

incorrect sentences, but has also been carefully studied during

the processing of grammatically well formed sentences that have

ambiguities that are resolved late in the sentence. Friederici et al.

[2] thus observed P600 responses for words in well formed

sentences that were critical for resolution of grammatical

ambiguities. They suggested that their results were potentially

consistent with parallel models of sentence parsing [21,22], where

multiple options of the parse are maintained in parallel. While

there is accumulating evidence for the role of the cortico-striatal

system in processing some aspects of the grammatical structure of

language in real-time, the underlying mechanisms and their

implementation in neural structures of the cortico-striatal system

remains an important open research topic.

To begin to address this issue we previously developed neural

network and more symbolic models of thematic role assignment in

sentence processing [23–29]. Here, we extend this work in the

framework of the recurrent neural network model illustrated in

Figure 1. Thematic role assignment involves determining who did

what to whom – or extracting the thematic roles (agent, object,

recipient) for the verbs in a sentence. Thus for the sentence ‘‘The

boy who took the ball from the man was bitten by the dog’’ boy is

the agent of took, and the object of bitten.

Figure 1 (A) illustrates the functional organization of the model,

and (B) the notion of thematic role assignment in grammatical

constructions. A grammatical construction is the mapping between

the surface form of a sentence (word order) and the meaning [30].

In the model sentences are presented word-by-word as input, and

the model extracts the coded meaning, i.e. specification of the

thematic role of each open class element in the sentence. This can

then be used to specify the global meaning of the sentence. More

specifically, while the two sentences ‘‘Mary hit John’’ and ‘‘John

was hit by Mary’’ both have the same meaning hit(Mary, John),

their coded meanings are different, i.e. in the first sentence

Semantic Word 1 (Mary) is the agent, while for the second

sentence, Semantic Word 1 (John) is the object, and so on. This is

represented in Figure 1B which illustrates grammatical construc-

tions as mappings from sentence form onto meaning [30,31], here

for the active and passive constructions. Our models are based on

the principle that the information necessary to perform this

thematic role assignment is encoded in the sentence by the

configuration of grammatical function words (e.g. determiners,

auxiliary verbs, prepositions) within the sentence. This is based on

the cue competition hypothesis of Bates & MacWhinney [32],

which holds that across languages, a limited set of cues including

the configuration of grammatical function words (closed class

morphology in general), word order and prosody are used to

encode the grammatical structure that allows thematic role

assignment to take place. We thus implement the cue competition

hypothesis [32,33] focusing on word order and grammatical

morphology. In our modeling, the notion is that the sequence of

closed class words forms a pattern of activity within the recurrent

network, and that this pattern can be associated with the

corresponding thematic role specification. Figure 1A illustrates

the modeling of this approach. Closed class information is input to

a recurrent prefrontal network (the reservoir) corresponding to

prefrontal cortical area BA47. Resulting patterns of activity in this

recurrent network can be decoded in the caudate nucleus of the

striatum (the readout), based on connections between cortex and

striatum that are appropriately modified by learning. We thus

propose that the cortico-striatal system plays a specific role in

language processing, with recurrent connections in cortex

encoding the ongoing grammatical structure, and the striatum

decoding this structure as rules for mapping open class elements

onto their appropriate thematic roles. This is consistent with

Ullman’s proposal that the cortico-striatal system implements

a rule-based procedural system for the application of grammatical

rules at the word level [9,10].

In previous work, we demonstrated the feasibility of this concept

in a recurrent network, with two significant limitations [24,27].

The first limitation was that we used a restricted set of nine

grammatical constructions as defined by the Caplan protocol [34]

which had been designed for testing patients for syntactic

comprehension deficits. The second restriction was that, following

the Caplan protocol, the model was trained to identify the agent,

object and recipient, in that order, after the complete presentation

of the sentence. Thus, we had no insight into the online processing

of the meaning of the sentence. Both of these limitations were in

part related to a technical limitation at the time of the

development of this model, related to the learning mechanism.

This technical limitation was manifest in the training. After each

sentence presentation the model was trained by trial and error to

produce the agent, object and recipient of the sentence. This

required extensive training, and the incremental learning method

we employed prohibited experiments with large corpora. In the

current research we overcome this limitation, by employing the

reservoir computing (RC) approach. Reservoir computing is

a machine learning technique in which a recurrent network with

fixed connections is used to encode the spatiotemporal structure of

an input sequence, and connections to a readout layer are trained

using efficient algorithms to produce a desired output in response

to input sequences [35,36]. The central concept of reservoir

computing is to project low dimensional inputs onto a recurrently

connected ‘‘reservoir’’ of neurons which creates a high-dimen-
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sional projection of the low-dimensional input space, thus

increasing the input separability. The recurrent connections

provide sensitivity to events over time, thus yielding the desired

sensitivity to sequential and temporal organization. This pro-

jection and the dynamics of the reservoir serve as a form of kernel

in the machine learning sense, thus allow one to perform complex

non-linear computational tasks with simple linear readouts [37].

Interestingly, it was recently noted by Jaeger and his colleagues

[38] that our earlier work that modeled prefrontal cortex as

a recurrent network with fixed connections, and modifiable

cortico-striatal connections to learn the desired output sequences

[28,39] was in fact the first expression of the reservoir principal,

implemented in a proposed neurophysiological substrate (i.e. the

cortico-striatal system). Exploiting this homology as illustrated in

Figure 1B, we can now take advantage of the machine learning

techniques that are standard in the RC domain, and thus exploit

a significant speedup in the learning required for our experiments,

and a more mature theoretical framework. In particular, we now

exploit the use of regression techniques for learning the connection

weights between reservoir and readout units [35,38,40]. The

training corpus is first presented, sentence by sentence, word by

word, to the reservoir, and the population activation state is

recorded for each time step during presentation of the corpus. The

reservoir state is reset before the presentation of each sentence. We

also generate the desired activation pattern in the output neurons

that code the meanings for each sentence. Linear regression is then

used to learn the output weights that will produce the correct

mapping between reservoir activity and desired readout response.

We test two modes of learning. For continuous learning, the

regression is applied starting at the onset of the first word on each

time step: thus we ask the readout neurons to provide the coded

meaning of the sentence from the onset of the sentence. For

sentence final learning, the regression is applied only at the end of

the sentence.

The aim of the current research is to test the hypothesis that

a recurrent architecture as illustrated in Figure 1 can be used to

learn a set of grammatical constructions, and to test the following

derived predictions:

Figure 1. Thematic role assignment and correspondence between cortico-striatal and reservoir implementations of sentence
processing. A. Grammatical construction processing in the reservoir framework. Semantic and grammatical words (i.e. open and closed class words,
respectively) are separated on input. Semantic words (SW) are stored in a memory stack. Grammatical words and a single input for all SWs are inputs
to the reservoir (analogous to prefrontal cortex area BA47). During training, input sentences are presented word-by-word, and readout units
(corresponding to striatum) are forced to the corresponding coded meaning (i.e. SW1-Object, SW2-Predicate, SW3-Agent). In testing, readout units
code the predicted role(s) of each semantic word, forming the coded meaning. The meaning (i.e. hit(Mary, John, _)) can be reconstructed from the
coded meaning, as SWs in memory stack are reassigned to the thematic roles (predicate, agent, object, recipient) identified in the read-outs. B. Active
and passive grammatical constructions (i.e. mapping from sentence form to meaning), and their shared meaning. Coded meaning (indicated by the
arrows) corresponds to specific mapping from open class words to meaning, which defines the grammatical construction.
doi:10.1371/journal.pone.0052946.g001
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1. Real-time processing: Striatal (readout) activity should reflect

a real-time estimation of the grammatical structure of the

sentence. The final parse may be predicted before the end of

the sentence, and this may change as new words invalidate the

current parse. The changes in neural activity in the striatal

readout may reflect language related ERPs recorded during

human sentence processing.

2. Generalization: To a limited extent, the system should be

capable of generalizing grammatical processing to new

constructions if these new constructions adhere to the same

grammatical structure that is present in the training corpus.

3. Prior knowledge in discourse. In the context of multiple

sentences, the system should be capable of exploiting prior

information (i.e. from an earlier sentence) in the interpretation

of the ongoing sentence.

4. Scaling to larger more varied corpora. The system should

display some scaling capabilities that reflect its ability to extract

grammatical structure and generalize this to new grammatical

structures.

Results

Experiment 1: Basic Syntactic Comprehension
Syntactic comprehension is the ability to determine who did

what to whom based purely on syntactic or grammatical

information in the sentence [34]. We first tested the syntactic

comprehension ability of the model by determining whether it

could learn 26 distinct grammatical constructions that were used

in Dominey et al. (2006) (see Text S1, structures 15 to 40). These

constructions demonstrate different surface forms (e.g. active,

passive, dative-passive, subject-relative, etc.) including single verb,

and double verb relative surface forms. Sentences are presented

word-by-word as input to the model which has been trained to

produce the coded meaning. Recall that the coded meaning is the

specification for each ordered semantic word of its thematic role,

for the first (and optionally) second action. We thus consider that

this coded meaning, revealed by the readout neural activity, is the

system’s analysis of the meaning. From the outset of this processing

the readout neurons encode the currently predicted meaning of

the sentence. Figure 2 illustrates the behaviour of the model for 4

example sentences.

A. The N V the N to the N.

B. The N V the N that V the N.

C. The N V the N that was V by the N.

D. The N was V by the N.

The six neurons shown represent the possible thematic roles of

the second noun (Noun 2) in these sentences (which are Agent,

Object or Recipient for Action 1 or Action 2). Following the

presentation in all four sentences of ‘‘The N’’, the neural activity

represents the expected probabilities for each of the possible

thematic roles, and this activity is identical at this point for the four

sentences. As successive words arrive, these probabilities are

updated, illustrating the on-line reanalysis (i.e. change in coded

meaning) of the sentences. More precisely, for sentences A–C, the

prediction that the second noun (N2) is the object of the first verb

is confirmed with the arrival of ‘‘V’’ (see arrow marked (a), and

green trace in Fig. 2A, B, C). At this same point the arrival of

‘‘was’’ in D yields a dramatic shift in the neuronal activity, with N2

finally coded as the agent of V1 (see (a) and blue trace in Fig. 2D).

The arrival of ‘‘to’’ in A, versus the ‘‘that’’ in B and C (see arrow

(b)) illustrates that the predicted analysis was for the more common

sentence form in A, with a shift in activity in B and C. For B and C

the arrival of ‘‘that’’ indicates that a second verb exists, activating

the agent and object roles for verb 2. The final decision on the role

of noun 2 as Agent or Object of verb 2 is marked at arrow (c). The

reanalysis is in fact a continuous analysis that can continue on the

predicted trajectory, or in the reanalysis case, be perturbed into

a new trajectory. It is noteworthy that this real-time shift in coding

was not trained explicitly, but rather reflects the inherent

properties of the reservoir and read-out neurons working together.

The reservoir encodes the ongoing trajectory of grammatical

structure as words successively arrive. The trained read-out

neurons extract this structure in real-time, in a predictive manner.

This readout activity reflects the current probabilities for each of

multiple possible parses in parallel.

The model was able to learn this set of constructions without

error. This result is thus consistent with the closed class hypothesis

for these 26 distinct grammatical constructions, i.e. that the

ordered set of closed class elements is sufficient to uniquely identify

each distinct grammatical construction [23,25,31,32]. Perhaps

more interestingly, the results of this experiment indicate that the

recurrent network encodes an incremental representation of the

grammatical structure of the input sentences, which is then

demonstrated in the readout neurons. This can be observed by the

values of the readout neurons, which encode the meaning, and

their on-line modifications over the course of the word-by-word

presentation of the input sentences. As seen for example in 2D the

meaning is initially incorrect, and then resolved at the arrival of

was, which indicates the passive form. We examine this on-line

reanalysis, and a possible neurophysiological correlate more

closely in Experiment 2.

Experiment 2: A Neural Coding Explanation of the P600
The meaning of a sentence may be ambiguous at some

intermediate point, with the correct meaning becoming certain

only later in the sentence. This can be observed in reading of

sentences generated from ‘‘relative’’ constructions. ‘‘Relative’’

constructions contain two verbs – the main and the relative. ERP

experiments [2] indicate that object-relative sentences, like (b)

below are more difficult to process than subject-relative sentences

like (a).

a. The dog that bit the cat chased the boy. (Subject-relative).

b. The dog that the cat bit chased the boy. (Object-relative).

This difficulty is revealed in part as a larger P600 event related

brain potential (ERP) response to the differentiating word in the

object-relative sentences. Thus, when exposed to sentences (a) and

(b), subjects will typically display a larger P600 response to ‘‘the’’ in

(b) than to ‘‘bit’’ in (a). Part of the explanation of the difficulty in

processing lies in the fact that ‘‘dog’’ is the subject of ‘‘chased’’, but

the object of ‘‘bit’’ in (b), while it is the subject of both verbs in (a).

The perspective shift from subject to object is presumed to require

additional processing effort [41]. It is also the case that the object-

relative sentences are less frequent in general [42], suggesting that

individuals may have less experience with such sentences. Thus,

with respect to ambiguity, at the arrival of ‘‘that’’ the initial noun

phrase ‘‘the dog’’ can either be the subject of the upcoming verb

(the more frequent case) or the object. This ambiguity is resolved

with the next word.

In this context, we want to investigate how the model’s

sensitivity to the statistical structure of the training corpus could

help to account for observed P600 responses. One way of

evaluating this sensitivity is to observe the level of activity in the

read-out neurons that code the meaning. Observing Figures 2 and

3, we can see that the arrival of certain words causes changes in

these levels of activity. These changes correspond to an updating

of the predicted coded meaning. Comparing sentences A and B in

Figure 3, if the object-relative is more difficult (or less frequent) we

Real-Time Sentence Processing
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would expect to see more changes in the readout activity for

sentence B when the critical word ‘‘the’’ or ‘‘V’’ arrives. That is, if

the predicted meaning of a temporarily ambiguous sentence is

resolved by a word indicating a low frequency grammatical

construction, there will be more instantaneous change in neural

activity, than if it is resolved by a word indicating a high-frequency

construction. Interestingly, we observe the opposite. That is, the

instantaneous change at the arrival of the ‘‘bit’’ (V) in (a) seems to

be at least as great as the instantaneous change associated with the

arrival of ‘‘the’’ in (b). Further investigation reveals that our corpus

(constructions 15–44 in Text S1) has a large distribution of

complex (non-canonical) sentence types, including the relative

passive (e.g. sentence 24 in Text S1), in which the first noun is not

the agent of the first verb. Thus, our corpus does not respect the

standard distribution relative frequencies for subject- and object-

relatives [42].

In order to address this issue, we modified our corpus such that

the frequency of the subject-relatives is greater than that of the

object-relatives. In these conditions one would expect that

sentences (such as the object-relative) which employ a less frequent

(non-canonical) form would produce changes in the readout

activity in response to the word that indicates the non-canonical

form. In order to determine if these modified corpus statistics

would influence the changes in readout activity in this way, we

trained the model on this modified corpus where all the relative

passives and all but one object-relatives are eliminated. The

eliminated sentences are marked with * in the corpus in the Text

S1. The results are illustrated in Figure 4.

With this updated distribution of subject- and object-relatives

that more closely matches that found in human language [42], we

now find the two expected effects. First, from the outset, N1 is

predicted to be the agent of V1 (see the blue trace in Figure 4, vs.

the overlapping blue and green traces in Fig. 3). Second, in the

object-relative, the arrival of ‘‘the’’ after ‘‘that’’ produces a change

in the predicted values, deviating from the initial prediction. For

the subject-relative, the changes are much smaller with the arrival

of ‘‘V’’. We can consider that this relative difference in the changes

of activity in the two conditions may have some functional relation

to the P600 ERP that occurs in similar circumstances. This change

in neural activity can thus be considered to reflect the degree of

reanalysis, and a form of neuronal processing cost (from an energy

perspective).

In order to generate an analog to a ‘‘processing cost’’ signal, we

can take a form of the time derivative of this neural activity in the

readout neurons. We calculate this as follows: for each readout

neuron, we measure the absolute value of the change in activity

between two time steps, and take the sum of these changes. This

can be visualized in Figure 5, where we calculate and display this

change in neural activity. We focus on the arrival of the word

following ‘‘The N that’’, marked with an arrow in Fig. 5 A and B.

Figure 2. Output of the ‘‘striatal’’ readout neurons for Noun 2 for four example sentences. Neurons coding different thematic roles
indicated by colored traces (see inserted legend). For all four sentences (see period before arrow (a)), the model initially predicts that Noun 2 is the
Object of Action 1 (green trace). In B and C this remains true, but Noun 2 is also the Agent and Object of Action 2 in B and C respectively. At point (b),
arrival of ‘‘to’’ confirms the correct prediction of N2-O1 (green trace) in A, and the arrival of ‘‘that’’ induces a change in activity in B and C, with
increased prediction of both Agent and Object roles for V2, respectively. Note that this is resolved at the arrival of the ‘‘V’’ and ‘‘was’’ in B and C
respectively (arrow (c)). In D the arrival of ‘‘was’’ provokes a new analysis with Noun 2 as the Agent of Action 1. Embedded legend: N2-A1 – Noun 2 is
the agent of Action 1. A – Agent, O – Object, R – Recipient. Simulation conditions, activation time, AT = 20, and number of reservoir units, N = 300.
doi:10.1371/journal.pone.0052946.g002
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In the right panel B, corresponding to the less frequent object-

relative, there is a greater change in activity, analogous to the

observed increased P600 effect in these conditions.

The system thus can be seen to generate on-line predictions

about the evolving meaning of the sentence, such that changes in

these predictions exhibit properties comparable to the P600. In

particular, the changes in neural activity reflect corpus frequency,

which is correlated (inversely) with processing difficulty and P600

amplitude [2,42]. While this will be of potential interest in

understanding the neurophysiology of the P600, it also implies that

the system is extracting some of the underlying structure of the

corpus.

Experiment 3: Grammatical Generalization
A crucial notion in language learning is that extraction of the

inherent grammatical structure from the training corpus during

learning will allow the system to accommodate novel constructions

that were not explicitly present in the training set. This notion is

present both in computational, e.g. [43–45] and developmental

[46,47] contexts.

In order to determine whether the learning performance on

a fixed set of constructions, as observed above, can transfer to

novel constructions, we performed a cross validation with the

leaving-one-out method, where for each of the 26 constructions,

the model was trained on the remaining 25 and then tested on the

untrained construction. A reservoir of 100 units and activation

time equal to 1 generalized to new test constructions (averaged

over 100 reservoir instances) with 14.83% (62.59) meaning error

(i.e. % of all output neurons incorrect) and 42.73% (67.19)

sentence error (i.e. % of sentences with at least one output neuron

incorrect – see methods – Training & Error Measures). This

means that in the majority of the cases, the system is able correctly

Figure 3. Processing relative phrases. Both sentences begin with ‘‘The N that...’’. A. Subject-relative (first noun is subject of principal and relative
clauses) ‘‘The N that V the N was V by the N’’. Arrival of the ‘‘V’’ following ‘‘that’’ produces a shift in activity coding for N1-A1, i.e. Noun 1 is the Agent
of Verb 1. At the arrival of the second ‘‘V’’, we observe the increase in activity in N1-A2, coding N1 as the Agent of Verb 2. B. Object-relative (first noun
is subject of principal and object of relative clause) ‘‘The N that the N V V the N.’’ Arrival of the second ‘‘the’’ generates a shift in the coded meaning
with N1 assigned the role of Object of Action 1 (N1-O1), and subsequently Agent of Action 2 (N1-A2). It is of interest to compare the responses in to
the second ‘‘V’’ in sentence 20 (Fig. 3A) to the responses at the same point to ‘‘was’’ in sentence 22 ‘‘The N that V the N was V by the N’’ in Text S2,
where the two neurons coding Agent and Object of Verb 2 shift in the opposite sense. Simulation conditions, activation time, AT = 20, and number of
reservoir units, N = 300.
doi:10.1371/journal.pone.0052946.g003

Figure 4. Relative sentences with modified corpus distribution such that subject-relatives are more frequent that object-relatives.
A. Subject-relative. For the word ‘‘V’’ following ‘‘that’’, there is relatively small change in the readout neurons, indicating that the predictions of the
model were essentially confirmed. B. Object-relative. For the ‘‘the’’ following ‘‘that’’, there is a significant shift in activity, corresponding to a re-
assignment of the most probable coded meaning. Simulation conditions, activation time, AT = 20, and number of reservoir units, N = 300.
doi:10.1371/journal.pone.0052946.g004

Real-Time Sentence Processing

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e52946



generalize to novel constructions. We verified performance with

an activation time of 10 time steps, with 16.9% (+2.59) and 45.9%

(+7.74) meaning and sentence error respectively, and an activation

time of 20 time steps as well, with 17.2% (+2.63) and 46.4%

(+7.74) meaning and sentence error respectively. This demon-

strates the relative stability with respect to this parameter. Figure 6

illustrates successful generalization in these conditions (N= 100,

AT =20) to the same constructions illustrated in Figure 2. While

promising, this remains a form of ‘‘toy’’ demonstration, where the

training set contains limited material and may constrain the ability

to generalize. Thus, we will explore generalization with more

extended corpora. First, however, we will consider the integration

of information over the course of multiple sentences in short

discourse segments.

Experiment 4: Short discourse processing
Information from sentences early in a discourse can influence

subsequent processing in real-time [3–5]. For the prototypical

example, a semantic anomaly N400 response [48] can be elicited

to the word ‘‘salted’’ in the sentence ‘‘the peanut was salted,’’ if

information earlier in the discourse has led to an expectation that

the peanut is, in fact, in love [4]. This raises the question: how

can information from a previous sentence be made available to

modify in real-time the processing of the current sentence? To

begin to respond to this question, the current experiment

examines the ability of the model to use information from

a previous sentence in order to determine the thematic roles of

the second sentence in a two-sentence discourse segment. We

trained and then tested the model on a total of 10 distinct two-

sentence discourse segments (without cross validation). In all

cases the second sentence employed pronouns ‘‘he’’ and ‘‘it’’ that

required correct reference to the proper and common nouns,

respectively, in the preceding sentence. The model was able to

correctly exploit the information in the ten two-sentence

discourse segments studied. Figure 7 illustrates the striatal

readout responses for neurons coding the meaning of Noun 1

for 4 example discourses. This is an interesting set of discourse

pairs that crosses two different first sentences with two different

second sentences. Note that for all illustrative sentences, we

include specific nouns and verbs for illustration, but the model is

always processing input sequences where nouns and verbs are

simply coded as N and V (or SW for Experiments 5–7).

A. John threw the boomerang. Then he caught it.

B. The boomerang was thrown by John. Then he caught it.

C. John threw the boomerang. Then it hit him.

D. The boomerang was thrown by John. Then it hit him.

That is, A and C both start with one sentence, B and D with

another; then A and B have the same second sentence, with C

and D sharing another. This allows a systematic comparison of

the effects of first and second sentence on the neural encoding of

meaning. Note that A and B have the same overall meaning, and

that the way that meaning is coded in the output neurons, the

coded meaning (see Figure 7), is different for these two discourse

segments. We observed that in all ten discourse segments, the

system correctly extracted the thematic roles specified in the two

sentences. This includes extracting different meanings for the

same sentence, depending on the two distinct sentences that

arrived earlier in the two discourse segments. Interestingly, we

can also detect that the processing of the ambiguous ‘‘he’’ in A

and B is resolved in real-time even though it depends on

information that occurred in the previous sentence. That is, there

is no additional processing time associated with retrieval of

information that occurred earlier in the two-sentence discourse.

These discourse processing results illustrate that the recurrent

network can accumulate structural information from multiple

sentences. In this case, that information was used to resolve the

meaning of anaphoric references for sentences like ‘‘Then he

threw it’’ differently, depending on the context specified in the

earlier sentence. These results demonstrate how information

accumulated over successive sentences can be made available

on-line, providing insight into the discourse processing results of

van Berkum and Hagoort.

Figure 5. Global instantaneous changes in output activity. Green trace: Calculated sum of change (instantaneous temporal derivative) in
neural activity over two successive time steps for Subject- and Object-relative sentences in A and B respectively. Corresponds to neural ‘‘effort’’
serving as an index related to human ERPs. This activity change can be compared with the human P600 response. For A and B sentence onset
generates a significant change in activity. Arrival of relativizer ‘‘that’’ generates another significant change (indicating that this is a relatively low
probability event in the corpus). The crucial comparison is for the next word (‘‘V’’ and ‘‘the’’ respectively in A and B, marked with arrow). Arrival of ‘‘V’’
in A indicates with the subject-relative structure that is of higher probability in the corpus, and leads to small activity change. Arrival of ‘‘the’’ in B
indicates the low frequency (only one in the corpus) object-relative, and generates a greater activity change. Blue trace – Sum diff. – simple sum of
activity differences between two time steps. Green trace – Abs. sum diff. – sum of absolute values of activity differences. Red trace – Abs. max. diff. –
absolute value of the maximum activity differences between two time steps. Blue and red traces are provided as additional information. Simulation
conditions, activation time, AT = 20, and number of reservoir units, N = 300.
doi:10.1371/journal.pone.0052946.g005
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Experiment 5: Extended Corpus I
The previous experiments provide insight into real-time

sentence processing in the model, but with a rather limited data

set. The question immediately arises as to whether the system can

accommodate a more extended set of constructions. Here we

attempt to determine the performance with an extended corpus.

Using a context free grammar we systematically generated a set of

462 novel grammatical constructions (see Methods), each expres-

sing meanings consisting of between 1 and 6 nouns, with 1 to 2

levels of hierarchical structure (i.e. with only a main clause, or

a main and relative clause, and 1 or 2 verbs, respectively). Each

grammatical construction is a mapping between a unique surface

form and a unique coded meaning. An exact mapping between

inputs and outputs is thus possible. Using a model with 1000

neurons, the system learned the full ‘‘462 corpus’’ set perfectly

(with no error when using the full corpus both as training and

testing set) for sentence final learning (i.e. training only at the end of

the input sentence, vs. continuous learning over the whole

sentence – see Learning conditions and Error Measures in

Materials and Methods). Even before considering generalization,

this is already a significant result. It demonstrates that the corpus

indeed adheres to the cue competition hypothesis [33], that the

corpus is learnable, and that the system can exploit this

learnability.

In order to determine the capacity of the system to generalize

learned grammatical structure to new, untrained constructions, we

then examined the behaviour in a ten-fold cross-validation. Ten

per cent of the corpus (,46 constructions) was removed from the

training set, the model was trained on the remaining 90%, and

then tested with the 10% not used in training. This was performed

over 10 partitions so that all constructions were tested in cross

validation. This procedure was averaged over 10 reservoir

instances.

Figure 8 illustrates performance results in cross validation while

we systematically explored the behavior of the system over a range

of values for the spectral radius (SR) and time constant (t) for
a reservoir size of 1000 neurons. Together these parameters

influence the relative degree of responsiveness of the system to

inputs and to recurrent activity within the network. The spectral

radius can be compared to the temperature of the dynamical

system, and t to the inertia or viscosity of the system (see Eqn. 1,

Materials and Methods). Alternatively, the spectral radius is

analogous to the gain in a feedback loop. More technically, the

spectral radius is the largest absolute value of the eigenvalues of the

reservoir weight matrix. For discrete linear time-invariant systems,

a spectral radius smaller than one guarantees asymptotic stability,

which means that the dynamics caused by an input pulse

eventually die out [37]. As we are using leaky integrator (non-

linear) neurons, the effective spectral radius may different from the

actual value of SR. These and related issues are covered in

[40,49].

Figure 8 illustrates that the system is relatively stable to

significant variation in these parameters, SR and t, as there are

large portions of the parameter space, along the top-left to bottom-

right diagonal, where the system functions well, with graceful

degradation of performance when deviating from that diagonal.

Figure 6. Generalization to new grammatical constructions that were not present in the training set. Same sentences as illustrated in
Figure 2. In all cases, the model correctly determines the appropriate thematic roles for Noun 2 (and Noun 1 – not illustrated). Simulation conditions,
activation time, AT = 20, and number of reservoir units, N = 100.
doi:10.1371/journal.pone.0052946.g006
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During this exploration we identified parameters that yielded

9.2% meaning error and 24.4% sentence error in sentence final

learning (SR=1, t=6), and 7.4% and 32.1% for meaning and

sentence error respectively for continuous learning (SR=6, t=55)

using cross validation.

Another parameter that is essential in the performance of such

systems in the number of neurons in the recurrent network, or

reservoir. In order to determine how the performance is influenced

by the number of neurons, we plotted the test error against the

number of internal units. This can be seen in Figure 9.

Note the improvement seen beyond the 1000 neuron case,

particularly for the continuous learning case. The asymptotic

errors suggest a limit in the generalization possibility for this

corpus. Note also that there is a continuous relation between

reservoir size and performance, with progressive improvement as

the size of the network increases. This is interesting in part because

it potentially contradicts the notion that as the system size

increases, so does the danger of overfitting and ensuing failure to

generalize in the cross-validation [50], since we see continuous

improvement with reservoir size. We address this issue in

Experiment 6.

Experiment 6: Effects of Corpus Structure
Because the corpus of 462 constructions contains inherent

grammatical structure, based on the context free grammar used to

create it, we believe that the ability to generalize demonstrated

above in cross validation is due to some degree of learning of that

underlying structure. To demonstrate that the system is general-

izing on the grammatical structure of the training set (and not

simply exploiting some arbitrary regularity in the data), we should

submit the model to a test with a corpus that has the same

constituent elements, but in the absence of this grammatical

structure.

Such an experiment can also provide insight into what the

system is actually learning – whether it is indeed learning some

inherent structure, or in contrast whether it is in fact ‘‘overfitting’’

or memorizing the training set. Overfitting [50] can occur when

the number of network parameters exceeds the size of the data set

to be learned. The training set is thus memorized, and

generalization to new items outside the training set will be poor.

We are using 1000 reservoir units and 42 output units (see ‘‘Input

and Output Coding’’ in Methods section), for a total of 42,000

trainable parameters. For the sentence final learning condition, in

which reservoir to readout connections should be learned once at

the end of the sentence, our corpus of 462 constructions

corresponds to a data set size of 462 elements. For continuous

learning, in which reservoir to readout connections should be

learned during the presentation of each word in the sentence, this

yields an upper limit on the data set size of 462 (number of

constructions) 619 (maximum sentence length) = 8778 elements.

Figure 7. Two-sentence discourse processing. Four example discourses. A–C and B–D use the same first sentence form respectively, and A–B
and C–D use the same second sentence form, respectively. This yields four distinct coded meaning patterns. For each, in the second sentence, the
anaphoric reference of ‘‘he’’ and ‘‘it’’ must be resolved, such that ‘‘he’’ is associated with the proper noun, and ‘‘it’’ with the common noun (i.e. the
one followed by ‘‘the’’) from the first sentence. A. Noun 1 is the Agent of Action 1 and Action 2. B. Noun 1 is the Object of Action 1 and 2 C. Agent 1
Object 2 D. Object 1 Agent 2. Note that when comparing ‘‘then he hit it’’ in A and B, the coded meaning is different, dependant on the preceding
sentence in the discourse. Similar for ‘‘then it hit him’’ in C and D. Simulation conditions, activation time, AT = 20, and number of reservoir units,
N = 300.
doi:10.1371/journal.pone.0052946.g007
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This is significantly less than the size of the trainable parameter

set. This is thus a situation that would be typical of overfitting.

Again, to demonstrate that with this reservoir size the system is

generalizing on the grammatical structure of the training set (and

not overfitting the data), we submit the model to a test with

a comparable corpus, but in the absence of this grammatical

structure. We can then compare generalization in the presence

and absence of inherent grammatical structure. If the observed

effects of generalization are due to overfitting, then generalization

as evaluated by cross-validation should not significantly vary in

these two conditions. However, if grammatical structure is being

learned, and generalized in the cross validation, then we should

see better generalization when the training is based on a corpus

that contains inherent grammatical structure. For the current

Experiment 6, we thus scrambled the order of the words in surface

forms of each of the 462 grammatical constructions, leaving all

other conditions equivalent, and repeated Experiment 5 in the

condition with 1000 neurons.

Figure 8. Parameter exploration (sensitivity analysis) for cross-
validation performance with 462 grammatical constructions.
Effects of spectral radius and time constant (t) on performance. The
error was averaged over 10 different reservoir instances. Colored cells
indicate the mean error for those parameter setting. Note that in all four
studies, there is a region along the diagonal where robust performance
is observed. Number of units in the reservoir: N = 1000.
doi:10.1371/journal.pone.0052946.g008

Figure 9. Effects of reservoir size on cross-validation with the 462 corpus. Meaning and Sentence Error (y-axis) as a function of the number
of neurons (x-axis). Logarithmic scale. Each point is an average over 5 instances, with means and standard deviations shown. Cross-validation error
reduces with reservoir size. This indicates that within the range of reservoir sizes studied, overfitting does not increase with reservoir size. Arrow
marks reservoir size of N= 1059, for comparison with N= 1000 results in Table 1 and Experiment 5. CL – continuous learning (SR= 1, t= 6), CL*
optimized continuous learning (SR= 6, t= 55), SFL – sentence final learning (SR= 1, t= 6).
doi:10.1371/journal.pone.0052946.g009

Table 1. Mean and standard deviation error in different
learning conditions for train and test sets.

462 corpus 462*6 corpus 462 Scrambled

m err s err m err s err m err s err

SFL test mean 9.178 24.370 8.154 24.953 73.391 99.913

std 0.574 1.192 0.395 1.636 0.962 0.106

SFL train mean 0.000 0.000 0.000 0.000 0.000 0.000

std 0.000 0.000 0.000 0.000 0.000 0.000

CL test mean 8.821 38.630 11.312 56.435 70.609 99.891

std 0.353 1.029 0.214 1.403 0.747 0.146

CL train mean 0.269 2.212 2.524 18.685 11.882 57.099

std 0.050 0.421 0.084 0.606 0.604 2.015

CL test * mean 7.433 32.130 9.490 48.351 74.154 99.891

std 0.524 1.353 0.513 1.841 0.802 0.146

CL train * mean 0.123 1.207 1.091 9.614 4.813 20.433

std 0.029 0.297 0.083 0.730 0.299 1.251

Errors are given in percent. Different learning conditions: SFL – sentence final
learning (SR = 1, t=6), CL – continuous learning (SR = 1, t= 6), CL* optimized
continuous learning (SR = 6, t= 55). m err and s err are for meaning and sentence
error respectively. std: standard deviation. Simulations were done with N= 1000
internal units.
doi:10.1371/journal.pone.0052946.t001
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As illustrated in Table 1, we observe that while the scrambled

set can be learned with no error, cross validation yields 73.4%

meaning error and 99.9% sentence error rates for sentence final

learning, and error rates of 70.6% and 99.9% for continuous

learning, respectively. This success in learning, and failure in cross

validation demonstrates generalization cannot be realized in the

absence of underlying grammatical structure, which was eliminat-

ed in the scrambled data.

We further examined the generalization in the grammatical

(non-scrambled) corpus by adding words (adjectives and adverbs)

that modify the sentences without changing the inherent structure,

and observed the same significant level of generalization perfor-

mance (see Table 1). Note that this modifies the overall timing of

the inputs. The successful generalization thus demonstrates the

relative robustness of the system to this time distortion.

Experiment 7: Extended Corpus II
To pursue our investigation of the scaling capability of the

model, we developed and extended the grammar to allow for 2043

distinct coded meanings, and then generated multiple different

manners of expressing these meanings to generate a corpus of over

9*104 constructions (corpus size = 90,582 constructions) (see

Corpora in Materials and Methods).

This corpus has several properties that influence learning and

generalization: (1) Multiple constructions can have the same coded

meaning, thus the corpus can be considered to be ‘‘redundant’’.

For example, ‘‘The dog by whom Oliver is bitten ran’’ and ‘‘The

dog whom Oliver is bitten by ran’’ are distinct surface forms but

correspond to the same coded meaning. Redundancy is also

present when substituting proper vs. common nouns (John/the

man), and substituting relative pronouns (that/who). (2) In-

complete meanings were allowed (e.g. absence of an agent in the

sentence: ‘‘The ball was given to Roger’’). (3) Addition of reduced

relative forms for relative clauses when possible (e.g. in ‘‘The ball

that was bitten by the dog was thrown by Adam to Roger,’’ the

‘‘that was’’ can be removed to obtain a reduced relative). This also

contributes to redundancy (i.e. multiple distinct constructions with

the same coded meaning). (4) Constructions can be ambiguous.

Twelve per cent of the constructions in the corpus are ambiguous.

We define ambiguity as the case where two or three constructions

have the same word order (surface form) corresponding to

different meanings. For example, there are two constructions that

correspond to a sentence ‘‘John who is introduced to the King by

the Queen to England is ousted.’’ In these two constructions, the

‘‘Queen’’ can be the agent of ‘‘introduced’’ or of ‘‘ousted,’’

respectively. Figure 10 illustrates the distinctions between different

such meaning relations involving the surface form, coded

meaning, and meaning.

Because this corpus has internal grammatical structure and

redundancy (i.e. multiple constructions have similar surface form

and the same coded meaning), we expect that the ability to

generalize will be greater than in the 462 construction corpus,

despite the 12% ambiguous constructions which impair learning

and generalization. In order to characterize the ability of the

system to generalize based on exposure to different sample sizes,

we randomly chose sub-corpora made up of 6%, 12%, 25%, 50%,

75% and 100% of the 90,582 element corpus. For each of these

sub-corpora, we trained on half the sentences, and then tested on

the remaining half, and then performed the reversal over these

training and testing sets. Figure 11 illustrates generalization

performance as a function of the training set size. Interestingly,

we see that already when the sub-corpus is 25% of the total, and

thus the training set is 12.5% of the corpus, the system can already

generalize with only 22% sentence error and 4% meaning error

for sentence final learning.

Discussion

The stated goal of this research was to test the hypothesis that

a recurrent network can encode the structure of sentences based

on their closed class structure [33] and then (a) use this

information to perform thematic role assignment, (b) generate

predictions about the real-time effects [2,12], (c) generalize to new

constructions, and (d) encode prior knowledge from earlier

sentences in a multiple sentence discourse [4,5]. We address these

questions in the computational framework of reservoir computing.

Reservoir computing is a machine learning technique in which

a recurrent network with fixed connections can encode the

spatiotemporal structure of an input sequence, and connections to

a readout layer can be trained using fast and powerful methods to

produce a desired output [38]. This framework can be considered

to define a form of equivalence class of problems that can be

solved within the reservoir framework. The current results indicate

that the task of thematic role assignment as we have specified it is

a member of this equivalence class. This work was motivated in

part by the postulate that the cortico-striatal system is perhaps at

the heart of this processing in the human brain, with cortex and its

inherent recurrent connectivity structure [51] playing a role

analogous to the reservoir, and the striatum, with modifiable

cortico-striatal connections [52–54] playing the role of the readout

neurons. By extension, we can thus consider that the cortico-

striatal system is functionally related to this equivalence class.

Real-time processing
Part of the novelty of the current research is that the real-time

processing of sentences by a recurrent neural network provides

insight into the analogous real-time processing during human

sentence processing as revealed by ERPs. Friederici et al. [2]

observe ERP patterns indicating that human subjects demonstrate

an on-line preference for subject-vs. object-relative sentences.

Their P600 profile is of significantly reduced amplitude in the

‘‘simpler’’ subject-relative sentences. Observation of the read-out

activity for words following the relativizer ‘‘that’’ in Figure 4 and 5

reveals a significantly greater modification of activity for the

Figure 10. Different forms of meaning relations. Active and
passive surface forms ‘‘John gave the ball to Mary’’ and ‘‘The ball was
given to Mary by John’’ have different surface forms. They also have
different coded meanings, e.g. the first semantic word (SW1) is the
agent in the active, and the object in the passive. But these two coded
meanings correspond to the same meaning Gave(John, ball, Mary) in
the format Predicate(Agent, Object, Recipient). Ambiguous sentences
have the same surface form, but correspond to two different coded
meanings and two different meanings. Finally, redundant sentences
have different surface forms, but the same coded meaning and
meaning.
doi:10.1371/journal.pone.0052946.g010
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object-vs. subject-relative condition. Interestingly, this effect is

reversed in Figure 3. As noted, this is due to a frequency effect in

our training corpus. When trained with a corpus in which subject-

relatives occur more often than object-relatives, as in the case in

human language [42], we observe the corresponding P600-like

effect. This provides a tentative simulation-based explanation of

a P600 response. The readout neurons encode an online analysis

or prediction of the meaning of the current sentence. When words

arrive that cause a significant change in that predicted meaning,

there is a significant change in the readout neural activity. This

change can be codified in a temporal derivative, and the value of

this temporal derivative can be compared with the P600. Clearly

there are limits to this analogy. For example, the neural changes

that we observe take place in the analog of the striatum (i.e. the

readout layer), and they contain a mixture of increases and

decreases in activation. In contrast, data from human striatal

lesion studies [11,12,15] suggest that the P600 could be in part due

to striatal activation that would produce synchronized activation of

cortex through the cortico-striato-thalamo-cortical loop. Where

the analogy does hold, however, is that words indicating low

frequency constructions can evoke a P600 response in humans,

and the same stimuli evoke a significant change in the neural

activity in the model. Thus, this research should be of interest to

the psycholinguistics community, as it provides a new tool for

interpreting on-line electrophysiological responses during sentence

processing. In particular, it demonstrates a system in which the

activity of the read-out neurons represents the instantaneous

probability estimation of the meaning of the sentence. Interest-

ingly, this meaning is subject to change as successive words arrive.

Neurophysiology of the P600
In this context, the current research contributes to the

discussion concerning the nature and origin of electrophysiological

responses to anomalous events during language processing. Recent

studies have addressed ERP responses to non-standard perceptual

events, both in the more general framework of the mismatch

negativity (MMN) [55], and the language-specific P600 [56].

Wacongne et al. [55] implement a model that learns to predict

a target signal, and that generates an MMN-like response to inputs

that violate the predicted signal. This corresponds to a prediction

error that is generated by comparing the predicted and actual

input signals, consistent with the predictive coding framework

proposed by Friston [57] in which cortical responses reflect the

difference between internal predictions and the actual external

input. The resulting prediction error is employed in a Bayesian

model in order to update the predictive model in order to reduce

the prediction error [55].

In the current work, the learning between the recurrent network

(reservoir) and the readout neurons allows the system to predict the

meaning of the sentence as its constituent words successively

arrive. Our P600-like response (derived from the change in the

readout prediction) can be considered as related to a prediction

error, as it indicates the input-driven updates to the continuous

prediction of the meaning. In both cases of Wacongne et al. and

the current work, a memory trace (recurrent network or set of

delay lines) maintains an ongoing representation of the task input

context that is used to generate the on-line predictions.

Beim Graben et al. [56] take a related but different dynamical

systems approach to explaining the P600. Based on sentences used

in a P600 task, they generate a context free grammar and

deterministic recognizers to parse these sentences, and implement

these formal automata in nonlinear dynamic systems. Model ERPs

are then obtained from principal components in the activation

space, or by a measure of parsing entropy, of the resulting

dynamical systems [56]. These measures are related to the notion

of prediction error in that they represent a deviation from the

input based on the current context. The fundamental difference

with our work is that the dynamical system employed by beim

Graben et al. is pre-structured based on a prior specification of the

grammar, whereas our system is pre-structured only with the

inherent properties of the recurrent reservoir network, and the

open-closed class distinction. Interestingly, with no grammatical

prior knowledge, this recurrent network can represent the

grammatical structure of the corpus. Modifiable output connec-

tions then adapt to that structure in extracting the meaning,

similar to [44,58].

Figure 11. Effects of progressive exposure to 90K corpus. Meaning and Sentence Error for generalization to new construction (y-axis) as
a function of the percentage of the corpus used for training. Generalization performance increases with percentage of corpus exposure in training.
With exposure to only 12.5% of the corpus, the system generalizes with meaning error ,4% and sentence error ,22% for sentence final learning.
Exposure to 50% of the corpus allowed generalization with 1.78% meaning error and 15.01% sentence error. Note that 12% of the sentences are
ambiguous and will compete, rendering the real possible minimal sentence error ,12%. Each point is an average over 5 instances, with means and
standard deviations shown.
doi:10.1371/journal.pone.0052946.g011
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Frisch et al. [59] further explored the functional significance of

the P600. In German they confirmed that when an argument

disambiguates an earlier argument towards the non-preferred

subject-object order a P600 is observed, reflecting cost associated

with this revision. Strikingly, they also observed for the first time

a P600 associated with a sentence-initial ambiguous argument.

Since there is no reanalysis at work, these authors argue that the

P600 must be considered as related to the cost of making two

parallel predictions. They also suggest that while the parser is

maintaining different parses in parallel, it has built up a measurable

preference for the preferred structure, as revealed by the larger

P600 for the non-preferred reading. This appears consistent with

our model results, though this remains to be verified with specific

tests.

Serial vs. Parallel Sentence Processing
Friederici et al [2] likewise suggested that their results were

potentially consistent with parallel models of sentence parsing

[21,22]. Interestingly, this is consistent with the neural activity we

observe in the striatal readout neurons – multiple parses are

maintained, based on their probability within the corpus –

analogous to the notions of ‘‘preferred’’ and ‘‘non-preferred.’’

These results are pertinent within the psycholinguistics commu-

nity, where a debate continues concerning whether human

sentence processing is based on always maintaining the single,

best current parse candidate (serial processing) or rather,

maintaining multiple open options, and pruning and updating

these options as the sentence unfolds (parallel processing)

[22,60,61]. One of the arguments against parallel processing is

related to the cost and difficulty of maintaining multiple, parallel

parses. In symbolic parsing models, each parallel path corresponds

to a complete parser. In contrast, the neural parsing we see in the

current research maintains multiple parallel representations as an

inherent function of the system, with no additional resources

required for maintaining these multiple parses. Our model

corresponds to a ranked parallel model, where multiple structures

may be pursued, but one of them may be more highly preferred

[22,61]. Indeed, it is impossible to avoid this parallel processing. In

the future such neural implementations of sentence processing can

thus contribute to the serial vs. parallel debate.

Prior knowledge in discourse
In addition to single sentence processing, we also hoped to shed

light on how a language system might integrate such information

over more than one sentence in discourse. Hagoort and van

Berkum [4] review two-stage models of discourse processing, in

which a sentence is first processed alone, and then integrated with

the ongoing discourse. They hold, however, that their ERP data

argue in favor of an alternative ‘‘immediacy assumption’’ in which

every source of information that can contribute to sentence

interpretation, including prior sentences in the discourse, does so,

immediately (see [4] for review). The immediacy assumption poses

the question – how is the information accumulated over the

discourse made available for immediate access? Our simulations

suggest that this information can be accumulated and made

accessible within recurrent cortical networks (the reservoir), which

indeed maintain the global context of the unfolding discourse

structure. We demonstrate this here with two-sentence discourses,

and illustrate how the maintained context can be used to resolve

ambiguous anaphoric reference in the second sentence that is

disambiguated by the first. In general, however, syntactic in-

formation may not always be sufficient to resolve anaphoric

reference. Future work remains, to explore more extended

discourse situations and generalization in discourse.

Related Language Models
The study of language processing in recurrent networks has

a long and rich history. A number of studies have examined the

ability of recurrent networks to predict the next word or word-

category in a sentence, initiated by the seminal work of Elman

[62]. There, Elman showed how the simple recurrent network

(SRN) with plastic recurrent connections formed a representation

of the underlying syntactic structure of the learned language.

Interestingly, Tong [44] showed that with no learning, echo state

networks (ESNs, a category of reservoir computing) perform

equally well in the task of predicting the next word during sentence

processing. This is very pertinent to the current study as it provides

evidence that indeed, without learning inside the reservoir,

properly constructed recurrent networks can inherently encode

grammatical structure with this encoding then exploited via

modifiable readout connections. Indeed Frank and Bod have

recently demonstrated that in this context, an ESN actually

accounted for human reading-time data by estimating surprisal

values better than a phrase structure grammar model [58].

The crucial distinction with respect to our current work is

related to the task. Tong et al. follow the Elman approach of

predicting the next word in the sentence. Our task is fundamen-

tally different. It involves extracting the meaning of the sentence,

in terms of determining the thematic roles of the open class

elements, or extracting ‘‘who did what to whom’’. This type of

sentence comprehension with neural networks has an equally long

and rich history. It was addressed as part of the ‘‘parallel

distributed processing’’ (PDP) or connectionist research effort

[63,64], and more recently in a more structured cognitive

architecture [65]. Similarly, Chang develops a model of language

production to address real-time effects including structural priming

[66,67]. Miikkulainen develops a multicomponent parsing system

that generalizes over relative phrase structure, and also provides

a thorough review of language-related neural network processing

[64]. It is of particular interest that related neural network

approaches have recently made significant technical progress in

the domain of natural language processing, specifically in semantic

role labeling [68,69]. While these studies have addressed issues of

thematic role assignment, they tend to introduce significant

additional processing machinery, and have not addressed the

real-time neural activation during sentence processing that is

central to the current work. The novelty of our work is to develop

a model that generates real-time parallel predictions of the

thematic roles (or semantic labels) that provide potential insight

into the underlying neurophysiological processing of language in

the cortico-striatal system of man.

Generalization
We can consider how the network performs this task, and how it

can generalize. The recurrent network should be capable of

separating distinct input sentence forms as well as grouping

together sentence forms that may have small variation but

essentially equivalent coded meaning. These two properties of

the recurrent network are referred to as kernel quality and

generalization capability in the technical literature [70]. This

generalization refers to the ability to recognize two objects with

small variation as belonging to the same category. This was

revealed in the last part of Experiment 6 with the inclusion of

adjectives and adverbs that thus generate redundant constructions

(with similar sentence forms) which should be judged as being

similar.

In addition to this form of generalization, the current task

requires a more structurally advanced form of generalization that

operates on the grammatical structure as encoded in the corpora
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used in our experiments. That is, the system should be able to

accommodate new constructions that are not present in the

training set, but whose structure can be derived from constructions

that were present in the training set. This is distinct from

generalization capacity of the recurrent neural network specified

above which operates over small variations being characterized as

similar. Here, the generalization may allow the system to correctly

process constructions that are large variations from those seen in

training, but that derive from the common grammatical structure

inherent in the training corpus.

We can refer to this as grammatical generalization. Indeed, we

observe that the system is able to extract structural regularities

inherent in the corpora, and then use this information to

generalize to new constructions. In related work, the ability of

recurrent networks to accommodate this form of grammatical

generalization have been observed [44,45,62–64].

Scaling to larger more varied corpora
A limitation in our previous work was the small set of

constructions used, and the corresponding absence of significant

demonstration of generalization [24–27]. In the current research,

using corpora of 462, and up to 90,000 distinct constructions, we

demonstrate that the model can learn and generalize on the

grammatical structure that is inherent in the training corpora.

Indeed, as illustrated in Figure 11, we observed that as the size of

the training set increases, so does the generalization capability. As

the system gains greater exposure to the structure that defines the

corpus, it can better generalize within the context of that corpus.

We should recall that there is inherent ambiguity (12% of the

sentences) in the corpus which limits optimal sentence error to

approximately 12%, and our minimal sentence error in two-fold

cross validation is 15.01% (60.22).

The system can also demonstrate flexibility in coding. In

Experiments 1–4 we only required specification with respect to the

thematic roles of the nouns, and then in Experiments 5–7 we

additionally required the system to include the predicate for

action. Likewise, in Experiments 1–4 the first action in the coded

meaning was associated with the first verb, while in Experiments

5–7 the first action was associated with the verb in the main clause,

even if it came second in the sentence (as in a relative phrase such

as ‘‘The man that hit the ball chased the dog.’’). More generally,

the coding scheme is flexible, and if information concerning

different dimensions (such as tense) are coded in the meaning, then

the system could learn to extract this information in the meaning

representation.

A final disclaimer
We have taken a rather bold stance in suggesting such a specific

role for the cortico-striatal system, with cortex as a recurrent

network and striatum as a readout for thematic role assignment.

While this is coherent with a substantial amount of empirical and

theoretical work [2,9,12,71], it could well be possible that the

processing we are considering is taking place at a different level,

e.g. within purely cortico-cortical networks, though this would

make the observation of P600 loss with basal ganglia lesions more

difficult to explain [12]. Indeed, in [26] we suggested that the

cortico-striatal mechanism would be used for re-analysis, and

a direct Cortico-cortical mechanism would be used for over-

learned canonical forms. This remains to be established by more

detailed neurophysiological studies. The important notion to be

retained is that a recurrent network with appropriate dynamics

can accumulate and process information pertaining to grammat-

ical structure, such that this information can be read-out to

perform thematic role assignment, and that this is consistent with

a mapping of recurrent network and readout onto the cortico-

striatal system and the corresponding human neurophysiology.

Such use of reservoir computing to model the functional

neurophysiology of cortico-striatal function in cognitive tasks, as

in the current work, and in [72] is a very promising area for future

research.

Materials and Methods

Our model makes a parallel between cortico-striatal anatomy

and the reservoir computing framework. Prefrontal cortex

(Brodmann area 47) is modeled as a fixed recurrent network

and striatum as a separate population connected to cortex via

modifiable synapses, corresponding respectively to the reservoir

and readout. The reservoir is composed of leaky integrator

neurons with sigmoid output activation. Equation (1) describes the

internal update of activity in the reservoir:

x(tz1)~ 1{
Dt

t

� �
x(t)z

Dt

t
f (Winu(t)zWresx(t)) ð1Þ

where x(t) represents the reservoir state; u(t) denotes the input at

time t; Dt is the time precision; t is the time constant; and f(N) is the
hyperbolic tangent (tanh) activation function. The initial state of

the internal state x(0) is zero. In reservoir computing terminology,

the ‘‘leak rate’’ is equivalent to 1/t. Win is the connection weight

matrix from inputs to the reservoir and Wres represents the

recurrent connections between internal units of the reservoir. We

will present input stimuli (words) one by one as input to the

recurrent network. Each word is presented for an ‘‘activation

time’’ (AT), which specifies the number of network time steps of

the presentation. This AT enters into Equation 1 such that Dt is
equal to the reciprocal of AT (i.e. 1/AT). We empirically

determine this in the methods section on Experiment 5, below,

and provide simulation results in the Text S1. The linear readout

layer is defined as:

y(t)~Wout 1; x(t)½ � ð2Þ

Where y(t) is the output (striatal) activity and Wout the output

weight matrix. To learn the connection weights Wout between the

reservoir (BA 47) and the readout (striatum), we used ridge

regression (see Training, below). The global readout activity

represents the coded meaning of the input sentence.

The number of unit used in the reservoir, the spectral radius,

the activation time, Dt and the time constant are dependent on the

experiment, but here we indicate the parameters that are common

for most of them. The reservoir was typically composed of

1000 units. By definition, the matrices Win and Wres are fixed and

randomly generated. Internal weights (Wres) are drawn from

a normal distribution with mean 0 and standard deviation 1, with

a connectivity of 10%. Then we rescale the spectral radius (SR),

i.e. largest absolute eigenvalue of the generated matrix Wres to 1.

Input weight matrix Win has values chosen randomly to be 0.75 or

20.75 with equal probability. The density of the input connections

is also 10%. A time constant t of 6 (i.e. leak rate of <0.167) was

used. The ridge regression parameter for which we observed

correct performances was 1029. SR and t were varied in some

cases, as described for specific experiments, below.

Corpora
For experiments 1–4 a corpus of 45 constructions was used,

presented in the Text S1. This was based on 26 of the
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constructions studied in [25], with extensions for discourse, relative

clauses, etc.

For Experiments 5 and 6 an extended corpus of 462

constructions was created. Sentence forms (and the corresponding

meanings) were generated from a context-free-grammar based on

English phrase structure with verbs taking 1 to 3 arguments (e.g.

walk, cut or give could have respectively 1, 2 or 3 arguments). The

coded meanings were then generated for each construction, by

matching the position of each semantic word in the sentence form

with its role in the meaning. Each construction could have 0 or 1

relative clauses inserted after one of the nouns; the verbs of the

relative clause could take 1 or 2 arguments. All possible semantic

word orders were used. There are 6 possible semantic word orders

for a verb with 2 arguments: APO, AOP, PAO, POA, OAP, OPA.

Note that Agent Predicate Object (APO) is the most common in

English. There are 24 possible semantic word orders for a verb

with 3 arguments: APOR, APRO, AOPR, etc. All possible

semantic word orders were generated both for main and relative

clauses. All possible insertions of the relative clause were

performed, i.e. after the 1st, 2nd or 3rd noun in the main clause.

In total, 462 constructions were generated. In this corpus, all the

nouns were preceded by ‘‘the’’ (i.e. they were common nouns).

For Experiment 7, as in Experiments 5 and 6, we constructed

a context-free grammar that was used to generate a corpus of

90582 constructions. This corpus has 2043 distinct coded mean-

ings, and thus it is redundant. In addition to complete meanings,

this corpus contains ‘‘incomplete’’ meanings such as give(_, Rex, John)

for a sentence like ‘‘Rex was given to John’’, where there is no

Agent in this meaning. In the ‘‘90582 corpus’’, for each grammatical

construction we generated similar constructions with variability.

There are several types of variability as described in Experiment 7,

above. The set of word orders employed was restricted to eliminate

clearly non-intelligible constructions employing semantic word

orders such as RP (i.e. Recipient-Predicate), or POAR. The corpus

contains 12.24% ambiguous constructions (i.e. 11,088 construc-

tions). Of these, 5,268 are ambiguous couples (pairs with the same

surface form and different coded meanings), 184 are ambiguous

triples (triplets with the same surface form and different coded

meanings).

Input and Output Coding
Here we will describe the general case for ‘‘462 corpus’’ that was

used in Experiments 5 and 6. Given an input sentence, the model

should assign appropriate thematic roles to each semantic word (in

our case, nouns and verbs). Surface forms are presented to the

model as input sequences, where specific instances of semantic

words (SW) – noun and verb – are replaced by SW markers. Thus,

a given surface form can code for multiple sentences, simply by

filling in the SW markers with specific words. Input sequences are

presented to the reservoir in a sequential order, one word at a time.

Learning consists in modifying connections between reservoir and

readout units, so as to specify the appropriate role assignments to

each SW in the readout neurons, which are specified during

learning. This is illustrated in Figure 1B.

Each dimension of the input codes one word or marker.

Semantic words (also called open class or content words) are all

coded with a single input neuron labeled SW. The input

dimension is 13. This corresponds to: ‘-ed’, ‘-ing’, ‘-s’, ‘by’, ‘is’,

‘it’, ‘that’, ‘the’, ‘to’, ‘was’, with 10 input neurons for closed class

words (CCW), 1 for SW, 1 for the comma and 1 for the period.

Verb inflections (suffixes ‘‘-s’’, ‘‘-ed’’, ‘‘-ing’’) are part of the CCWs

because as grammatical morphemes they provide grammatical

information. In the second part of Experiment 6 an additional

input neuron was used to code adjectives and adverbs, thus

yielding a total of 14 input neurons.

The number of readout units is 42 ( = 6*4*2–6): 6 semantic

words, each of which could have one of the 4 possible thematic

role (predicate, agent object, recipient) that could be related to both the

main and relative clause. As a relative clause never employs a verb

with more than 2 arguments (i.e. there is no recipient) we subtract 6

output units from the total. Inputs have value 1 when the

corresponding word is presented, 0 otherwise. Teacher outputs has

value 1 if the readout unit should be activated, 21 otherwise.

Experiments 1–4 used an equivalent but topologically modified

coding. The total number of inputs was 14: 11 slots for close class

words, 1 for nouns, 1 for verbs and 1 for the period. The read-out

dimension for Experiments 1–4 is 4*3*2= 24 (4 nouns that each

could have 3 possible thematic role assignment, and each could

have a role with at maximum 2 verbs).

For Experiment 7, we used a coding similar to that for the ‘‘462

corpus’’. The input slots used are ‘by’, ‘is’, ‘to’, ‘that’, ‘the’, ‘who’,

‘-ed’, ‘-s’; ‘-m’, ‘SW’, comma and period; with the input dimension of

12. Note that ‘-m’ is the possible inflection of who, giving whom.

The number of readout units is 56( = 7*4*2): 7 semantic words,

each of which could have one of the 4 possible thematic roles

(predicate, agent object, recipient), in the two predicate actions.

Recall that two sentences that have equivalent meaning (as

illustrated in Figure 1) may have that meaning coded in different

configurations of output neuron activation. Consider ‘‘John hit the

ball’’ and ‘‘The ball was hit by John.’’ Both correspond to hit

(John, ball). For the first sentence open-class word 1 is the agent,

and in the second it is the object. We thus make the distinction

between meaning and coded meaning. These two sentences have

the same meaning, and different coded meanings.

The input signal for each word is coded as a square wave of AT

(activation time) time steps. For experiments 1,2 and 4 we used an

AT of 20, corresponding to Dt=0.05. For Experiment 3 we used

ATs of 1, 10 and 20. We then we used an AT of 1, corresponding

to Dt=1, for the remaining experiments (5–7). In other words for

all experiments where generalization performance were computed

using cross validation, we used an AT of 1 in order to increase the

speed of the simulations. We verified that this did not change the

behavior of the system. See details in the Text S1.

Training
During training, inputs were presented to the reservoir, and the

reservoir internal state trajectory was recorded. This data and the

desired output was then used in a ridge regression (also known as

Tikhonov regularization) to train the readout weights so as to

minimize the mean squared error between the target output and

the projection of the reservoir state through the trained readout

weights. We used ridge regression rather than classic linear

regression, as it effectively limits the magnitude of the weights, thus

reducing the probability of overfitting and thus enhancing the

generalization capabilities. See [38] for a review of reservoir

learning methods.

We considered training conditions in which learning occurred

starting at the presentation of the first word until the end of the

sentence (continuous learning), or only at the end of the sentence

(sentence final learning). In the first case, the system will begin to

predict the meaning of the sentence from the outset of the

sentence, and can thus display anticipatory and on-line activity.

However, because the learning is distributed over the entire

sentence, there can be a relative reduction in the final performance

in terms of correctly learning the meaning.
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Error Measures
As stated above, we define the coded meaning of the sentence as

the specification of the thematic roles for the semantic words (SW).

This requires determining the individual coded meanings for each

SW, as specified in the readout neurons. We refer to this fine

grained level of word meaning as the word level coded meaning. A word

level coded meaning is obtained from the concerned readout units in 2

steps. The activity is thresholded at 0, and a winner-takes-all

between the 4 possible roles is performed. The winning role is

considered as the word level coded meaning of the model for this SW. If

there is no activity above the threshold, then no word level coded

meaning is considered for this SW. During learning, input sentences

are presented, and the corresponding readouts coding the

meaning are activated, and the system should learn the weights

from the reservoir to readout.

Two error measures were evaluated: the meaning error and the

sentence error. Meaning error is the percentage of word level coded

meanings whose activity was incorrect (i.e. the percentage of

winning readout neurons whose activity is incorrect). Sentence

error is the percentage of sentences that were not fully understood

(i.e. sentences in which there is at least one erroneous word level

coded meaning). We use these two comparative measures because

sentence error gives a stricter measure while meaning error is

more lenient and accounts for partial understanding. These two

measures are related but not strictly correlated, as 10 wrong word

level coded meanings could all be associated with one sentence, or with

10 different sentences. The analysis is restricted to readouts for

semantic words that are relevant, i.e. for a sentence with 2

semantic words we analyse readouts only corresponding to the first

two semantic words. For instance if there are only 2 semantic

words in a construction, if one of them is erroneous, the meaning

error will be 0.5 and the sentence error will be 1. In sentence 26 (see

Text S4) ‘‘Walk-ing was the giraffe that think-s,’’ there are two

clauses (main and relative), and three semantic words. Each of the

three semantic words (walk, giraffe, think) can potentially take

a role in either clause. Thus there are 6 relevant output mappings

of semantic words to meanings, or word level coded meanings, for this

sentence. This means that a word that participates in the main and

relative clause will have two word level coded meanings, one for each

clause. In the 462 corpus, 88% of the sentences have 10 or 12

relevant output mappings or word level coded meanings.

Thus, learning results will be presented in terms of these two

factors: error type (sentence error and meaning error), and

learning method (continuous learning and sentence final learning).

Experiment-Specific Simulation Conditions and
Parameters
Python code for Experiments 1–4 can be found in the Zipped

Archive S1. The Text S3 has instructions on how to install and run

the model. Below are details on specific parameters for the

different experiments.

Experiment 1: Basic Syntactic Comprehension. Learning

and on-line processing with a set of 26 constructions: constructions

numbered 15–40 in the Text S1 (see results in Figure 2). The

reservoir was composed of 300 internal units. For Experiments 1–

4 semantic words were coded with two separate input neurons for

nouns (N) and verbs (V). Meaning was evaluated only for nouns, in

assigning the thematic roles of agent, object and recipient (see

Input and Output Coding).
Experiment 2: Neural Coding Explanation of P600. On-

line processing of subject- and object-relatives with different

training corpora. The training set was augmented with four object-

relative constructions corresponding to constructions 41–44. The

final set thus consisted of constructions 15–44 in the Text S1 (see

results in Figure 3). In order to render the corpus more similar in

its distribution of construction types to that observed in human

language [42], we used constructions 15–41 (thus keeping one

object-relative – construction 41), and removed all passive-relatives

(with the ‘‘…that was V’’ component), so that subject-relative was

more frequent than object-relative and passive-relative (see

Figure 4). All removed constructions are marked with ‘‘*’’ in the

corpus in Text S1. 300 internal units were used. Figure 5 then

presents the change in neural activity that can be compared with

ERP P600 responses.

Experiment 3: Generalization. In order to test the ability of

the system to generalize to constructions not presented in the

training set, we performed ‘‘leaving one out’’ simulations, where

each construction is systematically removed from the training set

and then tested. Constructions numbered 15–40 were used (See

Figure 6). 100 internal units were used.

Experiment 4: Short discourse processing. This involves

the use of two successive sentences. This discourse sentences are 0–

4, 10–14, and they were included in the whole 45 element corpus.

(See Figure 7). 300 internal units were used. For all ten discourse

fragments, the first sentence contained one proper noun and one

common noun, and the second sentence contained the pronouns

‘‘he’’ and ‘‘it’’. In the corpus, ‘‘he’’ systematically refers to the

proper noun referent, and ‘‘it’’ to the common noun referent.

Experiment 5: Extended corpus I. Here we use the

extended corpus of 462 constructions. Again, we considered

conditions in which learning occurred starting at the presentation

of the first word until the end of the sentence (continuous learning), or

only at the end of the sentence (sentence final learning). In the first

case, the system will begin to predict the meaning of the sentence

from the outset of the sentence, and can thus display anticipatory

and on-line activity. Because of these different learning conditions

we selected the optimal coupled parameter set for sentence error in

both conditions: spectral radius (SR) of 1 and time constant (t) of 6
for sentence final learning (SFL), and spectral radius of 6 and time

constant (t) of 55 for continuous learning (CL*).

Because of increased simulation time with larger corpora in this

and subsequent experiments, we tested whether reduction in the

activating time for each input from 20 to 1 would yield equivalent

results. Demonstration that this is equivalent is presented in the

Text S1. For sake of simplicity and because the performance is

robust on a wide range of parameters, in the rest of the

experiments, we retain two sets of coupled parameters (spectral

radius, time constant): (SR= 1, t=6) and (SR=6, t=55).

This section includes (a) an initial test of learning (with no cross

validation) with a reservoir size of 1000 units, (b) a parameter

sensitivity test (grid search) using cross validation with this

network, and (c) a test of the effect of the reservoir size, again

with cross validation (see Figures 8 and 9).

Experiment 6: Effects of Training Corpus

Structure. The purpose of this experiment was to test the

ability of the system to generalize in the absence of grammatical

structure. It is thus to be considered as a control experiment. In

order to do this, we scrambled the word order in the 462

construction corpus, and then proceeded with training and testing

as Experiment 5. As an additional control to demonstrate that the

system is robust to noise in the training corpus, we added an input

neuron corresponding to adjectives and adverbs that could be

inserted before semantic words, without changing the meaning of

the sentence. For each construction, 5 new variations were created

by adding adjectives/adverbs randomly before SWs in the surface

form. This yielded a corpus of size 462*6= 2772. In the cross

validation, we ensured that constructions from the same redundant
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set were not used in training and testing, i.e. that the cross-

validation tested generalization to new constructions.

Experiment 7: Extended Corpus II. This experiment

examines generalization performance as a function of the size of

the training set. The large (.90K constructions) corpus was used,

with progressive exposure to increasing proportions of the whole

corpus during successive cross-validation testing. For this exper-

iment we used two-fold cross validation with sub-sets of the corpus

varying from 6.25% to 50% of the corpus.

Supporting Information

Figure S1 Simulation results with same conditions as
Experiment 1 but with reservoir size N=1000, and
activation time AT =20. Note that for each output neuron, the

temporal profile of activation is the same as that in Figure 2,

obtained with N=300, AT =20.

(TIF)

Figure S2 Simulation results with same conditions as
Experiment 1 but with reservoir size N=100, and
activation time AT =20. Note that when compared with

Figure S1, the temporal profile of activation for the output

neurons is globally the same, but with increased variability.

(TIF)

Figure S3 Simulation results with same conditions as
Experiment 1 but with reservoir size N=100, and
activation time AT =1. Note that when compared with

Figures S1 and S2, the temporal profile of activation for the output

neurons is globally the same, but with increased variability.

(TIF)

Text S1 Additional information about the set of gram-
matical constructions for Experiments 1–4, and tests
with different input activation times.
(DOC)

Text S2 Detailed neural activity for all constructions
tested in Experiment 1. The format of this data is identical to

that of Figures 2–7 of the main text.

(PDF)

Text S3 Read-me file with instructions on how to install
and run the model given in the Zipped Archive S1.
(TXT)

Text S4 The 462 construction corpus.
(RTF)

Zipped Archive S1 This is a zipped file containing
python code using the Oger toolbox for running simula-
tions corresponding to Experiments 1–4, along with
documentation for installation and running the scripts.
(ZIP)
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