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Abstract

Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational
problem in system biology. However, every existing inference algorithm from gene expression profiles has its own
advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high
enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation
model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value
decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all
candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to
infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The
proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in
networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs,
and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated
annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of
our algorithm, which outperforms significantly other previous algorithms.
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Introduction

With recent advances in large-scale gene sequencing technol-

ogy, especially mRNA [1] hybrid microarray, it has become

possible to study life phenomenon and essence in genome-scale

data. Much data can be used to calculate various complex

problems. And its possible to infer gene regulatory networks

(GRNs) [2] from various large-scale gene expression data. And the

study of reconstruction algorithms from large-scale gene expres-

sion profiles has become the research focus point in system

biology. To extract the topology of GRNs and gene regulation

relationships in GRNs is a computationally daunting task.

Recently, many current research efforts have focused on various

models of inferring GRNs from genome-wide scale gene

expression data. These inference models include Boolean network

model [3], Bayesian network model [4], neural network model [5],

Differential equation model (DEM) [6], and so on. In these

models, the most accuracy model is DEM. The data used for

DEM can be downloaded from GEO database [7].

But DEM typically requires a large amount of data to compute

the connected network, even the genomic-scales data. To

overcome the data shortage problem and computational ineffi-

ciency of DEM, two methods must be used in DEM procedure.

One is singular value decomposition (SVD) method [8] used to

construct a family of candidate solutions. The other is a novel

heuristic search algorithm gravitation field algorithm used to find

the optimal GRN structure.

SVD had been adopted to infer GRNs in some research, but

traditional SVD method can only provide one solution for GRN,

which may be not the best one in solution space. An improved

SVD should be used to get all legal candidate solutions, and

eliminate all illegal solutions. Other extra methods have to be

added in the SVD procedure, such as DEM and some heuristic

search algorithms to infer GRNs. The number of legal solutions

for SVD and DEM may be infinite. But the number of best

solutions may be only one or several. A suitable heuristic search

algorithm should be used for searching the best solutions. Genetic

algorithm (GA) [9], simulated annealing (SA) [10], particle swarm

optimization (PSO) [11] and other algorithms do not comply with

the reconstruction of GRNs algorithms. Because the connectivity

of GRNs is equal to squared nodes, a novel algorithm called

gravitation field algorithm (GFA) [12], which can resolve large-

scale computational problems, should be used in our work.

Characterized by stability, fast operation and efficiency for

simple object functions, GFA is suitable for inferring GRNs. But

GFA can only be used to analyze continuous data, two parts in
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GFA will be modified to resolve discrete data problem. The first

part was the dusts initialization in discrete solution space. The

other one is the movement operator which includes four steps to

move the dusts and search optimal solutions.

The proposed algorithm is validated on both the simulated

scale-free network and real benchmark gene regulatory network.

The simulated gene expression data were generated from scale-

free network. The real gene expression data were downloaded

from online database. 500 different runs were used in this paper.

And the results were compared with GA, SA, Bayesian model and

traditional DEM. The cross-validation results confirmed the

effectiveness of our algorithm, which outperforms significantly

other previous methods. Besides its high accuracy, the running-

time of our algorithm is also significantly quick.

Methods

Solution space determination with SVD
DEM can be defined as the gene expression change rate. The

gene expression derivative of any gene i at time t is shown as Eq.

(1):

dxi(t)

dt
~
XN

j~1

wijxj(t)zbi ð1Þ

In Eq. (1), wij is the weight value of influence from gene j to

gene i. All N | N weight values were the elements of the weight

matrix W. N is the number of nodes in the GRN. GRNs are

networks with directivity, so wij is not equal to wji. The meanings

of these two weight values are opposite. xi(t) represents the

expression of gene i at time t. bi is the expression of gene i, which is

the expression of gene i with no external interference.

The gene expressions of N genes and T times can be defined as

a matrix Eq. (2):

Figure 1. Flow chart of the algorithm.
doi:10.1371/journal.pone.0051141.g001

Figure 2. A typical scale-free figure generated by reconnected
algorithm.
doi:10.1371/journal.pone.0051141.g002
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In Eq. (2), xt
i represents the expression of gene i at time t.

According to Eq. (2), Eq. (1) can be deduced as Eq. (3):

dXN|T

dt
~WN|NXN|TzBN|T ð3Þ

The goal of every inference algorithm is to use the measured

data X, X
0

and B to deduce the connectivity weight value matrix

W. SVD method is used to decompose X into Eq. (4):

XN|T~UN|T AT|T (VT )T|T ð4Þ

In Eq. (4), both V and U are orthogonal matrices, and V and U

comply with Eq. (5):

UT U~U{1U~VT V~V{1V~E ð5Þ

In Eq. (5), E is an identity matrix, and the transpose matrices of

V and U are equal to the inverse matrices of V and U. Eq. (5) must

be in the generalized inverse matrix definition [13]. And matrix W

can be calculated from Eq. (3) as Eq. (6):

WN|T~(
dXN|T

dt
{BN|T )V{T A{1U{1 ð6Þ

Eq. (6) is one solution of GRN which is generated by SVD

method from gene expression data X. But this solution may be not

the best one in DEM. Further calculation in SVD method should

be done to get all legal solutions in linear algebra rules. Eq. (7)

calculated from Eq. (6) contains all solutions:

WN|T~(
dXN|T

dt
{BN|T )V{T A{1U{1zcU{1 ð7Þ

In Eq. (7), c is an arbitrary value. Eq. (7) is a general solution of

DEM with the special solution Eq. (6). In mathematics, Eq. (7)

reduces the solution space of DEM and generated all candidate

solutions. And optimization operation can be done in these

candidate solutions.

GRN optimization with improved gravitation field
algorithm

After all candidate solutions of DEM are calculated with SVD,

optimization within the value domain will begin. The criterion

energy function used to select the best GRN result in DEM is a key

problem. GFA was used to optimize the energy function in our

paper. GFA is derived from the point of the hypothesis theory

Solar Nebular Disk Model (SNDM) [14]. The algorithm goal is to

search the optimal solution of given function or problem. To start

with, all the solutions, which are the dusts in the algorithm model,

are initialized randomly, or based on the prior knowledge. Whats

more, we assign every dust (solution) a weight, we call it mass,

whose values are based on the mass function generated from the

criteria function. Finally, the power of the dust attraction, which

belongs to a certain dust and exists between every two dusts, pulls

other dusts to the dust. Hence, the dusts assemble together, and

the planets come out in the endthey are the optima. The

mathematical proof demonstrates that GFA could be convergent

in the global optimum by probability 1 in three conditions for one

Table 1. part of gene expression data of generated GRN.

Nodes Time0 Time0 Time0 Time0

Node0 0.329 0.135 0.358 0.251

Node1 0.934 0.439 0.314 0.900

Node2 0.911 0.708 0.627 0.600

Node3 0.501 0.595 0.530 0.527

doi:10.1371/journal.pone.0051141.t001

Figure 3. GRN of simulated data based on our algorithm.
doi:10.1371/journal.pone.0051141.g003

Table 2. The compared results table of reconstruction of GRN
with three algorithms.

algorithms PPV Se running time

GFA 0.329 0.735 2.58

GA 0.304 0.639 4.35

SA 0.286 0.595 12.90

Bayesian 0.237 0.489 3.57

DEM 0.316 0.617 4.69

doi:10.1371/journal.pone.0051141.t002
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independent variable mass functions [12]. Least squared function

shown as Eq. (8) is used as mass function in our work:

c~
Xn

i

Xt

k

r2
ik ð8Þ

In Eq. (8), c is the difference between the experiment observed

value and the algorithm calculated value. rik is the residues of

DEM. And it is defined as Eq. (9):

rik~x
0
i (t){

Xn

j

wijxj(t){bi ð9Þ

In Eq. (9), x
0

i(t) represents the gene expression derivative of gene

i at time t, which is shown as Eq. (10):

x
0
i (t)~xi(t){xi(t{1) ð10Þ

To search the minimum of Eq. (8), random weight value

matrices were used as dusts in GFA. The dimensionality of dusts is

the same as W. But the mass function value of one matrix is still a

scale value since Eq. (8) is an accumulation function. And this

value is used as the criterion of one dust is good or bad. The value

domain of each dimension is unconstrained. Actually, the absolute

value of each dimensional value will be less than 100 in most cases.

Every dimensionality is constrained in [2100, 100] in our work.

The algorithm flow is described as following:

(1) In N|T epochs, every element value of one dust is assigned

by a random value in [2100, 100].

(2) After N|T elements of one dust are randomly initialized, the

dust will be as the parameter of Eq. (7). If the constant c can

be calculated, the initialization will be completed. Otherwise,

the algorithm will go to (1), and the dust will be initialized

again.

(3) Repeat (1) and (2), until all dusts are initialized.

After three parts described above are calculated in GFA

initialization step, SVD results can be used as the solution space in

GFA. The running time of GFA will be reduced, and the

operating efficiency will be also improved.

The random strategy was used in the division part, because the

form of dusts was more complex, and the average strategy [12]

was not suitable in the GRN inference algorithm. After division,

the centre dust which has the optimal (minimum or maximum)

mass value in its own group was selected. The movement

operation is special, and the procedure is described above:

(1) N|T corresponding elements-pairs between the centre dust

and the selected surrounding dust are compared. If the

surrounding dust elements are not equal to the centre dust

elements, the element values of the surrounding dust will

move to the element values of the centre dust. Many methods

can be used as movement strategies, such as constant length

movement and variable length movement [12].

(2) After N|T comparisons and movements, the new dust will

be as the parameter of Eq. (7) to verify the new dust is legal or

not. If the constant c can be calculated, the algorithm goes to

(4), otherwise the algorithm goes to (3).

(3) The movement pace will be decreased to a half or one third of

original pace value. If P (P is a constant number) times

movements later, the suitable movement pace is still not found

in the algorithm, the surrounding dust will be deleted and

absorbed.

(4) If the mass value of the new dust is optimized better than the

mass value of the centre dust. The new dust will replace the

original centre dust, and the original centre dust will be one

surrounding dust. And a new movement procedure will begin

again between the centre dust and all surrounding dusts in

one group.

The method that the surrounding dusts will be deleted directly

can be used as the absorption strategy. In the weight value matrix,

negative values represent inhibition which is negative regulation.

And positive values represent activation which is positive

regulation.

In the procedure of GRN reconstruction, the algorithm task is

to find a suitable fully connected network. And the self-regulation

is also considered in the algorithm. Actually, GRN is not a fully

connected network structure, but a sparse structure. There are

many methods to resolve this problem. The easiest but efficiency

method is threshold interception method. A threshold, such as 0.5,

is used to determine the influence link is existed or not. If the

Figure 4. GRN of a part of GDS38 data based on our algorithm.
doi:10.1371/journal.pone.0051141.g004

Table 3. The compared results table of reconstruction of
GDS38 GRN with three algorithms.

algorithms PPV Se running time

GFA 0.286 0.658 2.36

GA 0.238 0.628 4.28

SA 0.196 0.576 11.20

Bayesian 0.229 0.483 3.57

DEM 0.307 0.594 4.69

doi:10.1371/journal.pone.0051141.t003
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absolute value of the weight value is less than 0.5, the link will be

deleted. Otherwise the link is existed.

We use SVD to reduce the solution space, GFA to optimize the

network structure, DE to deduce the influence relationship in each

genes-pair. The whole flow chart of the proposed algorithm is

shown as Fig. 1.

Results

The proposed algorithm is validated on both a simulated scale-

free network and a real benchmark gene regulatory network. Both

genetic algorithm and simulated annealing were also used to

calculate and compare with the proposed algorithm.

Simulated data experiment
First of all, simulated data were used to verify the proposed

inference algorithm. The simulated data were generated with the

reconnection algorithm [6]. The gene regulatory scale-free

network [15] were generated firstly. The regulatory node of the

new added node will be reselected according to the reconnection

method. The probability of reconnection depends on power-law

distribution model parameters. Then reverse DEM method was

used to get the corresponding gene expression data. In the

simulated scale-free network, the amount of control nodes is

limited. The links of any node will be in the power-law

distribution. A typical generated scale-free network is shown as

Fig. 2.

In Fig. 2, rectangle nodes represent GRN regulatory nodes,

empty circle nodes represent self-regulatory nodes, the only one

filled circle node represents node 0. And the nodes counterclock-

wise from node 0 are node 1, 2, until node 19. The corresponding

gene expression data were generated, and parts of the data were

shown as Table 1.

When generating data, a random perturbation value generated

from uniform distribution was added to the DE solutions to make

special different expression value. The gene expression data like

Table 1 were analyzed by the algorithm proposed in this paper,

and used for inferring GRN. Finally, weight value matrix W was

generated and the GRN was shown through free software

Cytoscape [16] as Fig. 3. In Fig. 3, arrow lines represented the

influence relationship. In Cytoscape, the Circle topology algorithm

[17] was used to layout these nodes, so the nodes sequence were

changed, but the accuracy and the running time of the algorithm

would be not changed.

In order to validate our algorithm and compare the efficiency of

GFA in GRN reconstruction algorithm, positive predictive value

(PPV) and Sensitivity (Se) function were used as the criteria

defined by Eq. (11) and Eq. (12):

PPV~
TP

TPzFP
ð11Þ

Se~
TP

TPzFN
ð12Þ

In Eq. (11) and Eq. (12), TP = True Positive, which represents

that the calculated results were true, and the real experimental

results were also true. FP = False Positive, which represents that

the calculated results were false, but the real experimental results

were true. FN = False Negative, which represents that the

calculated results were true, but the real experimental results

were false. From these two function, we can see that, PPV and Se

is bigger, the efficiency of the algorithm is higher. And running

time of the algorithm is also used as criterion for efficiency. One

our algorithm result was shown as Fig. 3.

GFA, GA and SA were used in the GRN reconstruction

algorithm. All these three optimal methods were based on both

DEM and SVD, and the optimal algorithms were used to search

the best GRN. Besides this comparison, Bayesian network and

tradition DEM were also used to test our algorithm. All GRN

results were calculated and summarized. 500 different runs were

measured, and different results were average and shown as

Table 2.

In Table 3, the unit of running time is second. From this table,

we can conclude that PPV and Se of GFA had more some

advantages than other two optimal algorithms. And the running

time is shorter than GA and SA. That is, the efficiency of GFA is

higher. GA is good also. SA is the worst; especial the running time

of SA is too long.

The running-time of Bayesian algorithm is less than the

traditional DEM, but PPV and Se of Bayesian is less than the

traditional DEM. Our algorithm, which is GFA, is better than

both Bayesian and traditional DEM in PPV, Se and running-time

criteria.

Real data experiment
Besides the simulated data experiment, real data experiment

was also used to identify how well it works in constructing

regulatory networks. In this part, the well-known yeast (Saccha-

romyces cerevisiae) cell cycle microarray time series dataset [18]

were used. The data can be downloaded from GEO database [7],

and the series number is GDS38. GDS38 consists of three sub-sets

measured using different cells synchronization methods. As others

did, only a part of the yeast cell cycle pathway was selected in

KEGG to test the proposed algorithm. The corresponding GRN

figure can be seen from KEGG database [19]. This selected sub-

network contains 16 genes, and the result was shown with

Cytoscape as Fig. 4.

Fig. 4 is the GRN reconstruction result of 16 genes calculated by

GFA. To get the statistical results, 500 different runs with GFA,

GA, SA, Bayesian and traditional DEM were measured and

summarized. Assuming that this GRN in KEGG reflects biological

reality, we can count the number of TP, FP and FN and calculate

PPV and Se as it is done for artificial systems. The results were

shown as Table 3.

From Table 3, we conclude that the proposed algorithm

outperforms Bayesian and traditional DEM. And GFA is better

than both GA and SA. But accuracy of the real data is lower than

the simulated data, because the interference of simulated data is

less than the real data. But the compared results were also proved

that the proposed algorithm is better than others in PPV and Se

criteria.

In one word, GFA will be a key in the GRN reconstruction

algorithm. The running time is less, and the accuracy is higher.

Discussion

To improve the accuracy and reduce the running-time of GRN

reconstruction algorithm, a novel algorithm for inferring GRNs

from gene expression data was proposed and used in this work. In

this algorithm, two methods were taken into account in the

procedure. Before reconstructing operation, singular value de-

composition method was used to construct the algorithm solution

space. In the generated family of candidate solutions, gravitation

field algorithm was modified for inferring gene regulatory network,

Infer Gene Regulatory Networks
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and used to optimize the criteria of differential equation model

and find a best network structure result.

In the experiments, both the cross-validation results and

comparison results for reconstruction of GRN demonstrate the

effectiveness and efficiency of our algorithm. Besides its high

accuracy, the running-time of our algorithm is also significantly

quick.
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