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Abstract

STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers.
Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to
transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity
of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak
binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are
important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of
inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study
that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to
the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the
binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies
and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities.
Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions
involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode
that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger
inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing
dimerization of cancer target protein STAT3.
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Introduction

Development of effective therapeutics is the ultimate goal of

cancer research [1–6], but it is a time-consuming and expensive

process [7–10]. Structure-based computational techniques [11,12]

such as virtual screening [13–15], docking [16,17], and molecular

dynamics [18,19] have proven useful in the development of drugs.

Even if there have not been many successful drug discovery stories

based on computation alone, the use of structure-based compu-

tational techniques has helped gain better understanding of how a

putative drug compound binds to its target receptor, and has

reduced the drug development time and costs [20–22]. In this

paper, we discuss computational modeling of binding interactions

between a specific set of peptidomimetic inhibitors [23–26] and

the Src-homology 2 (SH2) domain of STAT3 or Signal

Transducer and Activator of Transcription 3 [27] (Figure 1).

STAT3 is constitutively activated in a number of human cancer

types such as lung cancer, breast cancer, multiple myeloma, and

others [28–30]. The Jak-STAT pathway [31,32] describes the

mechanism of action that leads to the transcription of anti-

apoptotic genes. Upon extracellular signaling, a series of

phosphorylations of cell surface receptors and Janus kinases

(JAKs) inside the cell results in the phosphorylation of STAT3. A

phosphorylated STAT3 then forms a dimer via its SH2 domain

and the dimer translocates to the nucleus where it is involved in

the transcription process.

Our focus in this work is on 12 peptidomimetic [23–26](mimic

pTyr-Xaa-Yaa-Gln motif) inhibitors that target the SH2 domain

of STAT3 with the aim of preventing the dimerization of STAT3,

and subsequent translocation and transcription. The experimental

structures of the peptidomimetics bound to the SH2 domain are

unavailable. However, the experimental binding affinities, which

measure the thermodynamic stability of binding interactions

between the peptidomimetics and the SH2 domain, have been

derived using fluorescence polarization [33]. Our goal is to

computationally model the binding modes which define how a

conformation of a peptidomimetic binds to the conformation of

the SH2 domain, analyze the binding interactions, estimate the

binding affinities, and calculate the correlation between the

estimated and the experimental binding affinities.

Our computational modeling approach combines molecular

docking and molecular dynamics and derives inspiration from

previous work [18,24,34–39]. Given a protein and an unbound
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ligand, molecular docking computes the preferred conformation

and location of the ligand in the binding pocket of the protein.

Many molecular docking programs exist (see representative

examples [40–48]) and several docking studies have been

performed with varied amount of success (e.g., [49–57]). Three

major limitations however remain.

N A docking program typically computes the best conformation

and placement of the ligand such that it minimizes an energy

function specific to the docking program. The energy function

approximates the free energy of binding and, in general,

accuracy of the binding energy is sacrificed so that the

computation of energy can be performed in minimal time. The

approximate energy functions, therefore, may result in

conformations that are not accurate [58–60].

N Most docking programs treat the protein as a rigid molecule

or, at the very best, a molecule with limited flexibility. Thus,

most of these programs perform what is known as flexible

ligand docking to a rigid receptor. However, it is well known

that more accurate modeling of binding interactions between a

ligand and a receptor requires accounting for the flexibility of

the receptor [61,62].

N Docking of small ligands with 5 or 6 rotatable bonds is fairly

accurate and computationally fast. However, docking of large

ligands with many rotatable bonds, such as the peptidomimetic

inhibitors in our dataset, is inaccurate and computationally

expensive. A large number of rotatable bonds increases the

dimensionality of the conformation space of the ligand which

makes searching for the docked conformation extremely

challenging and time-consuming [57,63,64].

Our modeling approach addresses the above limitations in the

following way. Docking of a peptidomimetic is first done with an

AutoDock [44,65]-based incremental docking protocol that we

have developed recently [66]. A molecular dynamics simulation of

the docked conformation of the peptidomimetic in complex with

the SH2 domain is then performed. Using molecular dynamics, we

are able to treat both the ligand and the receptor as flexible and,

more importantly, we analyze deformations in the structure of the

complex in a simulated solvent environment. The physics-based

force field used in the molecular dynamics simulations is more

detailed and accurate as compared to the energy functions used in

molecular docking. Molecular dynamics simulation thus also lends

itself to calculation of more accurate binding affinity estimates

[67,68].

Using our modeling approach, we show that we were able to

obtain various binding modes for the peptidomimetics. Not only

did we obtain previously proposed binding modes [24,69], but we

also obtained a novel binding mode. The estimated binding

affinities and the experimental binding affinities are well correlated

which validates our modeling approach. By using the estimated

binding affinities and conformational analysis of the molecular

dynamics trajectories, we are able to differentiate between strong

and weak binders. In the following section, we present details of

our peptidomimetic dataset, explain our computational modeling

approach, binding affinity calculations, and data analysis tech-

niques. This is followed by a description of the results from the

computational modeling of the peptidomimetics in complex with

the SH2 domain. Finally we conclude with an overall discussion of

our work.

Methods

Dataset
The 12 inhibitors used in this study were obtained from a series

of 142 peptidomimetic compounds [23–26]. These 142 peptido-

mimetics mimic pTyr-Xaa-Yaa-Gln motif and were developed to

bind to the SH2 domain with the purpose of inhibiting the activity

of STAT3. The binding affinities (measured as IC50 values) of the

142 peptidomimetics were evaluated using fluorescence polariza-

tion [33]. The IC50 value gives the concentration of the

peptidomimetic that is required to competitively inhibit the

binding of FAM-Ala-pTyr-Leu-Pro-Gln-Thr-Val-NH2 (FAM = 5-

carboxyfluorescein) to Stat3 by 50% [23]. The binding affinities of

the 142 peptidomimetics were found to range from weak

(IC50 = 100,000 nM) to strong (IC50 = 39 nM).

The molecular dynamics simulation, which is part of our

modeling approach, and the method used for the estimation of

binding affinities (see sections below) are computationally expen-

sive. Therefore, we limited our modeling study to 12 peptidomi-

metics. The 12 peptidomimetics used in this study were chosen

such that they represent a range of values of the experimental

binding affinities as shown in Figure 2 and also represent a range

of sizes varying from 9 torsional degrees of freedom to 22 torsional

Figure 1. STAT3 structure. Protein Data Bank (ID 1BG1) structure of STAT3 is shown. The structure has four domains: a N-terminal four-helix
bundle (in blue, residues 138–320), an eight-stranded b-barrel (in purple, residues 321–465), an a-helical connector domain (in green, residues 466–
585), and a SH2 domain (in yellow, residues 586 to 688).
doi:10.1371/journal.pone.0051603.g001
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degrees of freedom. Each peptidomimetic was named such that

the compound number represents the order in which the

peptidomimetic appears in the original publications [23–26]

where the 142 peptidomimetics were first described.

The structure of STAT3 was obtained from the Protein Data

Bank [70] (PDB ID 1BG1). The structure contains residues 136 to

716 of Stat3, half a DNA duplex, and 127 water molecules per

asymmetric unit [27]. Since we are interested in the modeling of

the peptidomimetics bound to the SH2 domain, the structure of

the SH2 domain corresponding to residues 585 to 688 (Figure 1)

was isolated. The water molecules and the DNA duplex were

ignored. Using the molecular builder of the Maestro software [71]

(version 9.1), the 2-D chemical representations of the 12

peptidomimetics (Figure 2) were converted to 3-D structures of

the unbound peptidomimetics.

Modeling Approach
Our two-step computational modeling approach combined

molecular docking and molecular dynamics. Molecular docking of

a large ligand such as a peptidomimetic with many rotatable bonds

is challenging. A large ligand spans a high-dimensional confor-

mation space which makes exploration of docked conformation of

the ligand challenging. Our recently developed Autodock-based

incremental docking protocol has been shown to improve docking

of large ligands [66]. Therefore, we first docked the 12

peptidomimetic inhibitors in our dataset to the SH2 domain of

STAT3 using our incremental docking protocol [66], and

subsequently performed molecular dynamics simulations of the

docked conformations of the peptidomimetics in complex with the

SH2 domain.

Starting from a fragment of the ligand, at each incremental step,

our docking protocol explores a few rotatable bonds, then selects a

small number of best partially docked fragments, grows the

fragments by adding few more rotatable bonds and atoms, and

docks again. The dock-select-grow-dock process is repeated until

all the rotatable bonds in the ligand are explored. AutoDock

[44,65] is used in each step to explore only a few rotatable bonds

and this makes the docking operation fast and accurate.

Each peptidomimetic in our dataset was docked to the SH2

domain of STAT3 using our incremental docking protocol. Since

Figure 2. 12 peptidomimetics. 2-D chemical representations of the 12 peptidomimetics that form our dataset are shown. IC50 value represents
the experimental binding affinity of each peptidomimetic derived using fluorescence polarization and N represents the number of rotatable bonds in
each peptidomimetic.
doi:10.1371/journal.pone.0051603.g002
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the phosphate group of the pTyr residue in each peptidomimetic is

known to bind to the sub-pocket formed by residues Lys591,

Arg609, Ser611, Glu612, and Ser613 [24,69], at each incremental

docking step we selected conformations with the lowest values of

scoring function S, where

S~0:25(Pd )zSAD, ð1Þ

Pd is the squared distance of the phosphorus atom (in pTyr) from

coordinates ({8:42,4:50,{6:09) that represent approximate

center of the sub-pocket, and SAD is the binding affinity estimated

by AutoDock’s energy function. The scoring function S, thus,

penalizes large distance between the phosphate group and the sub-

pocket. The details of the incremental docking of peptidomimetics

and scoring function S are available in the Supporting Information

(Section S1).

After all the rotatable bonds in a peptidomimetic were explored

and all its atoms were docked, the docked conformation of the

peptidomimetic with the lowest value of S (see, equation (1)) was

selected. For each peptidomimetic in our dataset, molecular

dynamics simulation of the selected docked conformation, in

complex with the SH2 domain of STAT3, was performed. The

sander module in the AMBER11 software package [72] was used

for the simulation. The peptidomimetic inhibitor was described

with generalized amber force field [73] (GAFF), and point charges

were calculated for the atoms using antechamber module (from

AmberTools software package [74] version 1.5) and AM1-BCC

charge model. The protein was described with AMBER’s ff99SB

force field. The complex was solvated in a 15 Å octahedral box of

TIP3P water and the whole system was neutralized by adding Na+

counterions according to the net charge of the peptidomimetic.

Table S1 lists the number of atoms in each of the 12 molecular

dynamics systems.

The complex was first minimized using 100 cycles of steepest

descent minimization followed by 1900 cycles of conjugate

gradient minimization. This was followed by 50 ps of temperature

equilibration where the temperature was raised from 100 K to

300 K using Berendsen [75] control with coupling parameter set

to 2 ps. Pressure equilibration was then performed for 200 ps

using Berendsen control with pressure relaxation time set to 2 ps.

Finally, a production simulation of 10 ns was performed at

constant temperature and pressure, and the trajectory was output

at every 10 ps. During the molecular dynamics simulation,

SHAKE algorithm was used to constrain bonds involving

Figure 3. Docked conformations. Docked conformation of each peptidomimetic that was obtained using our incremental docking protocol is
shown. The peptidomimetic conformation (in green) is shown in complex with the SH2 domain of STAT3 (in surface representation). The surface
coloring shows the Coulombic electrostatic potential in different regions of the surface of the SH2 domain. The potential ranges from positive (in
blue) to negative (in red). IC50 value represents the experimental binding affinity of each peptidomimetic derived using fluorescence polarization and
N represents the number of rotatable bonds in each peptidomimetic.
doi:10.1371/journal.pone.0051603.g003
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hydrogen atoms and therefore forces for the bonds involving

hydrogen atoms were not calculated. For computing electrostatic

energies, Particle Mesh Ewald [76] (PME) method was used with

the non-bonded cutoff set to the default value of 8 Å. Plots

showing variation of system properties (total energy, potential

energy, temperature, and pressure) during the production

simulation are available in the Supporting Information (Figures

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, and S12) and reveal

equilibrated and stable systems.

To evaluate the accuracy of our modeling approach, we

performed a study where we compared the structures modeled

using our approach with experimentally-derived structures. Since

experimentally determined structures of the peptidomimetics in

complex with the SH2 domain of STAT3 or any other protein

from the STAT family are unavailable, the validation was done

using a dataset of similar complexes derived from the PDBbind

database [77]. The details and analysis of the validation study are

available in the Supporting Information (Section S2). The analysis

(Figures S13, S14, S15, S16, S17, S18, S19, S20, S21, and S22,

Table S2) shows that the modeled structures and experimental

structures are spatially close and therefore we conclude that our

modeling approach is well-suited for modeling of peptidomimetic-

SH2 complexes that are described in this paper.

Binding Affinities
Trajectories obtained from molecular dynamics simulations

were also used to estimate binding affinities. The binding affinity

of each peptidomimetic in complex with the SH2 domain was

obtained using Molecular Mechanics Poisson Boltzmann (or

Generalized Born) Surface Area (MMPB/GBSA) calculations

[78]. The binding affinity is given by

DGbind~DEMMzDGPB=GBzDGSA{TDS ð2Þ

where, T is the temperature, DEMM represents the molecular

mechanics energy, DGPB=GB represents the polar part of solvation

energy, DGSA represents the non-polar part of the solvation

energy, and TDS represents the energetic penalty due to loss of

entropy upon binding.

To compute DGbind , values of DEMM , DGPB=GB, and DGSA

were computed averaged over the snapshots of the molecular

dynamics production trajectory. The TDS value was computed

from a normal mode analysis of the system using nmode module of

the AmberTools [74] package. For entropy computation, every

10th snapshot of the molecular dynamics trajectory was used.

Calculations of all of the above DGbind components were done

using MMPBSA script provided by the AmberTools package. For

computing the polar part of solvation energy using Poisson-

Boltzmann calculations, the ionic strength was set to 0.1 mM. All

other parameters needed by MMPBSA script were kept at their

default values.

Data Analysis
Trajectory data obtained after the 10 ns molecular dynamics

simulation was analyzed in a variety of ways. Prior to analyzing the

data, however, the following processing was done. Water and

counterions were removed from the trajectory data. All atoms

were moved such that the center of mass of the complex moved to

the center of the simulation box and imaging was done to bring all

atoms inside the primary unit cell. All conformations of the

complex contained in the snapshots of the trajectory were then

fitted to the conformation in the first frame of the production

simulation. Mass-weighted root mean squared distance (RMSD)

fitting was done. Note that since we output trajectory at every

10 ps, we obtained 1000 snapshots or conformations of the

complex from a 10 ns molecular dynamics simulation.

Average (mass-weighted) root mean square fluctuations (RMSF)

were computed for each peptidomimetic bound to the SH2

Figure 4. Root mean square fluctuations. Root mean square fluctuation (RMSF) of the 12 peptidomimetics in complex with the SH2 domain of
STAT3 is shown. Each RMSF value was computed using 1000 conformations of the peptidomimetic derived from the 10 ns molecular dynamics
trajectory.
doi:10.1371/journal.pone.0051603.g004
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domain. The RMSF value represents the average value of the

RMSD between the peptidomimetic conformation in the first

frame of the molecular dynamics trajectory and the conformations

in the subsequent frames. Thus, the RMSF value is indicative of

the time-averaged fluctuation of the peptidomimetic conforma-

tion. Clustering of conformations of the peptidomimetic was done

and conformations that are representative of the clusters were

identified. Clustering was done using k-means [79] (k was set to 5)

algorithm with RMSD as the similarity metric. Hydrogen bonds

are critical for stabilizing the binding interactions [80–83] and

were identified between each peptidomimetic and the SH2

domain. If a hydrogen bond was present in less than 50% of the

conformations in the trajectory, it was ignored. For each

peptidomimetic in complex with the SH2 domain, we computed

the hydrogen bond occupancy of the residues of the SH2 domain.

Hydrogen bond occupancy of a residue is defined as the fraction of

conformations in the molecular dynamics trajectory that contain at

least one hydrogen bond involving that particular residue.

Computation of RMSF values and k-means clustering was done

using ptraj module from the AmberTools [74] package. Hydrogen

bonds were identified using hbond tool in the Chimera software

package [84] version 1.6.

Results

Conformational Analysis
Figure 3 shows the best docked conformation, of each of the 12

peptidomimetics, computed using the incremental docking proto-

col. These docked conformations were then solvated and subjected

to 10 ns of molecular dynamics simulations. Snapshots of the

trajectories were output at every 10 ps and therefore we obtained

1000 conformations for each of the 12 pepetidomimetic-SH2

domain complexes. The RMSF value for each peptidomimetic is

shown in Figure 4. The RMSF value quantifies the average spatial

fluctuation of the peptidomimetic conformation in the 1000

snapshots. A low RMSF value is thus indicative of spatial stability

of the conformation of the peptidomimetic bound to the SH2

domain. The RMSF values for weak binders such as comp13,

comp15, and comp60 are higher as compared to the RMSF values

Figure 5. Representative conformations after clustering. For each peptidomimetic, 5 conformations in complex with the SH2 domain (in gray)
of STAT3 are shown. The 5 conformations are the representatives of the 5 clusters obtained after k-means clustering of the 1000 conformations that
were derived from 10 ns molecular dynamics trajectory of each peptidomimetic-SH2 domain complex. IC50 value represents the experimental
binding affinity of each peptidomimetic derived using fluorescence polarization and N represents the number of rotatable bonds in each
peptidomimetic.
doi:10.1371/journal.pone.0051603.g005
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Figure 6. Residues involved in hydrogen bonds. The residues (labeled) of the SH2 domain that form hydrogen bonds with at least one of the
12 peptidomimetics are shown. The top figure shows a cartoon representation of the SH2 domain and the bottom figure shows a surface
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of the strong binders such as comp70, comp121, comp134,

comp135, and comp136. As an exception, comp140, another

strong binder, shows surprisingly large RMSF value (1.82 Å) that

is comparable to the RMSF values of the weak affinity

peptidomimetics.

Through clustering of the 1000 conformations, we obtained 5

representative conformations of each peptidomimetic-SH2 com-

plex (Figure 5). All representative conformations have the

phosphate group of the pTyr residue or its surrogate in the

location of the corresponding pTyr705 in the crystal structure of

STAT3 [27]. The representative conformations of the strong

binders such as comp70, comp121, comp134, comp135, and

comp136 are spatially similar, while those of weak binders such as

comp13, comp15, and comp60 show more spatial variation.

Hydrogen Bonds
Hydrogen bonds are critical to the binding interactions between

the peptidomimetics and STAT3. Figure 6 shows all the residues

that are involved in hydrogen bonds with at least one

peptidomimetic. Residues Lys591, Arg609, Ser611, Glu612, and

Ser613 are involved in the hydrogen bond interactions and form

the phosphate-binding pocket (sub-pocket-1) where the phosphate

group of pTyr residue (or its surrogate) in each peptidomimetic

binds. Three sub-pockets in the binding site of the SH2 domain

are also involved in hydrogen-bonding interactions. Residues

Glu638, Tyr640, and Gln644 form sub-pocket-2, residues Gly656,

Lys658, and Tyr657 form sub-pocket-3, and residues Trp623,

Ile659, and Met660 flank sub-pocket-4.

The residues of the SH2 domain which participate in hydrogen

bonds with a specific peptidomimetic and the hydrogen bond

occupancy involving those residues and the peptidomimetic are

shown in Figure 7. The occupancy plots in Figure 7 also show that

the strong binders such as comp70, comp121, comp134, and

comp136 form hydrogen bonds with more than 5 residues of the

SH2 domain, and the weak binders such as comp13 and comp15

form hydrogen bonds with 3 and 4 residues respectively. Another

weak-affinity peptidomimetic comp60 forms hydrogen bonds with

6 different residues but all of these residues surround the

phosphate-binding pocket (sub-pocket-1). This means that, in the

case of comp60, while the pTyr residue binds tightly to the sub-

pocket-1, the rest of the peptidomimetic is not involved in stable

hydrogen bond interactions. A couple of strong binders, comp135

and comp140, form hydrogen bonds with 4 residues each. Since

the conformation of comp140 is unstable (as evident by the RMSF

value) and we ignore hydrogen bonds if they are present in less

than 50% of the conformations in the molecular dynamics

trajectory, hydrogen bond interactions with fewer residues of the

SH2 domain is expected. In the case of comp135, however, the

RMSF value is low (1.22 Å). We postulate that comp135 may have

an alternate and more stable bound conformation similar to the

conformation of comp134.

Binding Affinity
The binding affinity value reflects the thermodynamic stability

of the binding interactions between a peptidomimetic and the SH2

domain of STAT3. In a computational modeling study such as

this, a large positive correlation between the experimental binding

affinities and estimated binding affinities is desired. A high

correlation allows accurate prediction of strong and weak binders.

We used binding energy function described by equation (2) to

estimate the binding affinity values in four different schemes: A.

entropic component (TDS) was ignored and the non-entropic

component was computed using MMGBSA, B. entropic compo-

nent (TDS) was ignored and the non-entropic component was

computed using MMPBSA, C. entropic component (TDS) was

included and the non-entropic component was computed using

MMGBSA, and D. entropic component (TDS) was included and

the non-entropic component was computed using MMPBSA. The

experimental binding affinities were calculated from the IC50

values using the function

DGexp~R|T|logKi ð3Þ

where, Ki = log
IC50|10{9

1:066
mol, R (Gas constant) = 0.001986 k-

cal K-1 mol-1, T = 298 K, and IC50 values are in nM. The Cheng-

Prusoff estimation [85] of Ki from IC50 was done using a Kd of

150 nM for FAM-Ala-pTyr-Leu-Pro-Gln-Thr-Val-NH2[86] and a

concentration of 10 nM in the fluorescence polarization assay used

to evaluate the binding affinities of the 12 peptidomimetics [23].

Figure 8 (top) plots Pearson’s correlation coefficient (R), that

measures the correlation between the experimental and estimated

binding affinities, versus the length (2 ns, 4 ns, 6 ns, 8 ns, and

10 ns) of molecular dynamics simulation. Note that the binding

affinities are computed averaged over the snapshots of the

molecular dynamics simulation. From the figure, it is clear that,

for all four affinity estimation schemes, the value of R increases

with the increase in the length of molecular dynamics simulation.

Out of the four schemes, the best correlation coefficient values

were observed for the scheme D (cyan) which estimates affinity as a

sum of the entropic component and the MMPBSA-based non-

entropic component of the energy function. The maximum

observed value of R is 0.63 which was computed using scheme

D and 10 ns molecular dynamics simulation trajectories.

The estimated binding affinities, for the 12 peptidomimetics,

obtained using scheme D are shown in Figure 8 (bottom). For each

peptidomimetic, multiple values of the binding affinities that

correspond to different lengths of molecular dynamics simulation

are shown. It is clear that the affinity values converge as the length

of simulation increases. The affinity values, derived from the 10 ns

molecular dynamics trajectories, correspond to the R value of 0.63

as described above. Since the R value is large, not surprisingly,

weak binders such as comp13, comp15, and comp60 have higher

estimated affinity values, the value for comp15 (IC50.

100,000 nM) being the highest (218.22 kcal/mol). Similarly, the

binding affinity values for strong binders such as comp70,

comp121, comp134, and comp136 are low, the value for comp70

(IC50 = 190 nM) being the lowest (245.40 kcal/mol).

Binding Modes
The conformations in Figure 5 show the presence of two

binding modes that have also been described in previous

computational modeling studies [24,69]: the bent mode and the

extended mode. All or some of the representative conformations

for comp70, comp135, comp140, and comp142 display the bent

mode where the phosphate group sits in sub-pocket 1 and the

peptidomimetic bends such that the Gln (or its derivative) residue

of the peptidomimetic sits in sub-pocket 2. In the extended mode,

representation. The surface coloring shows the Coulombic electrostatic potential in different regions of the surface of the SH2 domain. The potential
ranges from positive (in blue) to negative (in red). Note that a hydrogen bond is ignored if it is present in less than 50% of the conformations in the
10 ns molecular dynamics trajectory.
doi:10.1371/journal.pone.0051603.g006

Binding Modes of Peptidomimetics

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e51603



Binding Modes of Peptidomimetics

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e51603



as seen in all or some of the representative conformations for

comp134, comp136, comp140, and comp142, the phosphate

group sits in sub-pocket 1 and the backbone extends such that Gln

(or its derivative) residue of the peptidomimetic sits in sub-pocket

3. Apart from the bent and the extended modes, a novel binding

mode was observed. The five representative conformations of

comp121 display what we term a wedged mode. In this mode,

while the phosphate group binds to the sub-pocket-1, the other

end of the peptidomimetic is wedged in a groove formed by two

loops of the SH2 domain described by residues 623–629 and

residues 656–668.

The binding modes are shown in detail in Figures 9, 10, and

11. Both cartoon and surface representations of the SH2

domain are shown. The labeled yellow residues of the SH2

domain are involved in hydrogen bond interactions and the

hydrogen bonds are shown with dashed black lines. The surface

of the SH2 domain is colored using the Coulombic surface

coloring scheme in the Chimera software package. The surface

is characterized by electrostatic potentials ranging from positive

electrostatic potential (blue surface) to a negative potential (red

surface). The bent mode is displayed by the peptidomimetic

comp70 (Figure 9), the extended mode is displayed by comp134

(Figure 10), and the wedged mode is displayed by comp121

(Figure 11). The binding affinities of the three peptidomimetics,

experimental as well as computed, are high (low DG and IC50

values) and, as shown in Figure 4, the RMSF values for

comp70 (0.98 Å), comp134 (0.95 Å), and comp121 (0.91 Å) are

the lowest out of the RMSF values for the 12 peptidomimetics.

Thus, these three compounds present a strong evidence that

there are three possible modes in which peptidomimetics can

tightly bind to the SH2 domain.

As expected, all three binding modes include multiple

hydrogen bonds connecting the phosphate group to sub-

pocket-1. The amino acids forming sub-pocket-1 create a strong

positive electrostatic potential which thus tightly binds the

negatively charged phosphate group in all peptidomimetics. In

the bent mode (Figure 9), the Gln residue of comp70 binds to

the sub-pocket-2 and forms multiple hydrogen bonds with

residues Tyr640 and Gln644 of the SH2 domain that flank sub-

pocket-2. The binding interactions are also stabilized by the

hydrogen bonds formed between the carbonyl oxygen of the

Haic group and residue Tyr657 of the SH2 domain. A similar

interaction was observed between a carbonyl oxygen of pTyr-

Asp-Lys-Pro-His and Tyr651 in the crystal structure of STAT1

[87]. In the extended mode (Figure 10), the carbonyl oxygen of

the Leu at pTyr+1 position forms hydrogen bond with Tyr657

and the side chain amide group of the Gln-mimic residue at the

C-terminus of the peptidomimetic forms hydrogen bonds with

the main chain C = O of Gly656 and the backbone NH groups

of Lys658 and Ile659. In the newly discovered wedged mode

(Figure 11), the carbonyl oxygen of the Leu residue forms

hydrogen bond with Trp623 which lies on the loop formed by

residues 623–629 and the carbonyl oxygen of methanoproline is

involved in a hydrogen bond with the side chain OH of

Tyr657. The driving force for this binding mode appears to be

hydrophobic contact between the C-terminal benzene ring and

residues of loops 623–629 and 656–658 as well as a hydrogen

bond between the benzylamide NH and the main chain C = O

of Met660. Interestingly, the side chain amide group of Gln

does not appear to interact directly with the protein.

Discussion

Transcription factor STAT3 is an important target protein that

is involved in a multitude of human cancers. In this work, we

focused on a specific set of 12 peptidomimetic compounds that

mimic the pTyr-Xaa-Yaa-Gln recognition motif and were

designed to bind with the SH2 domain of STAT3 and prevent

its dimerization which is a critical event leading up to the

transcription of anti-apoptotic genes. Experimental binding

affinities of the peptidomimetics were measured using fluorescence

polarization and a range of affinity values were observed for the 12

peptidomimetics. Binding affinities for the peptidomimetics,

expressed as IC50 values, range from 39 nM for a strong binder

to over 100,000 nM for a weak binder. Since experimental

structures of the complexes formed between the peptidomimetics

and the SH2 domain are unavailable, we used a computational

strategy to model the complexes.

Our modeling strategy proceeded in two steps. In the first, we

generated docked conformations of the peptidomimetics using a

computational AutoDock-based incremental docking protocol that

was developed by us for docking large compounds in a fast and

accurate manner [66]. The peptidomimetics in our dataset are all

large compounds with the number of rotatable bonds ranging

from 9 to 22. In the second step of our modeling strategy, we

selected the best docked conformation and then ran molecular

dynamics simulations of the complex in a solvated box. Molecular

dynamics simulations served multiple purposes. The flexibility of

the SH2 domain was taken into account, fluctuations of the bound

conformations over the length of molecular dynamics simulation

were computed, and finally, rigorous estimates of binding

affinities, as a sum of normal-mode analysis based entropic

component and MMPB/GBSA based non-entropic component,

were computed. Accurate estimates of binding affinities are very

important for differentiating strong binders from weak binders,

and therefore, a positive correlation between the experimental

binding affinities and estimated binding affinities is desired. Our

two-step modeling strategy resulted in a high positive correlation

(R = 0.63) between the experimental and estimated affinities.

For each of the 12 peptidomimetics, we performed molecular

dynamics simulations for a production length of 10 ns. The

trajectory data for each simulation was output at 10 ps. Thus, we

obtained 1000 conformations for each peptidomimetic in complex

with the SH2 domain. The average fluctuation of the conforma-

tions of each peptidomimetic was measured as RMSF (root mean

square fluctuation) values. The weak binders displayed larger

fluctuation as compared to the strong binders. A clustering of the

conformations showed the preferred binding modes of the

peptidomimetics. Three strong binders, with IC50 values equal

to 190 nM (comp70), 83 nM (comp134), and 68 nM (comp121),

displayed three different but stable binding modes: the bent mode,

the extended mode, and the wedged mode respectively. The

peptidomimetics in these three binding modes showed very small

(,1.0 Å) conformational fluctuations in the molecular dynamics

simulations, a large number of stable hydrogen bond interactions

Figure 7. Hydrogen bond occupancy. Hydrogen bond occupancy plots for each peptidomimetic are shown. In each sub-plot, the x-axis
represents the serial numbers of the residues of the SH2 domain of STAT3 and the y-axis represents the hydrogen bond occupancy value for a given
residue. Hydrogen bond occupancy is computed as the fraction of conformations out of 1000 conformations of a peptidomimetic in which the given
residue participates in a hydrogen bond. The 1000 conformations of each peptidomimetic were derived from the corresponding 10 ns molecular
dynamics trajectory. Note that a hydrogen bond is ignored if it is present in less than 500 conformations.
doi:10.1371/journal.pone.0051603.g007
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Figure 8. Correlation between experimental and esimated affinities. The top figure shows the variation of the Pearson correlation
coefficient (R), computed between the experimental binding affinities and the estimated binding affinities of the 12 peptidomimetics, with the length
of molecular dynamics simulation. The binding affinities were estimated using 4 different schemes. DGMMGBSA and DGMMPBSA represent non-
entropic contribution to the binding affinity computed using the MMGBSA and MMPBSA methods in AmberTools software package. TDS represents
the entropic contribution computed using the nmode method in AmberTools. The bottom figure shows, for each peptidomimetic, the estimated
binding affinity value computed using DGMMPBSA{TDS scheme. Because the values computed using MMGBSA, MMPBSA, and nmode methods are
averaged over the snapshots of the molecular dynamics trajectory, we also plot the variation of estimated binding affinity values with increasing
length of the molecular dynamics simulation.
doi:10.1371/journal.pone.0051603.g008
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Figure 9. Bent binding mode. The bent binding mode of peptidomimetic comp70 (in green) is shown. The peptidomimetic is in complex with the
SH2 domain of STAT3 which is shown in cartoon (top) and surface (bottom) representations. The residues of the SH2 domain which participate in
hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines) that the residues (in yellow) participate in. The surface
coloring shows the Coulombic electrostatic potential in the different regions of the surface of the SH2 domain. The potential ranges from positive (in
blue) to negative (in red). The IC50 value for comp70 is 190 nM.
doi:10.1371/journal.pone.0051603.g009

Binding Modes of Peptidomimetics

PLOS ONE | www.plosone.org 12 December 2012 | Volume 7 | Issue 12 | e51603



Figure 10. Extended binding mode. The extended binding mode of peptidomimetic comp134 (in green) is shown. The peptidomimetic is in
complex with the SH2 domain of STAT3 which is shown in cartoon (top) and surface (bottom) representations. The residues of the SH2 domain which
participate in hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines) that the residues (in yellow) participate in.
The surface coloring shows the Coulombic electrostatic potential in the different regions of the surface of the SH2 domain. The potential ranges from
positive (in blue) to negative (in red). The IC50 value for comp134 is 83 nM.
doi:10.1371/journal.pone.0051603.g010
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with the residues of the SH2 domain, and the estimated binding

affinities value were low in accordance with the experimental

binding affinities.

Previous modeling studies related to SH2 domain binding have

proposed the bent and the extended binding modes [24,69]. In this

paper, we propose a new binding mode which we term the wedged

mode. In the wedged mode, the peptidomimetic (comp121) binds to

the SH2 domain such that the negatively charged phosphate group

of the pTyr residue sits inside a pocket which has a positive

electrostatic potential and the C-terminal benzyl group gets wedged

in a cavity formed by two loops of the SH2 domain described by the

residues 623–629 and 656–668 respectively. Apart from the stable

hydrogen bond interactions with the residues in the phosphate-

binding pocket, hydrogen bonds also exist between the peptidomi-

metic and residues on the two loops. The RMSF value for the 1000

conformations of the comp121 is 0.91 Å and is the lowest among

the RMSF values for the 12 peptidomimetics.

Despite the overall success of modeling strategy as described in

this paper, there were exceptions to the observed trends. For

example, in the case of comp140 which is a relatively strong binder

(IC50 = 105 nM), we obtained a large RMSF value and estimated

binding affinities that are comparable to those of weak binders.

This anomaly could be attributed to an inaccurate starting docked

conformation of the peptidomimetic. In the molecular dynamics

simulation, an inaccurate starting docked conformation would

result in trajectory that leads to inaccurate estimation of binding

affinity. It should be noted that computational docking of large

ligands such as peptidomimetics in our dataset is extremely

challenging. Although our incremental docking protocol improves

docking of large ligands, more work needs to be done in this area.

The computational modeling strategy described in this paper and

the subsequent data analysis, nonetheless, reveals important aspects

of the peptidomimetic binding to the SH2 domain of STAT3. Not

only were we able to estimate binding affinities that were well

correlated with experimental binding affinities, we were also able to

identify binding modes, including a novel wedge mode, that result in

stable binding interactions. A typical peptidomimetic drug design

process that is based on a specific motif involves designing

peptidomimetics with diverse chemical modifications. Accurate

estimation of binding affinities using our method could help in

predicting which modifications could lead to strong binding. The

knowledge gained by this study could also be used to improve the

design of the peptidomimetics by better targeting the sub-binding-

pockets identified in this paper with structural modifications or

conformational restraints. The proposed novel wedge binding mode

could prove very useful in this regard.

Supporting Information

Section S1 Incremental Docking Details.
(PDF)

Section S2 Modeling approach validation study.
(PDF)

Figure S1 MD simulation of comp1-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S2 MD simulation of comp13-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S3 MD simulation of comp15-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PDF)

Figure S4 MD simulation of comp60-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S5 MD simulation of comp70-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S6 MD simulation of comp108-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S7 MD simulation of comp121-SH2 complex. Total

energy (ETOT), potential energy (EPTOT), temperature (TEMP),

and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S8 MD simulation of comp134-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD

trajectory.

(PNG)

Figure S9 MD simulation of comp135-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD

trajectory.

(PNG)

Figure S10 MD simulation of comp136-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD

trajectory.

(PNG)

Figure S11 MD simulation of comp140-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S12 MD simulation of comp142-SH2 complex.
Total energy (ETOT), potential energy (EPTOT), temperature

(TEMP), and pressure (PRES) over the course of 10 ns MD trajectory.

(PNG)

Figure S13 Protein-ligand complex with PDB ID 1BM2.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure 11. Wedged binding mode. The proposed novel wedged binding mode of peptidomimetic comp121 (in green) is shown. The
peptidomimetic is in complex with the SH2 domain of STAT3 which is shown in cartoon (top) and surface (bottom) representations. The residues of
the SH2 domain which participate in hydrogen bonds are labeled. The top figure also shows the hydrogen bonds (dashed lines) that the residues (in
yellow) participate in. The surface coloring shows the Coulombic electrostatic potential in the different regions of the surface of the SH2 domain. The
potential ranges from positive (in blue) to negative (in red). The IC50 value for comp121 is 68 nM.
doi:10.1371/journal.pone.0051603.g011
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Figure S14 Protein-ligand complex with PDB ID 1CJ1.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S15 Protein-ligand complex with PDB ID 1IJR.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S16 Protein-ligand complex with PDB ID 1SKJ.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S17 Protein-ligand complex with PDB ID 1BKM.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S18 Protein-ligand complex with PDB ID 1IS0.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S19 Protein-ligand complex with PDB ID 1A08.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S20 Protein-ligand complex with PDB ID 1SHD.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S21 Protein-ligand complex with PDB ID 1SPS.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Figure S22 Protein-ligand complex with PDB ID 1ZFP.
The experimental conformation (green) and the modeled confor-

mation (yellow) of the ligand are shown in stick representation and

the protein is shown in surface representation.

(PNG)

Table S1 Number of atoms in MD simulation systems. MD

simulations were performed on 12 systems each comprising of one

of the 12 peptidomimetics in complex with the SH2 domain of

STAT3 in a explicit solvent box. This table lists the number of

atoms (Natoms) in each system.

(PNG)

Table S2 Validation accuracy. 10 protein-ligand complexes

were identified for validation of our modeling approach to predict

binding modes of peptidomimetics in complex with the SH2

domain of STAT3. This table lists the PDB IDs that correspond to

the deposited experimental structures of the 10 complexes. The

RMSD values between the modeled conformation and experi-

menal conformation of the ligands evaluate the accuracy of our

modeling approach. N represents the number of rotatable bonds

in the ligands.

(PNG)
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