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Abstract

Tylophorine analogs exhibit a broad range of pharmacological activities, including anti-cancer, anti-inflammatory, anti-
autoimmune, and anti-virus effects. Structure-activity relationship study of different structure tylophorine analogs can
provide further understanding of their biological activity. Modifications on the E ring of the quinolizidine moiety of
cryptopleurine analogs changed the potency and the selective inhibitory effect on NF-kB, AP-1, and CRE signaling
pathways. Functional cryptopleurine analogs showed potent inhibition of NF-kB signaling pathway in both HepG2 and HEK-
293 cell lines. The E ring structure analogs also differed in suppression of protein translation, and expression of cyclin D1.
Our results showed that DCB-3503 or Rac-cryptopleurine could be a scaffold for modification to yield compounds with
different mechanisms of action.

Citation: Wang Y, Wong H-C, Gullen EA, Lam W, Yang X, et al. (2012) Cryptopleurine Analogs with Modification of E Ring Exhibit Different Mechanism to Rac-
Cryptopleurine and Tylophorine. PLoS ONE 7(12): e51138. doi:10.1371/journal.pone.0051138

Editor: Michael M. Meijler, Ben-Gurion University of the Negev, United States of America

Received May 30, 2012; Accepted October 29, 2012; Published December 10, 2012

Copyright: � 2012 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank Dr. David C. Baker for providing the compound DCB-3503. They thank Dr. Susan L. Morris-Natschke and Eileen Belding for proof
reading of the manuscript. Yung-Chi Cheng is a fellow of the National Foundation for Cancer Research. Hui-Chyn Wong is partially supported by the National
Science Fellowship (NSF) awarded by the Ministry of Science, Technology and Innovation of Malaysia (MOSTI) foundation. This work was supported by grants PO1
CA-154295 funded by National Cancer Institute of National Institute of Health of USA (YCC) and RO1 CA-17625-32 funded by National Institute of Health of USA
(KHL). This study was also supported in part by the Taiwan Department of Health, China Medical University Hospital Cancer Research Center of Excellence
(DOH100-TD-C-111-005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yccheng@yale.edu (YCC); khlee@unc.edu (KHL)

Introduction

Tylophorine alkaloids are natural products originally identified

in the Asclepiadaceae and Moracea family. Their claimed medical uses

include the treatment of cancer, lupus, and inflammation

[1,2,3,4,5,6]. NCI’s COMPARE program indicated that their

activity was distinct from other known anticancer compounds,

suggesting that this group of analogs have a novel mode of action

that is different from current chemotherapeutic compounds [1].

Tylophorine alkaloids, such as DCB-3500, DCB-3503, or Rac-

cryptopleurine (chemical structures shown in Fig. 1), inhibit

synthesis of protein, DNA, and RNA. DCB-3503 preferentially

downregulated express of proteins with short a half-life, e.g. cyclin

D1 [7,8]. They exhibit inhibitory effect on NF-kB signaling

pathway, but are less potent against activator protein-1 (AP-1), and

cyclic AMP response elements (CREs) signaling pathways [1,7,9].

Tylophorine analog DCB-3503 but not DCB-3500 is active

against HepG2 and PANC-1 xenografts in nude mice [1,2],

suggesting that the R14 hydroxyl group is important for in vivo

activity.

Due to the diverse and potent pharmacological activities of

tylophorine analogs, many groups including ours synthesize and

modify different tylophorine alkaloids analogs and study their

structure-activity relationship (SAR). This group of compounds

shares a common pentacyclic structure with the phenanthrene ring

conjugated with the indolizidine (five-member E ring) or

quinolizidine (six-member E ring) moiety. Previous SAR study

has found that cryptopleurine analogs with quinolizidine moiety

(Fig. 1) were more active than analogs with indolizidine moiety

against several cancer cell lines and NF-kB signaling pathway

in vitro [9]. In the present study, we further evaluated SAR of a

series of newly synthesized cryptopleurine analogs with modifica-

tions especially on the quinolizidine moiety.

Results and Discussion

Our previous work demonstrated that Rac-cryptopleurine with

the quinolizidine moiety (six-member E ring) is about 5 to 10

fold more potent than analogs with the indolizidine moiety (five-

member E ring) (DCB-3500 and DCB-3503) [9]. In the current

study, we analyzed the SAR of eleven cryptopleurine analogs

with modifications especially on the quinolizidine moiety. These

cryptopleurine analogs were previously reported by Dr. KH

Lee’s laboratory [10,11]. The hydroxylated analogs (YXM-109, -

110, -139, and -140) are recently synthesized [12].

The cytotoxicity of these compounds against human hepatoma

cell lines (HepG2 and Huh-7) is shown in Table 1 (The dose-cell

viability curves used to obtain the IC50 value is shown in Figure
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S1a and S1b). These compounds showed different selectivity

against HepG2 and Huh-7 cell lines, suggesting that the

mechanisms of action of different analogs could be cell-type

specific. Structurally, YXM-109, 110, 139, and 140 differ only in

the chirality and position of hydroxyl (-OH) group. The addition

of a (R)-hydroxyl group on the R13 position (YXM-110) decreased

the cytotoxicity to about seven fold in HepG2 cells and three fold

in Huh-7 cells compared to Rac-cryptopleurine. The addition of

an (S)-hydroxyl group on the R13 position (YXM-109) further

decreased the cytotoxicity in both cells lines. YXM-140 with an

(R)-hydroxyl group on the R12 position showed similar cytotoxic

potencies compared to YXM-109. However, the addition of an

(S)-hydroxyl group on the R12 position (YXM-139) resulted in loss

of potency against the tested cancer cell lines. Modifications on the

E-ring quinolizidine moiety, including substitution of carbon by

nitrogen or oxygen (YXM-66, 82, 93, and 101), replacing the six-

membered E-ring with a seven-membered E-ring (YXM-83) or

with a five-membered N-cyclopropylpyrrolidinyl E-ring (YXM-

93), caused the loss of cytotoxicity towards HepG2 and Huh-7 cell

lines. Together with our previous report, these newly synthesized

compounds showed similar spectrum of potency against A549,

DU145, KB, KBvin, SKBR3 cell lines to HepG2 and Huh 7 cell

lines as we reported in the present study [12]. The more potent

cryptopleurine analogs (Rac-cryptopleurine, YXM-109, YXM-

110, and YXM-140) exhibited moderate selectivity (nM IC50)

against KB, KBvin, and Huh 7 cell line. These results provided

important information that the structure requirements for the most

potent cytotoxic analogs for different cell lines appear to be the

same.

NF-kB plays important role in controlling inflammation, cancer

cell survival and death, and formation of chemoresistance [10,11].

Regulation of transcription factors including AP-1 and CRE

governs key steps in controlling cell proliferation, inflammation,

and apoptosis [13,14]. Those three signal transduction pathways

also interplayed among themselves. Inhibition of NF-kB signaling

pathway is involved in the inhibition of cancer cell growth and

suppression of inflammatory diseases in DCB-3503-treated mice

model [2,5,13,15]. DCB-3503, Rac-cryptopleurine, and their

functional analogs preferentially inhibited NF-kB to AP-1, and

CRE signaling pathways in HepG2 cell line [1,7,9]; therefore, we

determined the activities of these eleven new cryptopleurine

analogs to the above three signaling pathways in HepG2 and

HEK-293 cell lines (The dose-luciferase activity curves used to

obtain the IC50 value is shown in Figure S2a-S3c for HepG2 cells

and S3a-S3c for HEK-293 cells). Results in Table 2 obtained from

HepG2 cells showed that DCB-3503 and Rac-cryptopleurine

preferentially inhibited NF-kB signaling pathway. YXM-140 had

similar pattern of selectivity. YXM-109 and 110 had almost equal

potency against NF-kB and AP-1 signaling pathways. YXM-139

with a R12-(S)-OH substitution showed at least 1000-fold less

potent than its R13 -OH isomers (YXM-109, -110) and R12

enantioisomer (YXM-140). YXM-142 exhibited about 3-fold more

potent against AP-1 than against NF-kB signaling pathway. YXM-

93 and -139 inhibited CRE pathway preferentially in HepG2 cells.

While YXM-66, 82, 83, and 101 exhibited almost equal activities

Figure 1. The chemical structures of DCB-3503 and Rac-cryptopleurine.
doi:10.1371/journal.pone.0051138.g001

Table 1. The IC50 of tylophora alkaloids analogs on the
growth inhibition of HepG2 and Huh 7 cells.

HepG2 IC50
a (nM) Huh-7 IC50

a (nM)

DCB-3503 91.0611.2 b 91.7628.9

Rac-cryptopleurine 6.361.2 b 2.060.1

YXM-109 134.0628.0 42.0632.0

YXM-110 49.0615.0 5.064.1

YXM-140 258.0670.0 21.368.8

HepG2 IC50
a (mM) Huh-7 IC50

a (mM)

YXM-66 1.460.2 1.160.1

YXM-82 1.160.2 1.060.2

YXM-83 2.760.2 0.360.2

YXM-93 0.8260.13 1.260.2

YXM-101 2.460.4 4.060.3

YXM-139 1.660.2 3.7560.3

YXM-142 4.060.2 1.060.2

The IC50 of these compounds are significantly different (p,0.05) from each
other in different magnitude (nM vs mM); while compounds with the same
magnitude (nM vs nM and mM vs mM) are not significantly different from each
other (ANOVA analysis). a Values are means 6 SD of at least three experiments,
with each data point done in triplicate. b published.
doi:10.1371/journal.pone.0051138.t001
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to the three tested signaling pathways in HepG2 cells. Compar-

atively in HEK-293 cell lines (Table 2), Rac-cryptopleurine,

YXM-109, 110, 140, and 82 showed potent inhibition on both

NF-kB and AP-1 signaling pathways. The selectivity of YXM-93

and YXM-66 changed to AP-1 pathway. YXM-139 was active

against both AP-1 and CRE signaling pathway. Despite the

switches of selectivity against different signaling pathways of those

less potent cryptopleurine analogs (YXM-66, 82, 93, 101, 139,

142), the sensitivity of more potent analogs (DCB-3503, Rac-

cryptopleruine, YXM-83, 142, and 101) against NF-kB signaling

pathway did not change in both HepG2 and HEK-293 cell lines.

This result suggests that inhibition of NF-kB rather than AP-1 and

CRE signaling pathway could be one of the key factors related to

the potency of cryptopleurine analogs.

Activation of NF-kB will induce the expression of Cox 2 [16]

and iNOS [17], we then analyzed the effect of the treatment of

cryptopleurine analogs on these two NF-kB pathway downstream

targets by Western blot. Cryptopleurine analogs down-regulated

the expression of both Cox 2 and iNOS in HepG2 cells at their

IC50 concentration against NF-kB pathway (Fig. 2). This

confirmed the inhibition of NF-kB pathway by cryptopleurine

analogs. These results showed that modifications on the E-ring of

cryptopleurine analogs are directly related to their selectivity

against NF-kB, AP-1, and CRE signaling pathways in HepG2 cell

line. Structural analogs can not only lead to altered potency [9],

but also change mechanisms of action.

DCB-3503 suppressed the expression of cellular proteins with a

short half-life, for instance cyclin D1 and p53 [8]. Therefore, we

examined the effect of the treatment of functional crytopleurine

analogs on the expression of cyclin D1. Figure 3 showed that the

treatment of Rac-cryptopleurine, and DCB-3503 with about three

times IC50 concentration decreased more than 70% of cyclin D1

expression. The treatment of YXM-109, -110, and -140 also

showed more than 50% inhibitory effect on cyclin D1 expression

at their IC50 concentration in HepG2 cells (Fig. 3). However, the

treatment of YXM-139 did not change cyclin D1 expression level

at its IC50 concentration (Fig. 3).

We previously demonstrated that DCB-3503 inhibited protein

synthesis at the elongation step of translation, which could be the

basis of inhibiting cell growth and TNF/NF-kB pathway [8]. The

effect of some cryptopleurine analogs on synthesis of cellular

proteins was examined. Figure 4 showed that DCB-3503, Rac-

cryptopleurine, YXM-109, 110, and 140 inhibited incorporation

of [35S]-methionine/cysteine into newly synthesized proteins after

treatment for 4 hours at their IC50 concentration. However, the

Table 2. The IC50 of the inhibitory effect of tylophora alkaloids on NF-kB, AP-1, and CRE signalging pathways in HepG2 and HEK-
293 cells.

NF-kB IC50 (nM) AP-1 IC50 (nM) CRE IC50 (nM)

HepG2 HEK-293 HepG2 HEK-293 HepG2 HEK-293

DCB-3503 85.067.1 a 37.6619.7 15006330 a 12562.5 10676231 a 18156970

Rac-cryptopleurine 1.560.28 a 7.161.3 15.060.14 a 8.863.0 30.060.58 a 24.2610.6

YXM-109 10.060.11 22.269.6 20.060.17 18.661.1 30006503 845062190

YXM-110 10.060.12 20.261.5 15.060.14 5.662.0 500670 4606230

YXM-140 15.060.14 22.467.9 41.2618.0 16.762.6 15006120 22006280

YXM-142 153.564.9 425677 50.060.2 60.161.5 30.060.17mM 3.961.4 mM

NF-kB IC50 (mM) AP-1 IC50 (mM) CRE IC50 (mM)

HepG2 HEK-293 HepG2 HEK-293 HepG2 HEK-293

YXM-66 .30.0 33.5613.4 .30.0 5.461.2 .30.0 .30.0

YXM-82 15.060.32 1.160.6 5.060.85 0.6260.03 .30.0 .30.0

YXM-83 3.060.1 5.060.4 1.560.85 5.860.7 1.560.14 3.160.8

YXM-93 15.060.71 26.368.2 15.060.67 1.9560.7 1.060.13 .30.0

YXM-101 .30.0 120.0614.1 .30.0 30.060.1 .30.0 .30.0

YXM-139 .30.0 79.4615.2 .30.0 12.063.9 3.060.64 7.362.4

Values are means 6 SD of at least three experiments, with each data point done in triplicate. The IC50 concentrations of these compounds are significantly different
(p,0.05) from each other in between nM and mM concentrations; while compounds with the same concentration level (nM vs nM and mM vs mM) are not significantly
different (ANOVA analysis). a published.
doi:10.1371/journal.pone.0051138.t002

Figure 2. Crytopleurine analogs inhibited Cox 2 and iNOS
expression. HepG2 cells were treated with crytopleurine analogs and
DCB-3503 with the dosage as indicated in the figure for 4 hours. Protein
level of Cox 2 and iNOS was analyzed by Western blot. Results were
representative of three independent experiments.
doi:10.1371/journal.pone.0051138.g002
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treatment of YXM-139 did not show similar inhibition effect on

protein synthesis under the same conditions.

The effect of cryptopleurine analogs on protein translation was

examined by capped luciferase mRNA with T3 promoter and poly

(A) tail in Retic lysate in vitro translation system. DCB-3503 and

Rac-cryptopleurine inhibited about 50% of translation of lucifer-

ase mRNA at 250 nM and 500 nM, respectively (Fig. 5). YXM-

109 and 110 has significantly inhibitory effect on luciferase mRNA

translation at 250 nM (p,0.05); however, YXM-139 and 140 did

not inhibit translation under the same condition at 500 nM and

250 nM, respectively (Fig. 5). This suggested that modifications of

the E ring not only altered cytotoxicity, but also changed their

activity against protein translation.

Conclusion
Tylophorine analogs with introduction of different moieties (e.g.

N or O) in the E-ring have less potency against the growth of

HepG2 and Huh-7 cell lines, and some of those are no longer

functional analogs. Introduction of the hydroxyl group into the E-

ring altered the cytotoxicity of cryptopleurine ananlogs, and the

chirality of the hydroxyl group is critical determination factor in

the cytotoxicity. Cryptopleurine analogs with 6-member E-ring

are more potent than 7-member E-ring analogs (Fig. 6 for results

of HepG2 cells and Fig. S4 for results of HEK-293 cells). Together

with results from our previous SAR studies [9], we propose the

following order of potency in terms of NF-kB inhibition and

cytotoxicity: six member E-ring with R14a-(R)-hydrogen.five

member E-ring with R13a-(R)-hydrogen.five member E-ring

with R13a-(S)-hydrogen..six member E-ring with R14a-(R)-

hydrogen. The results we obtained suggest that the E ring size may

be a critical determination factor for the interaction of crypto-

pleurine analogs to their molecular targets, and molecular target of

cryptopleurine analogs may not be identical. Changing structure

of compound may not only be reflected in potency, but also

determined the mode of action. Since the biochemical determi-

nants of the primary target(s) of these compounds may vary, the

selectivity against different signaling pathways could be cell type

specific. This was demonstrated by the comparative study of

HepG2 and HEK-293 cell lines. Their potency against HepG2

cell growth correlates well with the inhibitory activity against

Figure 3. Functional crytopleurine analogs inhibited cyclin D1 expression. HepG2 cells were treated with crytopleurine analogs and DCB-
3503 with the dosage as indicated in the figure for 2 and 4 hours. Cyclin D1 protein level was analyzed by Western blot. The band intensity of Cyclin
D1 on Western blot was normalized with that of b-actin by densitometer scanning, and presented as a chart below. Results were mean 6 SD from
three independent experiments.
doi:10.1371/journal.pone.0051138.g003

Figure 4. Effect of cryptopleurine analogs treatment for 4 hours on protein synthesis profile assessed by [35S]-methionine/cysteine
incorporation in HepG2 cells. The incorporation of [35S]-methionine/cysteine was measure by scintillation counter, and presented as percentage
to untreated control cells. (**, p,0.01; *, p,0.05).
doi:10.1371/journal.pone.0051138.g004
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protein synthesis and TNF/NF-kB pathway. Tylophorine or Rac-

cryptopleurine could be a good scaffold for synthesis of biological

active compound with diverse action. We are in the process of

evaluating the in vivo antitumor activity of selected cryptopleurine

analogs with R15 hydroxyl group.

Figure 5. Cryptopleurine analogs inhibited luciferase translation in Retic lysate IVT system. Results were mean 6 SD from three
independent experiments. (**, p,0.01; *, p,0.05).
doi:10.1371/journal.pone.0051138.g005

Figure 6. Schematic description of the SAR of cryptopleurine analogs with modification on the E-ring in HepG2 cell line.
doi:10.1371/journal.pone.0051138.g006
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Materials and Methods

Materials
DCB-3503 (NSC-716802) was synthesized in Dr. D. C. Baker’s

laboratory (The University of Tennessee, TN). Crytopleurine

analogs were synthesized in Dr. K. H. Lee’s laboratory (University

of North Carolina, NC). Cell culture media, fetal bovine serum

(FBS) were purchased from Invitrogen (Carlsbad, CA). All

chemicals except otherwise noted were purchased from Sigma-

Aldrich (St. Louis, MO).

Cell Lines and Growth Conditions
Cell lines were obtained from the American Type Culture

Collection (ATCC). HepG2 cells were maintained in RPMI 1640

medium supplemented with 10% FBS. HepG2 stable cell lines

harboring NF-kB, AP-1, CRE response elements in pGL4 vector

(Promega) were maintained in the presence of 0.8 mg/ml G418.

Huh-7 and HEK-293 cells were maintained in DMEM containing

4.5 g/l glucose supplemented with 10% FBS. All cell lines were

maintained in a humidified incubator with an atmosphere of 95%

air and 5% CO2 at 37uC.

Cytotoxicity Assay
Ten thousands cells/well were plated in 24-well plates. After

overnight incubation, cells were treated with drugs for 72 hours.

Cells were fixed and stained with 0.5% methylene blue in 50%

ethanol for 2 hours at room temperature, followed by washing

with tap water to remove excess color. Plates were dried and then

resuspended in 1% sarkosyl and incubate for 3 hours at room

temperature. Cell growth was quantitated based on the amount of

methylene blue adsorbed into cellular proteins measured by

spectrophotometer (Molecular Devices) at 595 nm. IC50 was

defined as the concentration of drug that inhibited cell growth by

50% after continuous drug exposure for 72 hours [1].

Signaling Pathway Reporter Assay
HepG2 and HEK-293 cell lines stably harboring NF-kB, AP-1,

and CRE response elements in pGL4.0 luciferase vector (Promega)

were used for the signaling pathway reporter assay [1]. Cells were

treated with 50 ng/ml TNF-a to stimulate NF-kB signaling

pathway, 10 ng/ml TPA to stimulate AP-1, and 1 mM forskolin to

stimulate CRE signaling pathway for 1 hour priory to addition of

compounds for another 4 hours. Medium was removed at the end

of the treatment, and cell extracts were prepared and luciferase

activity was measured by Luciferase assay kit (Promega) according

to the manufacturer’s instructions. IC50 was defined as the

concentration of drug that inhibited stimulator-triggered luciferase

reporter activation by 50% after continuous drug exposure for 4

hours.

Western Blot Analysis
Western blot analysis was done using primary antibodies against

Cox 2 (Cell Signaling Technology), iNOS (Abcam), cyclin D1

(Santa Cruz Biotechnology), and b-actin (Sigma-Aldrich) at

optimal dilution [8].

[35S]-amino Acid Mixture Incorporation Assay
The incorporation assay was done followed by the protocol

described previously [8]. In brief, HepG2 cells treated with drugs

were labeled with 50 mCi/ml [35S]-methionine/cysteine (Perki-

nElmer) for 30 minutes before harvest. Incorporation of [35S]-

methionine/cysteine was determined by scintillation counter.

In vitro Transcription
The detailed protocol for in vitro transcription was reported

previously [8]. Luciferase encoding plasmid T3 luciferase was

linearized by BamHI, and was used as the template for in vitro

transcription. Capped luciferase mRNA was generated by

mMESSAGE mMACHINE high yield capped RNA transcription

kit containing T3 RNA polymerase (Ambion). The in vitro

transcribed mRNAs were purified by MEGAclear kit (Ambion);

and the integrity of mRNA was examined by Bioanalyzer (Agilent

Technologies, Santa Clara, CA). The purified mRNAs were used

for in vitro translation experiments.

In vitro Translation
In vitro translation was performed by Retic Lysate IVTTM

(Ambion) as described previously [8]. The in vitro translation

mixtures containing 50 ng/ml T3 luciferase mRNA was incubated

for 90 minutes at 30uC. Translation products of T3 luciferase were

measured by luciferase assay.

Statistical Analysis
Data were analyzed by ANOVA and the Bonferroni multiple

comparision test by GraphPad Prism 5 software. The difference

was considered to be statistically significant when p,0.05.

Supporting Information

Figure S1 Dose-cell viability curves for DCB-3503 and

cryptopleurine analogs in HepG2 (a) and Huh-7 (b) cell lines.

Graphs were simplified by showing the mean value from three

independent experiments.

(TIF)

Figure S2 Dose-luciferase activity curves for DCB-3503 and

cryptopleurine analogs against NF-kB (a), AP-1 (b), and CRE (c)

signaling pathways in HepG2 cell line. Graphs were simplified by

showing the mean value from three independent experiments.

(TIF)

Figure S3 Dose-luciferase activity curves for DCB-3503 and

cryptopleurine analogs against NF-kB (a), AP-1 (b), and CRE (c)

signaling pathways in HEK-293 cell line. Graphs were simplified

by showing the mean value from three independent experiments.

(TIF)

Figure S4 Schematic description of the SAR of crypto-
pleurine analogs with modification on the E-ring in
HEK-293 cell line.

(TIFF)
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