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Abstract

The development of ultra-dense genetic maps has the potential to facilitate detailed comparative genomic analyses and
whole genome sequence assemblies. Here we describe the use of a custom Affymetrix GeneChip containing nearly 2.4
million features (25 bp sequences) targeting 86,023 unigenes from sunflower (Helianthus annuus L.) and related species to
test for single-feature polymorphisms (SFPs) in a recombinant inbred line (RIL) mapping population derived from a cross
between confectionery and oilseed sunflower lines (RHA2806RHA801). We then employed an existing genetic map derived
from this same population to rigorously filter out low quality data and place 67,486 features corresponding to 22,481
unigenes on the sunflower genetic map. The resulting map contains a substantial fraction of all sunflower genes and will
thus facilitate a number of downstream applications, including genome assembly and the identification of candidate genes
underlying QTL or traits of interest.
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Introduction

Cultivated sunflower (Helianthus annuus) is one of the world’s

most important oilseed crops, and also serves as an important

source of confectionery seeds and cut flowers. Though numerous

genetic maps of the sunflower genome have been produced (e.g.,

[1–4]; http://www.sunflower.uga.edu/cmap), the majority of

these contain relatively few mapped loci. While maps with 250–

300 loci have proven sufficient for defining the haploid set of 17

chromosomes and for localizing quantitative trait loci (QTLs),

detailed comparative genomic analyses and whole genome

sequence assemblies would benefit from the availability of much

denser maps. More recently, a consensus genetic map containing

ca. 10,000 loci was produced [5]. Given the extremely large size of

the sunflower genome (ca. 3.6 billion bp), however, even higher

marker densities are desirable.

The sunflower consensus map [5] was based on data from four

different mapping populations that were genotyped with a high-

density Illumina single nucleotide polymorphism (SNP) array [6].

While such tools produce high quality data, the requirement that

SNPs be pre-identified through the re-sequencing of specific

genotypes limits the utility of this approach if the goal is to produce

an extremely high-density map from a particular population.

Given the ability to produce oligonucleotide arrays containing

millions of features, microarray-based genotyping provides a cost-

effective means for simultaneously testing huge numbers of short

probes for single-feature polymorphisms (SFPs; i.e., SNPs or indels

that influence hybridization intensity; [7]) that can be used to

construct an ultra-dense genetic map based on sequence-tagged

markers. The consequence of such approaches are new compu-

tational challenges related to both the quantity and quality of the

resulting data.

Genetic map construction is an NP-hard problem similar to the

traveling salesman problem [8], in which a relatively simple

ordering problem becomes increasingly complex with additional

nodes (or loci), rapidly exceeding the complexity that even very

powerful computers can solve through an exhaustive search. With

the advent of microarray-based genotyping methods, as well as

those based on the extraction of genotypic information directly

from next-generation sequence data, it is becoming possible and

economically practical to genotype tens of thousands to even

millions of polymorphisms within a single genetic mapping

population. Such large datasets require re-thinking the computa-

tional approach used to construct genetic maps. However, given

the availability of a well-characterized, advanced generation

mapping population, this problem can be resolved through an
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approach analogous to bin mapping [9], albeit at much higher

resolution.

One of the best characterized sunflower mapping populations is

a set of recombinant inbred lines (RILs) derived from a cross

between sunflower cultivars RHA280 and RHA801. This

population, which served as the basis of several early mapping

efforts [2,3,10], was used to establish a universal system of

sunflower chromosomal nomenclature that is now widely

employed across research groups. The RHA2806RHA 801 RILs

also played a crucial role in the development of the consensus map

described above [5]. As part of that work, a total of 3785 SNPs

were mapped in this population, resulting in a map spanning the

expected 17 linkage groups with an average of nearly 3 markers

per centimorgan (cM). Due to the high level of genomic coverage

and extremely low error rates in that dataset, new markers can be

added to this map simply by matching their segregation patterns to

those observed for previously mapped loci or by finding an interval

between two such loci into which the new marker can be placed

without requiring additional recombination events.

Herein, we describe the genotypic characterization of a subset

of the RHA2806RHA801 mapping population using a custom

Affymetrix GeneChip. We used these data to map tens of

thousands of SFPs corresponding to a substantial fraction of all

genes in the sunflower genome.

Materials and Methods

Design of the Affymetrix Array
All genotyping was performed using a custom Affymetrix

GeneChip (Affymetrix, CA, USA) designed from Helianthus

expressed-sequence tags (ESTs). A total of 283,605 Sanger ESTs

from 7 sunflower species (GenBank numbers: AJ318230–

AJ318330, AJ412174–AJ412667, AJ437699–AJ437975,

AJ539583–AJ540226, AJ541055–AJ541795, AJ542101–

AJ542392, AJ827751–AJ829440, BG734514–BG734530,

BG874297–BG874313, BG891021–BG891022, BQ909263–

BQ917261, BQ965129–BQ980049, BU015365–BU036497,

BU671782–BU672110, CD845604–CD858495, CF076145–

CF099271, CX943504–CX948070, DY903733–DY959228,

EE605695–EE627562, EE628472–EE661299, EL412382–

EL492411, EL511146–EL515442, EL772988) were assembled

using TGICL [11]. These sequences included 94,017 ESTs from

H. annuus; 35,704 from H. argophyllus; 21,589 from H. ciliaris;

33,959 from H. exilis; 30,504 from H. paradoxus; 27,479 from H.

petiolaris; and 40,353 from H. tuberosus. The final assembly included

87,237 ‘‘unigenes’’ corresponding to 27,587 contigs and 59,650

singletons (data deposited in the Dryad repository: http://dx.doi.

org/10.5061/dryad.h0jg4).

Between 1 and 196 oligos corresponding to 25 bp sequences

from each of 86,023 unigenes were included in the Affymetrix chip

design; the remaining unigenes were either very short, consisted

largely of repetitive simple sequences, or were redundant with

other sequences already on the chip. This resulted in a chip design

containing a total of 2,372,825 features from the Helianthus

genome. The vast majority of the unigenes (84,916) were

represented by 7 or more non-overlapping 25 bp probes. An

additional 16,773 random 25 bp features were included on the

chip as controls, along with 317 features from 8 different Helianthus

annuus genomic (i.e., non-EST) sequences. The final chip design

contained a total of 2,598,544 unique 25 bp features including

218,630 positive and negative controls (i.e., blank features and

features matching a control non-sunflower DNA that was added to

the labeling mix).

Plant Materials
Genetic mapping was performed using 69 lines from an 8th

generation RIL population derived from a cross between

sunflower RHA2806RHA801 (see [10] for details). RHA280 is

a public confectionery restorer line whereas RHA801 is a public

oilseed restorer line [12,13]. As noted above, this population has

been the subject of extensive investigations [2,5,10,14].

DNA Isolation, Labeling, and Microarray Hybridization
Total genomic DNA was extracted from a single plant per line

using a CTAB extraction protocol [15]. 30 mg of DNA was

digested using RQ1 RNase-Free DNase (Promega, WI, USA) to

obtain fragments ranging in size from 50–300 bp. The fragmented

DNA was labeled using GeneChip DNA Labeling Reagent. This

was followed by hybridization of the labeled target to the

sunflower array using the protocol outlined in the Affymetrix

GeneChip Whole Transcript (WT) Double-Stranded Target Assay

Manual. Hybridization was performed for 16–18 hours at 45uC
and 60 rpm using an Affymetrix GeneChip Hybridization Oven

640. The washing and staining of the array was performed using

the protocol provided by GeneChip WT Double-Stranded Target

Assay Manual (FS450_0001/FS450_0002) using a GeneChip

Fluidics Station 450. Chips were then scanned using an Affymetrix

GeneChip Scanner 3000 7G. Each of the 69 RILs included in this

study were tested in replicate on separate chips and the parents of

the cross were each tested 4 times.

Data Processing
The raw data for all chips were normalized via quantile

normalization using Affymetrix Power Tools (APT v1.14.2). The

normalized chip files were then converted to text using the APT

software and the average intensity across all chips for each feature

was computed using a custom script. For each chip, any feature

with an intensity level ,92% of the average for that feature on all

chips was tentatively declared to represent genotype ‘‘AA’’, while

any intensity level .98% of the average was declared to represent

genotype ‘‘BB’’. Features on each chip with intensity levels 92–

98% of average for that feature on all chips were declared as

unknown. The 92% and 98% thresholds were determined

empirically by studying a subset of features that appeared to show

approximately 1:1 segregation and good reproducibility between

replicates. The initial calls for the two replicates of the same RIL

were combined to create a consensus. If the two replicates had

different genotype calls or were both ‘‘unknown’’, then the

consensus call was ‘‘unknown’’. If both replicates had the same

initial genotype call, then the combined allele call was assigned as

the consensus. If one of the replicates had an ‘‘unknown’’ initial

allele call then the genotype produced by the other replicate was

assigned as the consensus. All data processing/mapping was done

with a combination of Visual Basic scripts (available on request)

and spreadsheet/database software.

Description of Mapping Approach
As noted above, the genetic mapping of very large numbers of

markers presents computational challenges that can far outstrip

the ability of even very powerful computers to solve through

exhaustive searches. The problem can, to some extent, be

simplified by combining into a single locus all genetic markers

that exhibit identical segregation patterns within the mapping

population. As the number of markers approaches and then

exceeds the number of crossovers in the ‘‘true’’ genetic map, the

likelihood that each additional marker will match a previously

observed segregation pattern increases to near certainty. Eventu-
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ally, all possible genotypic patterns will be observed with each

being separated from its genetic map ‘‘neighbors’’ by a single

crossover. Each of these patterns can be defined as a ‘‘bin’’,

reducing the effective number of loci involved in the computation

of map order. The estimation of map order thus becomes a less

complex question of walking down a chain of bins with each step

represented by a genetic distance of a single crossover event.

In the absence of double crossovers, this can be done by picking

any bin at random to serve as the starting point (i.e., the ‘‘seed’’),

and then placing the two bins that differ by a single recombination

before and after the ‘‘seed’’ bin. This is followed by extending the

chain in both directions by placing unused bins adjacent to the

ends of the growing chain until no unused adjacent bins exist, at

which point the ends of the chromosome will have been reached.

A new seed from the remaining, unused bins is then picked to

initiate the construction of the next chromosome, and the process

is repeated until all markers/bins have been ordered into

chromosomal linkage groups. Rarely, an individual bin can

appear to be adjacent to three other bins due to the occurrence

of an initial crossover event followed by an adjacent crossover in

the same line. In such cases, the bin in question is re-used and a

small amount of ambiguity is introduced, albeit at a highly

localized scale. When all possible bins are represented, there is no

need to calculate LOD scores to estimate the likelihood that the

resulting map order is correct. Even in the rare cases in which bins

are re-used, the localized orders differences are equally likely,

rendering LOD calculations moot. This further reduces the

computational demands.

With actual data, even with ultra-dense genotypic information,

all possible bins may not be observed due to the occurrence of

recombinational hotspots or genomic regions that are identical-by-

descent between the parents of the mapping population (and thus

lacking in mappable polymorphisms). However, when the number

of loci on the map exceeds the number of bins by several-fold, the

majority of bins are represented. In the case where a gap of two

recombination events in separate lines/genotypes occurs between

observed bins, the missing bin can only be one of two possible

patterns and the number of possible missing bins for other short

intervals is similarly low.

A template map based on the Illumina SNP map developed

from this same population (as part of the development of the

consensus map; Bowers et al. 2012) was used to produce a

preliminary map template containing genetic bins into which the

Affymetrix data could be placed. This genetic map template was

initially based on 35 individuals for which we had both Illumina

and Affymetrix data. It was then extended and improved based on

the Affymetrix data to subdivide intervals where multiple

recombinations occurred in the template map through the

addition of 34 lines that were not included in the production of

the Illumina map but were tested on the Affymetrix chips. The

template map was compared to the Affymetrix results to refine it

and improve it through several iterations to obtain a final

template.

The resulting template map can be used to identify features on

the Affymetrix chip that correspond to genetic locations because a

match (or even a near match) to the template map is exceedingly

unlikely to occur by chance alone. The final version of the

template map consisted of 2,532 haplotype patterns out of a

possible 269 (<5.961020) combinations that could be obtained

from 69 ordered lines. Some recombination patterns that

theoretically exist in the mapping population were not observed

when two or more recombination events occurred between

observed haplotypes. These gaps were no larger than 2–5

recombination events between adjacent haplotypes in the

template. Because the total number of recombination events in

the template can be computed (1,936), the number of unobserved

patterns can likewise be computed (789). The failure to observe a

pattern in the template should not prevent the mapping of any

previously missing haplotypes that fall into the resulting gap. This

is because, even in the largest observed gap (which spans five

recombination events) the previously missing haplotype could

contain no more than two differences from one of the haplotypes

flanking the gap.

The genotype scores for all 2,389,589 features on the Affymetrix

chip (2,372,825 sunflower sequences and 16,773 random controls)

were compared to the genetic map template, and the most similar

template map position as well as the number of differences from

the most similar template position were determined for each

feature. The minimum number of mismatches to the template and

the number of lines scored (i.e., the amount of non-missing data)

were then compared to the threshold determined below to decide

whether or not a particular feature that could be placed on the

genetic map.

Identification of Loci That Could be Reliably Mapped
When testing millions of features simultaneously, as we have

done above, the informatics task becomes a question of separating

the subset of features that can be reliably mapped from the

majority of other features that are unmappable due to a lack of

differentiation between the parents, hybridization to multiple

copies resulting in overly complex segregation patterns, etc. We

thus sought to identify the characteristics of mappable features and

determine how they can be distinguished from those that primarily

produce statistical noise. To do this, we identified 6,984 SNPs

from the previously developed Illumina SNP (consensus) map that

could be mapped uniquely to a single position on one or more of

the component maps. A subset of 5,302 of these loci were targeted

by 8,326 probe sets (265,376 features total) in the Affymetrix chip

design, thereby providing us with a set of (mostly) single-copy loci

that were tested with both technologies and whose presumptive

map positions were previously known. In some instances, these

presumptive single-copy genes were targeted by multiple probe

sets because the initial assembly included data from multiple

species and divergent alleles were sometimes assembled into

separate unigenes. The best-fit map locations for all 265,376 of

these features were determined from the Affymetrix data and

compared to the Illumina results for these same genes. Instances in

which features mapped within 10 cM of the targeted Illumina

SNP were considered a match, while others were considered non-

matching. The extent of agreement between the Affymetrix and

Illumina data was computed as a function of the number of lines

scored (i.e., the amount of non-missing data) and the minimum

number of mismatches to the genetic map template.

Simulated Data
A simulation consisting of 1,400,000 randomly generated

segregation patterns using the average observed genotype

frequencies was compared to the map template to determine a

false discovery rate (i.e., the likelihood that a randomly generated

segregation pattern would match the template by chance) based on

number of lines scored and the number of mismatches to the

template. The threshold for ‘‘high quality’’ (i.e., reliably mappable)

data was set such that only 1% of the features below this threshold

would be expected to match the template by chance alone.

Ultra-Dense Genetic Map of Sunflower
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Results and Discussion

The Affymetrix GeneChip designed herein contains millions of

features corresponding to sunflower gene sequences. Because these

features were not specifically designed to target known polymor-

phisms, the vast majority were not expected to reliably differen-

tiate the parents of our mapping population. For the subset that

were different between the two parents of the mapping popula-

tions due to genetic polymorphisms and which corresponded to a

single genetic location, only a subset are expected to be able to be

scored reproducibly. The reproducibility of the scoring could be

affected by background hybridization, reduced but not eliminated

hybridization signal caused by the genetic polymorphism, and/or

the experimental variation resulting from assaying microscopic

quantities of DNA.

All 2,389,915 features on the chip were assigned a best-hit map

position based on similarity to segregation patterns used in the

construction of the template map. Features that were monomor-

phic or reflected complex multi-copy segregation patterns would

be expected to have fewer individuals that could be assigned

genotypes due to disagreement between the replicated chips and

should exhibit a low level of concordance with the template map

(i.e., no better than expected by chance). Conversely, features

corresponding to distinct sequences that segregated as individual

loci would be expected to have a much higher fraction of

individuals that could be assigned genotypes, and should match

the template map if scored correctly. Between these extremes are

features that may correspond to segregating polymorphisms but

which produce hybridization signals that are difficult to interpret.

For example, the polymorphic hybridization signal could be

superimposed on a higher level of background hybridization or the

polymorphism could produce only a slight change in hybridization

intensity.

The distribution of the number of plants scored for each feature

and the minimum number of differences versus the template is

shown in (Dataset S1). Only a small fraction of features (190 of

2,389,915 total) could be scored for all 69 plants with an exact

match to the template. Beyond these 190 features, the number of

plants that could be scored decreased (i.e., missing data increased)

and the number of differences versus the template increased. In

some cases, this was due to a lack of polymorphism accompanied

by stochastic variation. In other cases, the signal resulting from the

underlying genetic polymorphism, the strength of which varied

Figure 1. Comparison to published SNP map. Includes 11,750 loci on the Affymetrix map that matched by Blastn to sequences that mapped to
a single location on the sunflower consensus map [5]. 9,239 (78.6%) of these features mapped to syntenic locations between the two maps.
doi:10.1371/journal.pone.0051360.g001
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across features, was increasingly blurred by background noise

resulting in a gradient of detectability.

Approximately 11% (265,376) of the features on the Affymetrix

chip corresponded to sequences that had previously been mapped

as single copy genes in the sunflower consensus map [5], which

was constructed using an Illumina Infinium array targeting 9,480

individual SNPs [6]. The distribution of these features with regard

to number of plants scored and number of mismatches relative to

the template (Dataset S2) was similar to the overall distribution of

all features (Dataset S1). When the inferred map position of each

of these features was compared between the two technologies it

was found that less than 10% (25,938) mapped to the similar

locations (i.e., within 10 cM of each other on the same

chromosome in the corresponding maps). This subset of features

was clearly biased towards higher numbers of plants scored (i.e.,

less missing data) and fewer mismatches versus the template

(Dataset S3). Indeed, for cells in the lower left of the overall

distribution, anywhere from 70% to as high as 94% of the features

mapped to equivalent locations in the two maps. For features with

fewer plants scored and larger numbers of mismatches, only 2–3%

of the features mapped to the same location between the two

maps. Taken as a whole, the map positions of this latter set of

features appear to be essentially random relative to the true map

position based on the high quality Illumina data.

The frequency with which the Affymetrix and Illumina results

correspond increases along a gradient from the top right to the

bottom left of Dataset S4. Between the extremes there exists a

region where the Affymetrix features become increasingly difficult

to score and genetic map placement becomes less reliable. Based

on our simulations of 1,400,000 random loci (Datasets S4, S5), a

threshold that contained only 0.03% of the random data was set as

the cutoff for ‘‘high quality’’ data. This threshold is indicated by a

solid line in Datasets S2, S3, S4. There are 67,846 features beyond

this threshold in the full Affymetrix data set, while only ca. 700

features would be expected to fall beyond the threshold by chance.

We thus estimate that ca. 1% of the 67,846 features that lie beyond

the threshold are likely to be false positives (i.e., assigned to a map

position due to chance similarity between their observed

segregation pattern and the template map).

Figure 2. Comparison to published SNP map for linkage groups 1 and 2. Detailed comparison of map positions along linkage groups 1 and
2 based on 944 loci on the Affymetrix map that matched by Blastn to sequences that mapped to a single position on the sunflower consensus map
[5].
doi:10.1371/journal.pone.0051360.g002
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When this empirical threshold was applied to the features that

could be compared between the Affymetrix and Illumina maps,

11,750 of the 265,376 features fell beyond the threshold and are

thus considered to represent good data. Inspection of Figure 1

reveals that nearly 80% of these features mapped to syntenic

positions (i.e., on the same chromosome and within 10 cM of each

other) on the corresponding maps. While some of these loci do not

agree in position between the two datasets, some level of

disagreement is expected due to the highly duplicated nature of

the sunflower genome [16], and some duplicated genes may

appear single copy with the highly targeted Illumina detection

system. In fact, 12% of the SNPs on the earlier Illumina map were

found to map to different locations in different crosses despite

hybridizing to an identical probe targeting a single SNP. This

result is consistent with the existence of a substantial number of

relatively close paralogs within the sunflower genome. The ca.

20% of loci that disagree between the Illumina and Affymetrix

results is thus not surprising because the probes on the Affymetrix

map were matched to the original Illumina probe sequences via

BLAST as the best hits from the (different) 50,020 unigene

assembly used to construct the Illumina chip. As such, the true

match to the sequences on the Affymetrix chip may not have been

present in the EST assembly used on the Illumina chip. Rather, an

unknown number of these probes are likely to have been derived

from paralogous sequences. Interestingly, for features designed

from H. annuus sequences, 83% mapped to congruent positions in

the two studies. In contrast, of the features derived from sequences

of other Helianthus species, a lower fraction (64%) mapped to

congruent positions. This may be reflective of duplication events in

H. annuus that post-date the split from other Helianthus species, in

which case the ‘‘other species’’ sequences would be equally

diverged from the H. annuus copies.

At a more localized scale, the agreement between the Affymetrix

and Illumina data for this subset is not as precise as the global

comparison might indicate (Figure 2). As most of the features on the

Illumina map had missing data for several lines, individual features

within the same set often mapped 0–5 recombination units apart

when the crucial plants needed to precisely assign a locus to that

genetic bin were either missing or scored incorrectly. However, the

data were sufficient to place the loci in approximately the correct

genetic location. It is also worth noting that the Illumina consensus

map was based on the integration of four separate maps; as such,

there is an assumed level of local uncertainty when it comes to

ordering on this map, as well.

Out of 2,389,915 features on the Affymetrix chip 67,846

(2.39%) features could be mapped using the established criteria.

The success rate of probes designed from Helianthus annuus

sequences (singletons in the assembly) was slightly higher (8,806

out of 241,019 tested or 3.65%) than the probes designed from

multi-sequence (nearly all multi-species) contigs (34,256 out of

1,040,987 tested or 3.29%). Though these numbers appear

similar, the difference is highly significant (P,0.001) due to the

Table 1. Distribution of mapped features by G/C content.

# of G or C bases out of 25 All features % of features Mapped features % mapped

3 153 0.01% 0.00%

4 2984 0.12% 0.00%

5 12921 0.54% 3 0.02%

6 36344 1.52% 46 0.13%

7 82069 3.43% 479 0.58%

8 157852 6.60% 2450 1.55%

9 261201 10.93% 7213 2.76%

10 361241 15.12% 12908 3.57%

11 415719 17.39% 16058 3.86%

12 394558 16.51% 14311 3.63%

13 308368 12.90% 8878 2.88%

14 193965 8.12% 4082 2.10%

15 95584 4.00% 1138 1.19%

16 39363 1.65% 226 0.57%

17 15568 0.65% 45 0.29%

18 6187 0.26% 9 0.15%

19 2357 0.10% 0.00%

20 1318 0.06% 0.00%

21 850 0.04% 0.00%

22 622 0.03% 0.00%

23 412 0.02% 0.00%

24 270 0.01% 0.00%

25 9 0.00% 0.00%

Total 2389915 100.00% 67846 2.84%

The most frequent G/C content was 11 out of 25 bases; this was also the most likely category to produce mappable polymorphisms. With the exceptions of the
extremes of 3 and 25 G/C basepairs, where sufficient numbers were not tested, the success rate in finding mappable features for GC content other than 11/25 was
significantly lower than for 11/25 basepairs.
doi:10.1371/journal.pone.0051360.t001
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extremely large sample sizes. The probes designed from sequences

derived from singleton reads of other Helianthus species (24,774 out

of 1,067,409 or 2.32%) had the lowest success rate. Of the random

sequence controls, only 10 of 17,254 (0.06%) features mapped.

Interestingly, the GC content of the sequence features on the chip

was predictive of the success rate (P,0.001; Table 1). The highest

success rate (3.86%) occurred when 11 of the 25 nucleotides in the

sequence were G or C and success rates declined to less than half

of the maximum when less than 9 or more than 14 of the

nucleotides in the probe were G or C. Fortunately, the range of 9

to 14 C or G nucleotides represented the majority (81%) of the

features on the chip.

The 67,846 features that were successfully mapped came from

22,481 unigenes in the original assembly, with an average of just

over 3 mappable features per unigene (see Dataset S6 for a

compilation of the mapping results). The map covered all 17 linkage

groups without any large gaps, but marker density per cM was

highly variable (Figure 3). A similar pattern was observed by Bowers

et al. (2012) in this same mapping population. The regions of high

marker density presumably reflect regions with high gene density

and/or low recombination rates. For 19,733 of the 22,481 unigenes

(ca. 88%) there were multiple features mapped per unigene. In the

majority of these cases (13,660 of 19,733; ca. 70%), all features

mapped congruently (i.e., within 10 cM of each other on the same

linkage group). In the extreme, as many as 48 different features from

the same unigene mapped congruently. Of these 13,660 loci, 765

unigenes were mapped on the basis of 10 or more features. In ca.

12% of cases (2,748 of 19,733 unigenes) different features from the

same unigene mapped to more than one location. Of the unigenes

that mapped to multiple locations, the majority (2,479) mapped to

two locations, with 244 mapping to 3 locations, 23 mapping to 4

locations, and 2 mapping to 5 locations. Instances in which unigenes

mapped to more than one location could reflect genes that have

either moved with respect to their genomic position in RHA280

versus RHA801 or, perhaps more likely, they represent genes that

exist in multiple copies in one or both parental lines. In the latter

case, the presumption would be that a subset of features was

polymorphic in one paralog with a different subset being

polymorphic in one or more other paralogs. It is worth noting that

the frequency of unigenes with multiple map positions in this study

(ca. 12%) was similar to the frequency of SNP loci with multiple

map positions when comparing amongst different crosses in our

prior study using the Illumina platform (ca. 11%). Combined, these

two observations can be used to provide an estimate the frequency

of recently duplicated non-tandem gene sequences in sunflower of

around 11–12%.

Counting multiple features that were designed based on the

same unigene, and which mapped to the same location, the final

map contained a total of 25,526 loci from 22,481 unigenes. Due to

the multi-species nature of the sequence assembly used to design

the Affymetrix chip, some of the unigenes presumably came from

homologues of the same gene from different species (i.e., they

represent divergent alleles of the same gene) and the true number

of unique gene loci mapped is lower than this total, although how

much lower is difficult to ascertain based on existing information.

Remarkably, for the 67,846 features that were successfully

mapped, there was missing data for an average of 17 out of 69

lines (24.7%) and an average of 3.4 lines (4.9%) produced data that

did not agree with the template map and represent likely errors in

the raw data. This high level of missing and erroneous data all but

precluded map construction using more traditional methods. The

new approach described herein was especially necessary consid-

ering that the mappable polymorphisms were mixed with over 2

million additional features that were either monomorphic or

produced variation in hybridization intensity that could not be

reliably distinguished from background noise.

We have demonstrated the ability to successfully map a large

number of genetic loci even in the presence of relatively high error

rates in the raw data. We did this by establishing a template

representing most of the bins present on the true map using a

lower throughput but less error prone approach and then

matching observed segregation patterns to their best fitting

location on the template. By matching against pre-defined bins,

we were able to avoid the incorporation of errors such as

additional recombination events on the map, which would

dramatically inflate map distances and make them more reflective

of marker numbers than the true size of the underlying genetic

map. Our approach of rigorously filtering the data thus allowed us

to maintain map accuracy while taking advantage of a much

higher throughput (and lower cost per data point) genotyping

approach and minimizing computational intensity. Importantly,

this approach is robust to the relatively high error rates and

potentially high frequency of non-polymorphic assays that may

accompany such technologies.

Going forward, the resulting map has the potential to positively

impact multiple lines of sunflower research. While it could be

argued that the slight uncertainty regarding precise map locations

within this map will limit its utility for genome assembly, this is not

Figure 3. Marker density on genetic map. Marker density per cM
across all 17 sunflower linkage groups. Bars represent the number of
chip features mapped as SFPs using the Affymetrix technology.
doi:10.1371/journal.pone.0051360.g003
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necessarily the case. Indeed, assuming the availability of a good

scaffold-level assembly (with scaffolds spanning several megabases),

a relatively modest number of scaffolds needs to be assembled into

chromosomes to produce a genome-level assembly. Because

approximate map positions can be combined with synteny

information from other species, a physical map, and long insert

paired-end sequences to assemble a high quality genome [17], this

map represents a valuable resource for the eventual assembly of

the sunflower genome. Because it contains a substantial fraction of

all genes in the sunflower genome, this map will also serve as a

valuable tool for the identification of candidate genes underlying

QTL or traits that have been mapped in other studies.
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