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Abstract

A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The
challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in
the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is
acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to
controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as
a Student’s t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of
mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry
data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model
analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for
correlating a gene’s function to human disease. We demonstrate how a mixed model approach has the additional
advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates.
This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of
assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-
vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method
suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase
throughput, and decrease cost whilst improving the quality and depth of knowledge gained.
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Introduction

The mouse is the premier model organism for understanding

gene function in development and disease. To further the

functional annotation of the mammalian genome, the Interna-

tional Mouse Phenotyping Consortium (www.mousephenotype.

org/) [1] aims to phenotype knockouts for all mouse genes,

building on the large collection of targeted alleles in C57BL/6N

embryonic stem cells available from the International Knockout

Mouse Consortium [2–4]. Many centres are screening mutant

mouse strains to identify genes with phenotypes of interest and are

making this data publicly available [1] as primary screen data with

pipelines constructed to give a shallow but broad review of an

animal’s phenotype. The complementary role of secondary

phenotyping is to confirm and extend the primary observations

into specialised fields of research. Concern over reproducibility of

phenotyping experiments has been raised [5–7]. Some of these

reproducibility issues have been tracked to the presence of

environment*genetic interactions [5,7,8] but may be arising from

poor design and analysis [9–11]. Poor experimental design,

analysis and reporting was noted to be a significant problem in

a systematic review of published papers involving in vivo experi-

ments [10]. This has led to the publication of the Animal

Research: Reporting In Vivo Experiments (ARRIVE) guidelines

[12] a check list to lead the field towards good practice. This

includes ensuring the analysis is appropriate for the design and

data characteristics, such as the results are robust and have isolated

cause and effect (high internal validity). An experiment is described

as having high internal validity when the effect (e.g. phenotypic

difference) can be confidently assigned to the treatment (e.g.

genotype difference). To achieve high internal validity, careful

experimental design is needed to account for potential confoun-

ders and the statistical test used needs to consider the structure of

the data appropriately. The threats from poor control of

confounding factors have been identified in many biological fields,

from biomarker discovery to genome wide association studies

[13,14].

Through high throughput phenotyping programs, where data is

systematically collected on one genetic background, the significant

sources of variation can be identified and it has become obvious

that batch (defined here as those readings collected on a particular

day) can lead to large variation in phenotyping variables. This

observation has significant implications for the data analysis of

both high throughput and secondary phenotyping experiments

where use of small batches of animals is common. It is challenging

and costly to produce sufficient animals of the right age within

a narrow time point for an experiment. Consider the Sanger

Mouse Genetics Project which requires 7 male and 7 female
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homozygote mice, generated by a heterozygote cross; a best case

scenario would require 14 mating pairs being assembled at the

same point in time [15]. In order to generate these mating pairs,

there would be a staged breeding process to generate the mice

which involves several rounds of expansions depending on

breeding success. This best case scenario is commonly hampered

by fecundity, viability or other phenotypic problems within a line

and hence to achieve a one batch pipeline the pairing number

needs increasing significantly. In contrast, by accepting smaller

numbers of mice in multiple batches, lower breeding pair numbers

can be established. The smaller scale allows the generation of mice

to answer firstly developmental and breeding issues and secondly

to feed the pipeline over time and subsequent litters. As soon as we

have mice of the right age, these are entered into the pipeline and

have an average batch size of three for an allele per gender when

we aim to phenotype 7 mice per gender for each allele. This batch

approach, has allowed us to utilise animals that would otherwise

be discarded as the process had not generated the required

experimental sample size. Multiple small batches allow us to meet

the high throughput pipeline needs and also help reduce the

breeding cost per line. However, this approach will have

implications on the data analysis, in the presence of temporal

variation; the phenotypes of mice in the same batch are likely to be

more similar than those from different batches. Furthermore, the

operational constraints arising in a high throughput environment

make optimal experimental design impractical; typically, mutant

and control mice are not assayed on the same day, so any

phenotypic differences could be due to genotype or to subtle

changes in the environment (e.g. temperature fluctuations or

pipetting errors). Data analysis, with the aim of controlling for

variability over time [16,17], is a major challenge for high

throughput phenotyping and often a problem in secondary

phenotyping.

Body weight is known to correlate with many other biologically

interesting variables (e.g. bone density, blood calcium level and

high- density lipoproteins) [17,18]. Furthermore, body weight is

a highly heritable trait, and consequently commonly altered in

knockout lines of mice [19]. It is therefore unsurprising when the

knockout also results in difference in these other variables. It raises

the question as to whether the change in these variables is as

expected given the observed change in body weight. Statistically,

body weight in these examples is described as a confounding

variable, which is one that it is associated with both the probable

cause (genotype) and the outcome (phenotypic trait of interest). To

understand the observed phenotype, the analysis pipeline should

assess whether the change observed was due to the genotype or

associated with the body weight change accompanying the

genotype change.

Current analysis methods can be divided into two types;

a reference range methodology (RR)(as implemented at http://

www.sanger.ac.uk/mouseportal/; [20]), or the application of

traditional statistical tests [21–23]. In RR, control mice of the

same genetic background and sex are used to estimate the natural

variation in a trait. In the Sanger Mouse Genetics Project,

a knockout has an ‘‘abnormal phenotype’’ if over 60% of the

mutant mice lie outside the range of 95% of the natural variation

in the controls. This percentage was empirically selected to ensure

the majority of mice for a line were affected. With this method,

there is no p-value and the false positive and negative rates are

undefined and not controlled. Traditional statistical tests, such as

a Student’s t-Test or ANOVA, do control the false positive rate if

factors such as body weight and batch do not affect the phenotype.

Moreover, as the Student’s t-Test is the most powerful statistical

test for a difference in the means of two groups with Normal

errors, it should be preferred to the RR in principle. However,

a more important consideration is that the traditional tests

produce false positive phenotype calls if weight and batch affect

the phenotype.

An alternative method, linear mixed models (MM) are a class of

statistical models suited to modelling multiple sources of variability

on a phenotype, where some explanatory factors (such as sex, body

weight and mutant genotype) are assumed to take fixed values that

affect the population mean, whilst others such as batch are treated

as affecting the covariance structure; animals from the same batch

will have correlated phenotypes. MM are an established technique

in the analysis of complex traits (for example in maize [24] and

mice [25]), but to our knowledge they have not been usedwithin

the mutant mouse phenotyping community and no comparison or

discussion on this method versus others has been published. The

few examples we have identified, include Kafkafi et al. who used

a MM to compare open field data for various mouse lines across

institutes to assess the prevalence of genotype*environment

interactions and treated the variation between laboratory as

a random effect [8]; Wainwright et al., in a study looking at the

impact of pre-natal ethanol exposure in mice on behaviour and

brain size, demonstrated the value of a MM approach where litter

was treated as a random effect over an ANOVA on litter mean

data [26]; Goncalves et al., used a MM to query cardiovascular

data where a repeated measures design had been used in mice and

the subject was treated as the random effect [27].

With high throughput data, we are treating batch as the random

effect adding variation to the data. The variation in batch arises

from multiple factors including technician, reagent lot, day, cage,

mother and litter size [17]. All these effects are modelled and

tested within the MM framework. For each mutant strain, we test

the contributions of sex, weight, genotype and genotype-by-sex

interaction by fitting two nested mixed models (Equation [1], and

Equation [2]), where the phenotype of mouse i is assessed within

the j-th batch. (See Table 1 for parameter and associated

definitions.) A comparison between the fits of the models tests

whether the phenotype is mediated by a body weight change. The

MM can be interpreted as a generalisation of the T-test that takes

into account the explanatory variables, in the sense that it is almost

identical to the T-test if they are not significant.

Yij~b0zb1Genotypeijzb2Sexij

zb4GenotypeijSexijzuijzeij
ð1Þ

Yij~b0zb1Genotypeijzb2Sexijzb3Weightij

zb4GenotypeijSexijzuijzeij
ð2Þ

For smaller scale projects, such as in secondary phenotyping,

where the batch number is limited, there is an potential alternative

to the MM of treating batch as a fixed effect rather than a random

effect and then using a generalised linear model. As the measured

batches are a random subsets of all possible batches, treating it as

a random variable in a MM allows us to reflect the random

selection of batch and thus is theoretically more appropriate. This

can be seen in that the user is typically not interested in batch i.e.

what was the result on Wednesday and how did it differ exactly

from Monday etc. The primary need is to account for batch in the

analysis. Furthermore, the MM will be more sensitive, as it

economises on the number of degrees of freedom used by the

factor levels; instead of estimating a mean for every single factor

Robustly and Sensitively Identifying Phenotypes
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level, the random effect model estimates the distribution of the

mean [28].

To assess these approaches, we investigated control data to

assess the temporal variation visualised with batch. We then

considered the applicability of the various analysis methods in the

presence of multiple batches. To demonstrate the issues we

analysed four randomly-selected mutant colonies (Ppp3catm2e(EU-

COMM)Wtsi, Sparctm1a(EUCOMM)Wtsi, Cenpjtm1a(EUCOMM)Wtsi, and

Slc25a21tm1a(KOMP)Wtsi) from the Sanger Mouse Genetics Project

with a focus on seven traits from the Dual-Energy X-Ray

Absorptiometry (DEXA) screen [29] which focuses on bone and

tissue composition. Here we show that a linear mixed model is an

appropriate method to query data which has a batch issue. We

also show how this approach detects subtle but important

quantitative differences in phenotype that are currently over-

looked. This manuscript intends to demonstrate that this method is

a significant improvement over methods currently applied in

identifying phenotypes and has ethical benefits.

Materials and Methods

Ethics Statement
The care and use of all mice in this study was carried out in

accordance with UK Home Office regulations, UK Animals

(Scientific Procedures) Act of 1986 under two UK Home Office

licences (80/2076 and 80/2485) which were reviewed yearly by

the Wellcome Trust Sanger Institute’s Ethical Review Commit-

tee.!.

Mice
Mice were maintained in a specific pathogen free unit on a 12 hr

light: 12 hr dark cycle with lights off at 7:30 pm and no twilight

period. The ambient temperature was 2162uC and the humidity

was 55610%. Mice were housed for phenotyping using a stocking

density of 3–5 mice per cage (overall dimensions of caging:

(L6W6H) 36562076140 mm, floor area 530 cm2) in individu-

ally ventilated caging (Tecniplast Seal Safe1284L) receiving 60 air

changes per hour. In addition to Aspen bedding substrate,

standard environmental enrichment of two nestlets, a cardboard

Fun Tunnel and three wooden chew blocks was provided. Mice

were given water and diet ad libitum. At 4 weeks of age, mice were

transferred fromMouse Breeders Diet (Lab Diets, 5021-3) to a high

fat (21.4% fat by crude content; 42% calories provided by fat)

dietary challenge (Special Diet Services, Western RD 829100).

Dual-energy X-ray Absorptiometry (DEXA) Measurements
At 14 weeks of age the mice were weighed and then

anaesthetized with Ketamine (100 mg/kg, Ketaset, Fort Dodge

Animal Health) and Xylazine (10 mg/kg, Rompun, Bayer Animal

Health). Body length (nose to tail base (cm)) was measured and

dual-energy X-ray imaging performed using a PIXImus II Bone

Densitometer (GE Medical Systems, United Kingdom). The

region of interest on the resulting images was manually selected

to exclude the skull, and then the Lunar PIXImus software

package calculated body fat mass (g), lean mass (g), fat percentage

estimate (%), bone area (cm2), bone mineral density (BMD) (g/

cm2) and bone mineral content (BMC) (g). Quality control using

a phantom mouse was performed prior to imaging. The

Ketamine/Xylazine anaesthesia was reversed using Atipamezole

hydrochloride (1 mg/kg, Antisedan, Pfizer Animal Health). Cages

were processed randomly and different genotypes could be housed

together, hence there was no pattern to the order in which animals

were processed. When mice were fully ambulant, they were

housed in their group cages and kept for further experiments.

Other Phenotypic Screens
Data from the MGP pipeline is obtained following the standard

SOP available at https://www.mousephenotype.org/impress.

Datasets
To assess the significance of batch and weight to variability of

a trait, B6Brd;B6N-Tyrc-Brd wildtype data from the MGP pipeline

from 2009 until 2012 was used. This gave a large dataset (average

size: 1700 measurements from 170 independent batches) for 88

quantitative traits.

To compare the different analysis methods, data from

Ppp3catm2e(EUCOMM)Wtsi, Sparctm1a(EUCOMM)Wtsi, Cenpjtm1a(EUCOMM)Wtsi,

and Slc25a21tm1a(KOMP)Wtsi were obtained from the Mouse Genetic

Project running at the Wellcome Trust Sanger Institute. Three of

these were randomly selected from a subset of genes which had

one or more hits in DEXA as assessed by the RR, whilst one was

randomly selected from a subset of genes which had no hit in

DEXA as assessed by the RR. Within the pipeline, we screen

a single control cohort (7 males and 7 females) each week,

matching the genetic background of the mutant lines. We selected

control mice run in the same pipeline on the same genetic

background contemporaneously with the corresponding knockout

mice (Table 2). From the website http://www.sanger.ac.uk/

mouseportal/, data for each gene can be viewed or the raw data

can be downloaded using the MGP Phenotyping BioMart http://

www.sanger.ac.uk/htgt/biomart/martview/).

Table 1. Parameters and the associated definitions for equation 1 and 2.

Parameter Definition

Y The dependent variable (e.g. the variable of interest)

bo The expected value of Variable Y for the reference levels of genotype (wildtype) and sex (female) when weight equals zero if weight included.

b1 The effect of genotype (i.e. knockout (homozygote or heterozygote) versus. wildtype)

b2 The effect of sex (female versus. male)

b3 The effect of body weight (measured in grams).

b4 The fixed effect associated with the genotype by sex interaction

u The random effect associated with the intercept for batch. The distribution of these random effects are Uj , N(0, s2)

e The distribution of the residual

doi:10.1371/journal.pone.0052410.t001
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Data Analysis
Mixed model data analysis was performed using R (package:

nlme version 3.1) [30] (File S1 gives the R code used). An iterative

top down modelling strategy was implemented with six steps [31]

starting with the most comprehensive model (either Eq. [1] or [2]).

First the analysis selects a structure for the random effects, then

a covariance structure for the residual, then the model is reduced

by removing non-significant fixed effects, finally the genotype

effect is tested and model diagnostics visualised. During the model

building stage, the hypotheses were tested with a threshold of

p,0.05. For the hypothesis test of primary interest, the impact of

genotype, p-values were adjusted to account for the multiple

comparisons completed to control the false discovery rate to 0.05

(R function: p.adjust).

The reference range methodology is implemented within the

Sanger Laboratory Information Management System (LIMS)

database that houses the data captured from the high throughput

pipeline. The reference range for each variable was built using

data from all control mice with the same genetic background, age

and sex which were collected using the same standard operating

procedure. This is intended to build a reference range that

encompass all sources of variation seen in the pipeline, such as

phenotyper or batch, hence if a mutant is outside this reference

range the difference is likely to have arisen from the genotype

difference. For each mutant line and for each sex an abnormal

phenotype was highlighted if $60% of the mutant mice lie either

above or below the 95% confidence interval of the reference

range. The 95% confidence interval is taken as the 2.5 and 97.5

percentile for each variable. Using percentile avoids any distribu-

tion assumptions thereby increasing precision of the methodology.

In addition to the automatic identification of abnormality using

the above rule, a manual assessment was made by biological

experts, who use knowledge of events on the day or across

phenotypic variables or sex to make a call. Any call of

abnormality, whether manual or automated, was compared to

the call of significance made by the mixed model methodology.

Results

Is Batch Variability a Significant Issue?
To assess the significance of batch variability in phenotyping of

quantitative variables, the proportion of variance arising from

batch relative to sex and weight (when applicable) were estimated

for 88 phenotypic traits. Linear regression models, which included

the covariates of interest, were fitting towildtype data from the

same genetic background (B6Brd;B6N-Tyrc-Brd), age and gender

(typically dataset size: 1700 measurements from 170 independent

batches) and then the proportion of variance explained by the

covariate relative to the total variance calculated (Table S1). On

average 22.361.5% (standard error of the mean) of the total

variance arose from batch, 11.961.8% (standard error of the

mean) arose from sex and 6.361.2% (standard error of the mean)

arose from body weight variation. This analysis finds that batch

explains about a quarter of the observed phenotypic variation, and

for some phenotypes was comparable to or more significant than

the effects of sex and weight and hence we can conclude that batch

is a significant factor in the variability of phenotyping data.

Evaluating Appropriateness of the Various Statistical
Approaches
The use of traditional statistical tests, RR and MM in

identifying significant phenotypes are discussed in detail and

Table 3 summaries the differences.

Reference Range
The RR relies on establishing the natural variation in

a phenotype. To establish a RR, a minimum of 120 data points

are needed [32] and the resulting thresholds are specific to

a laboratory and its procedures [33]. This can limit its use in small

scale phenotyping projects. If we make the simplifying assumption

that the 95% range is estimated perfectly and that no other factors

(such as batch or weight) need to be accounted for, then the

probability that a given number of the N tested mutants lie outside

the 95% range is distributed as a binomial random variable

B(N,0.05). Thus for the Sanger Mouse Genetics Project, where we

usually phenotype N=7 mutant mice per sex and require 60% of

the mice to lie outside the reference range, the probability of

observing at least 5/7 extreme phenotypes by chance (the false

positive rate) is about 661026 per sex per tested phenotype, and

the chance that either sex is significant is about 1.261025 per

phenotype. This probability increases significantly if fewer mutant

mice are tested. Thus RR is stringent but it is not a well-controlled

significance test and could be considered a qualitative test. This

can be seen in the output, an abnormal phenotype is either

identified or not, there is no calculated p-value. Without a measure

of the false positive rate, there is no possible correction for multiple

testing. Furthermore, the reference range has no capacity to

include additional covariates, such as a body weight, to separate

the genotype effect from changes in these covariates.

Traditional Statistical Methods
With phenotyping data, traditional statistical tests, such as

a Student’s t-Test or a Mann-Whitney test are commonly used to

compare control and treated data whilst a 2-way ANOVA allows

Table 2. For each allele the composition of the datasets.

Allele Genetic background Homozygotes Controls

Male Female Male Female

N B N B N B N B

Ppp3catm2e(EUCOMM)Wtsi B6Brd;B6N-Tyrc-Brd 7 4 7 4 271 39 287 42

Slc25a21tm1a(KOMP)Wtsi B6Brd;B6N-Tyrc-Brd 7 2 7 3 38 9 40 10

Cenpjtm1a(EUCOMM)Wtsi B6Brd;B6N-Tyrc-Brd 8 3 7 3 198 56 200 31

Sparctm1a(EUCOMM)Wtsi B6Brd;B6N-Tyrc-Brd 9 2 7 3 223 40 229 42

N refers to the total number of mice for that dataset and B refers to the number of batches of mice within that dataset, where a batch is a group of mice measured on
the same day.
doi:10.1371/journal.pone.0052410.t002
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the comparison of control and treated data for both genders

simultaneously. These tests make a number of mathematical

assumptions; providing these are met then these tests are sensitive

and generate p-values that can be used with multiple testing

correction. If these assumptions are not met then the p-values will

not be reliable. One assumption in common with the traditional

approaches is that the measurements are independent measure-

ments from a single population and the errors will thus be

independent. With significant temporal variation, the presence of

multiple batches invalidates this assumption and the correlation

can lead to an inflated estimate of statistical significance and thus

false positive calls (type one errors) [34].

The commonly used statistically tests have no capacity to

include additional covariates, such as a body weight, to separate

the genotype effect from changes in these covariates. However,

there are traditional statistical tests such as an analysis of

covariance (ANCOVA) that can incorporate a covariate such as

weight [18]. These tests still make the assumption that the readings

are independent so if the experiment is designed to avoid these

issues then an ANCOVA is an approach that could be used.

The other problem, common in high throughput phenotyping,

is where controls are not measured on the same day as the

knockouts, either due to practical constraints or breeding

constraints, which leads to batch confounding the experiment.

As batch is known to vary, then it confounds as it correlates with

both the trait of interest and the treatment. In this situation, it is

difficult to distinguish whether the differences in treatment groups

are due to the treatment or the confounding factor. When

traditional statistical tests are applied, the user is making the

assumption that the experiment has been designed to manage all

potential confounders and hence the cause and effect has been

isolated. With high throughput data, it is not always possible to

avoid batch issues and hence we do not consider the Student’s t-

Test or Mann-Whitney Test as appropriate tools and are not

considered further within this manuscript.

Mixed Models
Mixed models can be applied in multiple ways, and we have

implemented a top-down methodology which starts with a fully

loaded model (Eq [1] or Eq [2]) and steps through an iterative

process to fit the best model to the data prior to asking whether

genotype is significant or not (Figure 1) [31]. The mixed model

makes a number of assumptions about the data (Table 4). To test

whether these assumptions are valid, control data was explored

with a variety of tools. To assess the assumptions associated with

batch, a boxplot of control data from the B6Brd;B6N-Tyrc-Brd

Table 3. Comparison of the analysis methods used for identifying phenodeviants.

Traditional method RR MM

Sensitivity? 3 X 3

Does output include a p value which will allow multiple testing correction? 3 X 3

Can the method account for batch? X X 3

Can the method include additional variables, e.g. weight, in presence of batch? X X 3

Are the calls reliable in presence of batch? X 3 3

The classification traditional method refers to the use of classic inferential statistical methods typically used e.g. student t-Test, RR refers to a reference range, and MM to
a mixed model approach.
doi:10.1371/journal.pone.0052410.t003

Figure 1. An overview of the mixed method methodology implemented. The process can be summarised as a top down methodology
involving six steps to build a mixed model to query the phenotyping data.
doi:10.1371/journal.pone.0052410.g001
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genetic background against time illustrates its temporal distribu-

tion. The distribution resembles samples drawn from a stationary

Normal distribution with a common variance (Figure 2). Normal

Q-Q plots of the distribution of the batch mean for each variable

showed the means were normally distributed (Figure 3). A time

course plot showed that variation in the standard deviation for an

individual batch was randomly distributed around a mean, with

a few outliers which tend to be small, which indicates the

assumption of homogeneity of variance could be made (Figure 4).

A runs test for randomness was used to test for autocorrelation,

and for all variables no correlation was found in the distribution of

the mean signal for batch (Table S2), suggesting that batch was

independently distributed. This exploration indicates that the

underlying assumptions for batch were appropriate.

To test the quality of model fit, a number of graphical diagnostic

plots were generated for each gene and trait (Files S2, S3, S4, S5).

To test the assumption of normality, a normal Q-Q plot was used

to compare the variable distribution with a normal distribution. If

the variable was normally distributed it would be randomly

distributed around the equivalence line on the graph. A normal Q-

Q plot was used to test the distribution of the best linear unbiased

prediction of random effects (BLUPS) of the final model (provided

a mixed model was appropriate after the five step model fitting

process) and this checked the assumption that batch was normally

distributed. The assumptions associated with error, of a Normal

distribution with a common variance, can be assessed using

a variety of graphical plots. A Normal Q-Q plot was also used to

assess whether the conditional raw residuals had a Normal

distribution for each treatment group. A plot of conditional raw

residual versus predicted values for each treatment group was used

to assess whether the model fitted each treatment group equally

well and no dependencies on the range were seen. When body

weight was included in the model, the assumptions associated with

body weight were assessed with a body weight versus variable

scatter plot for each dependent variable examined. Taken

together, these diagnostic plots all suggest the mixed models were

a good fit to the data.

The MM approach not only generates p-values but a precise

estimate of genotype effect. With this p-value, multiple testing

correction methods can be applied. We chose a relatively simple

set of explanatory variables to model the data based on prior

knowledge. The law of parsimony argues that, simpler explana-

tions are, other things being equal, generally better than more

complex ones. Moreover, with only 7 male and 7 female readings

for the knockout lines we were limited on the number of variables

we couldninclude in the model. A large-scale study of heteroge-

neous mice identified numerous covariates (e.g. age, cage density,

litter, and weight) that were significant effects in the variation of

Figure 2. Examining control data to assess batch to batch variation. Representative time course plot showing the batch to batch variation in
control data for male mice from a B6Brd;B6N-Tyrc-Brd genetic background. Example shown is the variation seen in the fat mass variable measured in
grams. For each day, data was collected a box plot is drawn as a five point summary indicating the minimum, 1st quartile, median, 3rd quartile and
maximum. The global median fat mass value is shown with a black solid line.
doi:10.1371/journal.pone.0052410.g002
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phenotypic characteristics [17]. Many of the variables identified in

that study are controlled within this pipeline (e.g. age), and thus

are not relevant. Batch, we anticipate is a composite effect arising

from cage density, parental origin, technician and assay date. With

our limited data, we cannot decompose it further and need a model

that is a pragmatic compromise. We investigated using litter

membership as an alternative to batch in the mixed model, but

whilst the genotype estimates had the same precision and

accuracy, the model diagnostics were poor (data not shown).

With larger datasets, greater sensitivity can be obtained and

additional covariates could be considered to increase the precision

of the estimates.

Comparison of RR and MM Approach
To compare the value of the MM and RR methodologies, we

analysed four randomly-selected mutant colonies (Ppp3catm2e(EU-

COMM)Wtsi, Slc25a21tm1a(KOMP)Wtsi, Cenpjtm1a(EUCOMM)Wtsi and Sparct-

m1a(EUCOMM)Wtsi), from the Sanger Mouse Genetics Project with

a focus on seven traits from the Dual-energy X-ray absorptiometry

(DEXA) screen [29] and compared the output of the MM with the

output of the RR (Files S2, S3, S4, S5 give detailed output for each

gene). A comparison of the genotype calls made for the four genes

by the two methods is in Table 5.

Since the RR analysis cannot take into account changes in body

weight, we first compared it to the MM equation [1]. MM showed

an apparent increase in sensitivity over RR, calling 93% of

phenotypes as significant at a false discovery rate (FDR) of 5%,

compared to 39% with RR. As expected, the RR calls were

a subset of the MM calls, at first sight reflecting the RR’s greater

stringency. However, most of the RR calls were due to body

weight effects; using the MM equation [2], which tests whether

a mutant affects a trait after accounting for sex and body weight,

only 33% of traits were called at FDR 5%. Importantly, some RR

calls were no longer significant, some negative RR calls became

significant, and some positive calls reversed direction of effect.

Figure 3. Assessing distribution of batch for a variable. Representative Normal Q-Q plots of the distribution of the mean for a batch in control
data for male mice from a B6Brd;B6N-Tyrc-Brd genetic background. A: weight, B: bone mineral density and C: lean mass.
doi:10.1371/journal.pone.0052410.g003
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Thus the difference between the MM and RR is not simply

a question of differing false positive rates.

MM analyses of Ppp3ca and Slc25a21 showed these mice have

a statistically significant weight phenotype and when weight is

excluded from the model (Eq. 1) many of the body composition

variables were statistically significant. However, application of

a MM with weight included in the model finds that these body

composition changes were as expected, as these changes are in line

with the change in body weight observed with this mutation

(Table 5). Sparc is a mouse model for human osteoporosis [35], and

the MM excluding weight (Eq. 1) called multiple phenotypes whilst

the RR only called a decrease in bone mineralisation in female

mice (Table 5). By including weight in the MM we found that the

changes in length, fat mass, and lean mass were as expected with

the reduced weight, whilst the changes in bone mineralisation

were actually greater than expected. The remaining example,

Cenpj which has a reduced body weight phenotype, highlights an

interesting effect of adjusting for weight: fat mass and fat

percentage were significantly lower in mutants relative to controls

(FDR 5%), but after adjusting for weight these variables had

increased relative to controls as their change was less than

expected given the decrease in weight. These results demonstrate

the value of being able to compare the call of significance with and

without weight included in the model to understand the observed

phenotype.

The example above, with a focus on DEXA variables, includes

variables which strongly correlate to body weight and hence there

was clear value in including body weight in the MM. We have

found that weight is a significant variable in many areas, and as

body weight is a common phenotype it is valuable to consider all

phenotypic traits with a MM including and then excluding body

weight to assess whether the effect was mediated by body weight.

For example, Slc25a21 had 3 clinical chemistry variables (alanine

aminotransferase, albumin and aspartate aminotransferase) iden-

tified by the RR as being abnormal. Application of the mixed

Figure 4. Examining control data to assess variation in standard deviation with batch. Representative time course plot showing the
variation in standard deviation with batch in control data for mice from a B6Brd;B6N-Tyrc-Brd genetic background. Example shown is the variation seen
in the lean mass variable for male mice measured in grams. The global median is shown with a black solid line, and the 95% confidence interval is
shown with dotted lines.
doi:10.1371/journal.pone.0052410.g004

Table 4. Assumptions associated with the mixed model.

Parameter Assumption

Batch u N Independent identically distributed N(0, su
2)

Error e N Independent identically distributed N(0,se
2)

Covariate – weight*1 N Linear relationship with dependent variable

N Homogeneity of regression

*1 when weight included in the model as a covariate (Eq. [2]).
doi:10.1371/journal.pone.0052410.t004
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model approach with both Eq.1 and Eq.2, identifies that whilst

these variables are statistically significantly lower in the knockout

compared to the wildtype mice as tested for with Eq.1, once weight

is included in the model (Eq.2) they are no longer statistically

significant. We therefore conclude that the difference in these

variables was mediated by the body weight change (Table S3).

Discussion and Conclusions

The manuscript demonstrates that batch is a significant source

of variability for continuous phenotypic traits and without

management can be a confounding factor preventing the isolation

of the effect of interest (e.g. genotype). The use of traditional

statistical methods, with batch confounding the experiment, will

lead to flawed conclusions and could go some way to explain the

concerns of phenotypic reproducibility where a phenotype could

not be reproduced in an independent laboratory or related to

a human disease. As a consequence, either the experiment should

be designed to avoid batch issues or an analysis method, such as

the MM, which is appropriate for datasets with multiple batches,

should be used.

Embracing a workflow with multiple small batches was an

essential component of realizing a high throughput pipeline and

allowing production of 160 lines/year. However, breeding issues

and hence batch issues are not restricted to high throughput

programs. For small scale phenotyping experiments, resources can

be applied to ensure the traditional methods are appropriate by

randomising appropriately or the use of a one batch approach. We

would argue that the use of a MMmethodology has value for large

and small scale experiments, not only in terms of resources, and

thus cost, but ethically as less breeding is needed to achieve the

same goal. A one-batch approach could be argued to be a form of

standardisation and thus reduce the variance and increase

sensitivity. However, multiple papers have argued that identifying

phenotypes in overly standardised environments results in false

calls of significance and that there is value in a design that

encompasses variation as this increases the external validity (i.e.

the generality of the finding) and makes the finding more

reproducible [6,7,36].

In the presence of multiple batches and asynchronous controls,

both the RR and MM make phenotypic calls with high internal

validity, however, we conclude that applying MM to high

throughput phenotyping data improves phenotype calling. Com-

pared to the RR, MM is more sensitive, controls for power and lets

us separate out the effects of bodyweight, sex and batch. The MM

approach brings significant value, which merits the additional

analysis complexity. The ability to separate effects of covariates,

particularly weight, will significantly improve the precision in the

identification of targets for secondary phenotyping. For example,

consider the identification of bone mineralisation phenotypes, with

body weight being a common phenotype and bone mineral density

correlating with body weight; up to 35% of the knockout lines will

automatically have a bone density phenotype unless the call is

adjusted for weight. This was seen in the four alleles considered in

detail within this manuscript. Until weight was considered in the

equation all four had a significant bone mineral density

phenotype, but after including weight as a covariate we would

only call Sparc as phenodeviant. The greater sensitivity of the MM

allows the detection of more subtle phenotypic abnormalities than

the traditional methodologies. This will lead to an increase in both

the phenotype annotations for each mouse line and the ability to

use the results to further our understanding of a gene’s basic

function and roles in human disease. In particular, computational

approaches that look to identify lines as models for particular

human diseases [37] will benefit massively as similar diseases that

share some common clinical phenotypes can be distinguished on

the basis of these extra annotations. Given the costs of mouse

production and phenotyping, maximising the scientific knowledge

gained through optimal use of statistical analysis is especially

important. Whilst MM has significant advantages, there is value in

maintaining both analysis pipelines as the RR is well established

within the community, easy to access and interpret, and is ideal for

the identification of large robust phenotypic changes.

Ensuring design and analysis match is an essential step to

address the short coming identified in the Kilkenny review [10].

This manuscript demonstrates that currently methodologies used

in high throughput phenotyping environments are lacking and

that MM gives important improvements. These improvements will

allow the benefits of these centralised programs to be fully realised,

Table 5. A comparison of phenotypic calls.

Allele Phenotypes RR MM

Eq.1 Eq.2

Ppp3ca Weight – q NA

Nose to tail length – – –

Bone mineral density – – –

Bone mineral content – q –

Lean mass – q –

Fat mass – q –

Fat percentage – q –

Slc25a21 Weight Q Q NA

Nose to tail length – Q –

Bone mineral density Q R Q –

Bone mineral content Q R Q –

Lean mass – Q –

Fat mass Q Q –

Fat percentage Q = Q –

Sparc Weight – Q NA

Nose to tail length – Q Q

Bone mineral density QR Q Q

Bone mineral content QR Q Q

Lean mass – Q –

Fat mass – Q –

Fat percentage – – –

Cenpj Weight Q Q NA

Nose to tail length Q Q Q

Bone mineral density – Q –

Bone mineral content – Q Q

Lean mass Q Q Q

Fat mass Q Q q

Fat percentage – Q q

A comparison of calls between the reference range (RR) and mixed model (MM)
methodologies for four mutant colonies for genotype calls of significance.
Where a call of significance is made, (q) indicates that the genotype effect
gave an increase in the variable, whilst (Q) indicates a decrease. A dash
indicates that genotype was not significant. NA is used to indicate that weight
as the variable of interest cannot be fitted with Eq.2 as this includes weight as
a covariate. For the RR, if a call arises from only one sex, the standard gender
symbols are used to indicate which. Significant MM calls were controlled to
have a false discovery rate of 0.05.
doi:10.1371/journal.pone.0052410.t005

Robustly and Sensitively Identifying Phenotypes

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e52410



as subtle reproducible phenotypes can now be identified. We plan

to apply MM to our historic data and with the greater sensitivity

enhance the knowledge gained from those experiments. Looking

to the future, we expect further refinement of the method as we

apply the data globally within Sanger Mouse Genetics Project and

across institutes via the International Mouse Phenotyping Con-

sortium Statistics working group. The challenge will arise from

balancing the needs of a common statistics pipeline to many

variables and data from many sources. Further expansion of the

mixed modelling technique will allow meta-analysis across genes

and centres.

Supporting Information
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adjusting for multiple testing (method: Bonferroni).
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Table S3 A comparison of phenotypic calls. Legend: A

comparison between genotype calls of significance when the

mixed model excludes (Eq.1) or includes weight (Eq.2). Presented

are body weight and three clinical chemistry variables for

Slc25a21tm1a(KOMP)Wtsi on the B6Brd;B6N-Tyrc-Brd genetic back-

ground. Where a call of significance is made, (q) indicates that the

genotype effect gave an increase in the variable, whilst (Q)

indicates a decrease. NA is used to indicate that weight as the

variable of interest cannot be fitted with Eq.2 as this includes

weight as a covariate. A dash indicates that genotype was not

significant. Significant MM calls were controlled to have a false

discovery rate of 0.05.
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File S2 Detailed mixed model output for the allele Ppp3catm2e(EU-

COMM)Wtsi and associated DEXA data. Legend: For each trait

studied, for each model fitting procedures, the final model output

was captured and the data visualised with a boxplot. Furthermore,

to test the quality of model fit, a number of graphical diagnostic

plots were generated for each gene and trait.

(PDF)

File S3 Detailed mixed model output for the allele Slc25a21tm1a(-

KOMP)Wtsi and associated DEXA data. Legend: For each trait

studied, for each model fitting procedures, the final model output

was captured and the data visualised with a boxplot. Furthermore,

to test the quality of model fit, a number of graphical diagnostic

plots were generated for each gene and trait.

(PDF)

File S4 Detailed mixed model output for the allele Cenpjtm1a(EU-

COMM)Wtsi and associated DEXA data. Legend: For each trait

studied, for each model fitting procedures, the final model output

was captured and the data visualised with a boxplot. Furthermore,

to test the quality of model fit, a number of graphical diagnostic

plots were generated for each gene and trait.

(PDF)

File S5 Detailed mixed model output for the allele Sparctm1a(EU-

COMM)Wtsi and associated DEXA data. Legend: For each trait

studied, for each model fitting procedures, the final model output

was captured and the data visualised with a boxplot. Furthermore,

to test the quality of model fit, a number of graphical diagnostic

plots were generated for each gene and trait.

(PDF)
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