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Abstract

Cigarette smoking is a common addiction that increases the risk for many diseases, including lung cancer and chronic
obstructive pulmonary disease. Genome-wide association studies (GWAS) have successfully identified and validated several
susceptibility loci for nicotine consumption and dependence. However, the trait variance explained by these genes is only a
small fraction of the estimated genetic risk. Pathway analysis complements single marker methods by including biological
knowledge into the evaluation of GWAS, under the assumption that causal variants lie in functionally related genes,
enabling the evaluation of a broad range of signals. Our approach to the identification of pathways enriched for multiple
genes associated with smoking quantity includes the analysis of two studies and the replication of common findings in a
third dataset. This study identified pathways for the cholinergic receptors, which included SNPs known to be genome-wide
significant; as well as novel pathways, such as genes involved in the sensory perception of smell, that do not contain any
single SNP that achieves that stringent threshold.
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Introduction

Cigarette smoking is a common habit that has detrimental

effects on physical health including an increased risk of heart

disease, cancer, stroke, and chronic lung disease. In the United

States, cigarette smoking is the leading cause of morbidity and

mortality; accounting for 30% of all cancer deaths and 80% of

deaths from chronic obstructive pulmonary disease [1]. Although

tobacco smoking is a complex multidimensional behavior,

research has highlighted smoking quantity, usually evaluated by

cigarettes per day (CPD), as a predictor of nicotine dependence

[2].

Epidemiological studies have demonstrated that both environ-

mental and genetic factors are associated with different dimensions

of smoking behavior [3]. The heritability of smoking quantity is

estimated to be between 0.49 and 0.56 [4], and different GWAS

have identified and replicated signals within the nicotinic

acetylcholine receptor genes on chromosome 15q25 (CHRNA5-

A3-B4) [5–10] and chromosome 8p11 (CHRNB3-A6) [8,9], as well

as nicotine metabolizing genes on chromosome 19q13 (CYP2A6-

B6) [9,10];. Each of these variants explains 0.5,1.9% of the

phenotypic variance for subjects of European ancestry (EA)

[10,11]. Additional meta-analysis efforts [7] have been carried

out to identify more loci, presumably with smaller effect and only

detectable by the power gained by a larger number of samples.

The most encouraging signals found in a discovery phase, that

included more than 15,000 subjects with reported values for

smoking quantity, were followed up in a replication phase which

encompassed two studies that gathered even larger pools of

subjects (ENGAGE [9] n = 46,481; and TAG [10] n = 74,035).

However, no additional locus achieved genome-wide significance

(p-value,5.0E28 for 1 million SNPs tested), raising the possibility

that structural or rare variants with strong effects explain the

missing heritability [12].

That only a small fraction of the heritability of smoking quantity

is detected by GWAS is a characteristic common to many other

complex traits [13]. Preliminary estimates of the total amount of

phenotypic variance explained by common SNPs (minor allele

frequency .1%) [13], suggests that similar to other complex traits

[13,14], the percentage of genetic variance captured by GWAS

chips is higher than that explained by the loci identified so far; this

suggests that many of the signals that fail to reach genome-wide

significance in current datasets are true signals.

Pathway analysis offers a complementary perspective to

interpret GWAS, incorporating repositories of expert knowledge,

represented in biological pathway databases and gene ontologies.

This approach evaluates whether the signals detected by a GWAS

are overrepresented for families of biologically related genes. By
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shifting from the evaluation of individual SNPs to pathways of

genes –under the commonly accepted hypothesis that causal

variants are not randomly distributed across the genome, but

instead lie in functionally related genes– we can prioritize the

variants that do not reach genome-wide significance level [15].

This concept was extensively employed in the identification of

expression profiles of microarrays, and since then has been

adapted to mine GWAS datasets [15–17]. Employing different

statistical methods and implementations, pathway analysis has

been applied to a variety of neurological and psychiatric diseases

[17]; implicating axon guidance for Parkinson disease [18],

neuronal cell adhesion and membrane scaffolding for schizophre-

nia and Bipolar disorder [19], and immune system and cholesterol

metabolism for Alzheimer’s disease [20].

We applied pathway analysis to two substance dependence

GWAS datasets, the ‘‘Nicotine addiction Genetics’’ (OZALC-

NAG) [21], and the ‘‘Study of Addiction: Genetics and

Environment’’ (SAGE) [22], analyzing a commonly used measure

of smoking behavior [7,9,10], cigarettes per day (CPD )(Table 1),

to identify enriched candidate sets of genes defined as Gene

Ontology (GO) terms [23] and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways [24]. We carried out the statistical

analysis by executing the algorithm ALIGATOR [15] an

overrepresentation method that analyzes genes exhibiting signif-

icance below a specified threshold. We analyzed these two studies

independently, and selected those terms and pathways that were

statistically significant (p-value,0.05) in both datasets, and further

verified their role by analyzing the EA subjects from the

Atherosclerosis Risk in Communities study (ARIC) [25,26]. We

applied this same approach by executing the algorithm MAGEN-

TA [27] an implementation of the method Gene Set Enrichment

Analysis (GSEA).

Materials and Methods

Samples and Study Design
We analyzed the subjects with European ancestry with reported

cigarettes per day (CPD) values included in the Nicotine Addiction

Genetics (OZALC-NAG) study [28]; the Study of Addiction:

Genetics and Environment (SAGE) [22]; and the Atherosclerosis

Risk in Communities study (ARIC) [25,26] (Table 1). Both the

OZALC-NAG, which is an Australian family based study, and the

SAGE study, which includes unrelated North American subjects,

are GWAS ascertained based on substance dependence. In

contrast ARIC is a population-based study designed to investigate

the etiology of atherosclerosis in middle-aged adults [25].

Additional details for each of these studies is provided in Text

S1 and elsewhere [28], [22] and [26].

Genotypes
We implemented a unifying strategy that employed both

genotyped and imputed SNPs to analyze the same set of SNPs

in each of the three studies (Text S2). We analyzed all of the SNPs

included in the Illumina Human 1 M beadchip to maximize the

signals ascertained in the two exploratory studies.

Pathway Analysis
ALIGATOR [15]. This method performs an overrepresenta-

tion analysis, evaluating the significance for each category of genes

empirically. This method can be applied to both unrelated and

family based datasets. It selects the set of genes, of size n, which are

tagged by SNPs located within gene sequences or in the 20 kb up/

downstream flanking these gene regions, which are more

significant than a specific threshold (i.e., ,0.001; 0.005; 0.01;

and 0.05). The association p-value is estimated using standard

GWAS methods, and is detailed in Text S3. A pruning process

that eliminates SNPs in linkage disequilibrium is performed by

considering only the most significant SNP among all of the SNPs

that have r2.0.2 and are within 1 Mb. If one SNP tags more than

one gene, all of these genes are included as significant. Although

more than one SNP in linkage equilibrium (r2,0.2) might tag a

gene, each gene is counted only once. The statistical significance of

the overrepresentation of each set of genes (category-specific p-

value) is calculated by comparing the number of significant genes to

the number of genes expected by chance. For this purpose, the

algorithm generates 50,000 sets of genes, by randomly selecting

SNPs until a list of n tagged genes is formed.

Random sets of genes are also employed to estimate the study

wide p-value by applying a bootstrap method: one of the 50,000 sets

of genes is selected as a reference and compared to a subsample of

5,000 random lists (selection with replacement). This is repeated

1,000 times, comparing the most significant p-value in each

iteration to the p-value of each category of genes, estimating how

often the significance level is obtained by random chance. In

addition, the number of sets of genes that achieved different

threshold levels (i.e., ,0.005; 0.01 and 0.05) is compared to the

values obtained by random reference studies to calculate the excess

of significantly overrepresented sets of genes [15]. The method can

correct for any bias due to genes that are physically located within

the same region of the chromosome (genes which are less than

1 Mb apart) associated with the same signal and assigned to the

same category of genes. This is done by grouping these genes as a

single entity, which is tagged by a set of SNPs mapping within the

genes.

MAGENTA [27]. This method implements a gene set

enrichment analysis [29] (GSEA) without requiring the empirical

phenotype-based test procedure to estimate the significance of the

categories of genes, enabling its application to family based studies

as well as population-based genome-wide association study meta-

analyses. In our work. each gene is scored by the most significant

p-value among all of the SNPs located within the gene or up to

20 kb from the 59 and 39 ends of the genic sequences (Text S2).

This value is corrected for confounding effects: the gene size,

number of SNPs per kb, number of independent SNPs per kb,

number of recombination hotspots per kb, linkage disequilibrium

units per kb, and genetic distance measured in centiMorgans per

kb. This is done by applying a step-wise multiple linear regression

analysis to the normalized (Z-score) p-value of each gene [27].

MAGENTA also corrects for physical proximity along the

chromosome retaining only one gene per cluster of genes in a

Table 1. Characteristics of the studies and subjects analyzed.

OZALC-NAG SAGE ARIC

# Subjects 4038 2014 5198

% Men/%Women 49%/51% 44%/56% 56%/44%

Age, mean 6 S.D. 45.16610.43 37.9769.09 54.3065.7

Cigarettes per day

0 to 10 1159 1001 1047

11 to 20 876 518 2155

21 to 30 958 223 941

30 or more 1045 272 1052

*CPD: Cigarettes per day.
doi:10.1371/journal.pone.0050913.t001

Pathway Analysis of Smoking in Multiple GWAS
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category of genes. The nominal GSEA p-value is calculated by

comparing the extent of the ‘‘leading edge fraction’’ (i.e., the

subset of genes whose corrected p-values are among the 95th

percentile) of each category of genes (of size n), to the one observed

in 10,000 random samples of n genes. Finally, the method uses

Bonferroni multiple test correction (p-value = 0.05), and also

computes the false discovery rate, a less stringent approach to

correct for the burden of testing multiple hypotheses.

Enrichment of Categories of Genes Common to OZALC-
NAG and SAGE Studies

The statistical significance of the number of categories of genes

enriched in both the OZALC-NAG and SAGE studies was

empirically evaluated by executing ALIGATOR to evaluate the

OZALC-NAG study on the subset of categories of genes

significantly enriched in the SAGE study.

Biological Repositories of Expert Knowledge Analyzed
For the current analysis we included Gene Ontology terms [23]

(April 2010) and Kyoto Encyclopedia of Genes and Genomes

pathways [24] (October 2010) that contain between 3 and 500

genes interrogated by the Illumina 1 M platform. This resulted in

a total of 7962 GO terms and 217 KEGG pathways that we refer

to as categories of genes.

Results

Approach to Identify GO Terms and KEGG Pathways
Affecting Cigarette Consumption

We applied the ALIGATOR method independently to the

OZALC-NAG study and the EA subjects from the SAGE study;

analyzing the subset of SNPs that reached different significance

levels (i.e., SNP p-value,0.001; 0.005; 0.01; and 0.05), to

circumvent any bias introduced by this parameter [15]. We

observed that for every combination of SNP p-value and category

of gene enrichment p-value thresholds, there were a significant

number of categories of genes enriched in common in the

OZALC-NAG and SAGE studies (p-value,0.01) (Table 2). We

selected the thresholds for the SNP and category of gene p-values

(Table 2) that identified a significant excess of enriched categories

of genes (p-value,0.05) for both studies. (See Table S1 panels A

and B to see specific Gene Ontology and KEGG results

respectively). We discarded those values for the SNP and category

of gene threshold that were significant for only a single study: for

example, although the OZALC-NAG study show a significant

excess of pathways (p-value = 0.0346) with p-values lower than 0.005

when we analyzed the SNPs with p-values lower than 0.005, the

SAGE study was not significant (p-value = 0.141) for these same

cutoff values (Table 2). Because of this lack of consistency, we did

not consider the categories of genes identified by these specific

values for the thresholds. In contrast, there was a replicated

significant excess of categories of genes for both studies when the

SNPs with p-values ,0.001 were analyzed. This occurred

independently of the threshold for categories considered (i.e.,

0.005, 0.01 and 0.05) (Table 2); thus we considered all of the terms

and pathways with a category-specific p-value that satisfied the most

relaxed constraint for category cutoff (i.e., = 0.05), which includes

all of the pathways satisfying the more stringent constraints. When

we analyzed the SNPs with p-values ,0.05 we observed a

significant excess of enriched categories of genes with p-values

,0.005 and 0.01 consistently in both OZALC-NAG and SAGE

studies (Table 2). Applying the same criteria described above, we

analyzed the categories with category-specific p-values ,0.01. Our

replication strategy was to evaluate the subset of categories of

genes that were significant for both the OZALC-NAG and the

SAGE studies in the ARIC study (p-value,0.05) (See Table 2 for

the number of common categories of genes between the two

studies and its statistical significance).

For the most stringent threshold for SNPs (p-value,0.001)

ALIGATOR identified 102 and 122 categories of genes in

Table 2. Number of categories of genes identified by ALIGATOR for OZALC-NAG and SAGE studies for smoking quantity.

Category of Gene enrichment threshold

0.005 0.01 0.05

SNP Threshold Study # SNPs # Genes #cat. p-value #cat. p-value #cat. p-value

0.001 OZALC-NAG 270 264 24 1.40E203 36 3.80E203 102 1.32E202

SAGE 206 225 15 7.60E203 35 2.40E203 122 1.60E203

Common 4 ,2.00E24 5 ,2.00E24 7 8.20E203

0.005 OZALC-NAG 1158 1078 18 3.46E202 27 1.04E201 147 7.94E202

SAGE 1094 1127 11 1.14E201 35 5.40E202 181 2.92E202

Common 2 ,2.00E24 2 ,2.00E24 14 1.20E203

0.01 OZALC-NAG 2242 1962 19 6.18E202 37 1.06E201 175 1.41E201

SAGE 2150 2021 21 4.42E202 41 7.72E202 197 8.16E202

Common 2 ,2.00E24 4 ,2.00E24 12 1.60E203

0.05 OZALC-NAG 10374 6832 39 2.62E202 72 4.32E202 281 1.70E201

SAGE 9906 6901 46 1.06E202 85 1.88E202 326 6.70E202

Common 9 ,2.00E24 12 ,2.00E24 55 ,2.00E24

#SNPs: number of SNPs that achieved a significant for each threshold for OZALC-NAG and SAGE studies;
#Genes: number of genes mapped;
#cat and p-value reflect the excess of categories of genes (GO terms or KEGG pathways) for the thresholds applied to the category-specific p-values in the OZALC-NAG
and the SAGE studies. ‘‘Common’’ rows show the number of overlapping categories of genes significantly enriched for both studies and the corresponding statistical
significance.
doi:10.1371/journal.pone.0050913.t002

Pathway Analysis of Smoking in Multiple GWAS
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OZALC-NAG and SAGE respectively (category-specific p-

value,0.05)(Table 2). Seven GO terms were significant for both

studies (Table S2) but no significant KEGG pathways were

common to both studies. Moreover, all seven GO terms were also

significant for the ARIC study (p-value,0.05) (Table S2). These

terms group genes in the cluster of cholinergic nicotinic receptor

genes on chromosomes 15 and 8, and closely related genes.

We also inspected the categories of genes identified by the most

relaxed threshold for SNPs (i.e., ,0.05). A total of 72 and 85

categories were significant for OZALC-NAG and SAGE respec-

tively (category-specific p-value ,0.01) (Table 2). Eleven GO terms

and one KEGG pathway were common to both studies. These

terms and pathways showed an overlap among the constituent

genes; thus we grouped these into 4 clusters of categories of genes

that reflected the similarity of the genes included (Table 3; Figure

S1). These clusters were labeled i) cholinergic nicotinic receptors,

ii) sensory perception of chemical stimulus/smell related genes, iii)

ribosome genes, and iv) retinoid binding genes. Eight of these

categories of genes were significant in ARIC (category-specific p-

value,0.05). Neither of the two retinoid binding GO terms showed

statistical significance for the ARIC study. In contrast, each of the

remaining 3 clusters included at least one GO term with category-

specific p-values lower than 0.01 for the ARIC study.

GO Terms Enriched for Cholinergic Receptor Genes
We identified terms for cholinergic nicotinic receptor genes

(CHRN) that were significant independent of the threshold used to

select the SNPs. Three molecular function and one cellular

component terms were significant for both OZALC-NAG and

SAGE, regardless of the threshold for SNPs considered (Table 3

and Table S2). These four terms were replicated in ARIC, again

for both p-value thresholds applied to SNP selection. Despite

specificity differences in the genes grouped by each term, all of

them contain a majority of the nicotinic (CHRN) and muscarinic

(CHRM) cholinergic receptor subunit genes, and other closely

related genes (Figure 1).

All of these terms included the clusters of cholinergic receptors

on chromosome 15 (CHRNA5-A3-B4) [5–10] and chromosome 8

(CHRNB3-A6) [8–10]. By virtue of the broad range of SNP

significance analyzed, these genes were tagged in each of the 3

studies, whether or not the significant SNPs achieved genome-

wide level (Figure 1; See Table S3 for the rs numbers of the SNPs

tagging the genes in cholinergic receptor genes). In addition,

several other cholinergic receptors were tagged by SNPs with more

moderate p-values (,0.05) (Figure 1). CHRNA7 (chr. 15q14) [11]

and CHRNA9 (chr. 4p14) were tagged in each of the three studies

(Figure 1), suggesting that variants in these genes, are also

implicated in the genetic susceptibility to smoking quantity. To

determine whether the nicotinic receptor genes on chromosomes

15 and 8 drove the statistical significance of these terms we

analyzed a reduced dataset that did not include these genes (i.e., we

removed CHRNA5-A3-B4 and CHRNB3-A6 genes). Although there

was a considerable difference in the significance, the terms

GO:0005892, GO:0042166 and GO:0004889 showed p-values

,0.05 for SAGE (i.e., 0.014, 0.02 and 0.014 respectively) and a

marginal p-value of 0.056 for the term GO:0015464. In the

OZALC-NAG study, the term GO:0015464 showed a p-value of

0.049, and the term GO:0042166 a marginal p-value of 0.06. None

of these terms was significant in ARIC, which reported the fewest

significant genes for these terms (Table 3; and Figure 1), and only

included 4 genes (CHRNA7/9 and CHRM4/1) after dropping the

genome-wide significant genes.

The MAGENTA algorithm only identified GO terms related to

cholinergic nicotinic genes (See Table 4 for significance results,

and Table S4 for false discovery rates). Seven of the terms

identified for OZALC-NAG and SAGE were also significant in

ARIC (nominal p-value,0.05). Moreover, three of these terms

were previously detected by ALIGATOR (i.e., GO:0015464,

GO:0005892 and GO:0004889). In contrast to the other terms

detected by MAGENTA, the term GO:0005230, ancestor of

GO:0005230, includes genes other than the cholinergic receptors.

However, none of these seven terms remained significant in any

study when we performed the analysis dropping the clusters of

cholinergic genes located in chromosomes 15 and 8, indicating

that this core of cholinergic nicotinic receptors drives the results

observed using MAGENTA.

Sensory Perception of Chemical Stimulus and Smell
The most abundant categories of genes, with regard to the

number of genes included, that ALIGATOR identified in the

OZALC-NAG and SAGE studies grouped highly similar sets of

genes. The biological processes GO:0007608, its ancestor the term

GO:0007606 and the molecular function term GO:0004984

shared 368 genes in common (Table 3). From the pool of 431

different genes grouped by these terms, 56 were significant for at

least two studies (Figure S2), and 7 genes were common to all three

studies. This list includes the glutamate receptors, metabotropic 7

(GRM7– chr. 3p26.1-p25.1) and 8 (GRM8– chr. 7q31.3-q32.1); the

olfactory receptors OR10P1 (chr. 12q13.2); OR52E2 (chr.

11p15.4), OR52J3 (chr. 11p15.4), and OR8D4 (chr. 11q24.1);

and the bitter taste receptor TAS2R1 (chr. 5p15).

Both GRM7 and GRM8 are part of the glutamate signaling

pathway and were previously reported to be associated with

nicotine dependence [30,31] and smoking initiation [32] respec-

tively. In addition, a genetic linkage peak near GRM7 and

nominal association was reported for GRM7 and major depression

in the OZALC-NAG heavy smoking families [33]. rs963843

(MAF = 0.14) in GRM8 was the most significant SNP for SAGE

(p-value = 5.0E23), with an increased number of CPD. Although

not significant, we observed the same direction of effect for this

SNP in both OZALC-NAG (p-value = 0.074) and ARIC (p-

value = 0.10), with the combined p-value = 1.16E23. Two addition-

al SNPs, the protective rs1557644 (p-value = 3.0E23;

MAF = 0.35) and the risk rs1018854 (p-value = 3.27E24;

MAF = 0.44) were significant in OZALC-NAG and ARIC

respectively. Moreover, the haplotype derived from the risk alleles

showed a p-value = 5.40E23 (effect = 0.21) for SAGE.

Retinoid Binding Genes
Two molecular function GO terms significant for both the

OZALC-NAG and SAGE studies group genes related to retinoid

binding (Table 3), and exhibit a hierarchical relationship among

them, GO:0001972 being the most specific and the term

GO:0005501 the most general. Both studies share 4 significant

genes (Figure S3) encoding the cellular retinoic acid binding

proteins 1 (CRABP1 - chr 15q24), and 2 (CRABP2 - chr. 1q21.3);

insulin-like growth (IGF2R - chr 6q26); and the complex of genes

UDP glucuronosyltransferase 1 family, polypeptide A (UGT1A1/

3/4/6/7/8/9/10), which are associated with the metabolism of

nicotine [34]. Due to the physical overlap on the chromosome of

this complex of genes, we employed UGT1A4, as a representative

of the entire complex, eliminating the other members from the

database of terms.

None of these terms was significant for ARIC, though the term

GO:0016918 ‘‘retinal binding’’, which represents a subset of the

term GO:0005501 was significant (p-value = 0.045). This term also

includes the gene CRABP1 (Figure S3), which was significant for

ARIC. Among the other genes in the term GO:0016918 in ARIC

Pathway Analysis of Smoking in Multiple GWAS
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we found 3 common to OZALC-NAG (Figure S3). A posterior

inspection of the ARIC study showed that the gene IGF2R, also

had significant SNPs (i.e., rs8191772 with a p-value = 0.01). In

contrast, no significant SNP tagged either CRABP2 nor UGT1A4.

Discussion

Our approach to analyzing susceptibility pathways for smoking

quantity was based on the identification of GO terms and KEGG

pathways common to the OZALC-NAG and SAGE datasets that

showed replication in the ARIC study. Our decision to unify the

set of SNPs analyzed in each of the two exploratory studies,

genotyped by different Illumina chips, proved to be a valid option

that identifies common categories of genes while maximizing the

chances of observing the same enriching genes. We implemented

this strategy by extending the set of SNPs originally genotyped in

the OZALC-NAG study, incorporating imputed data to encom-

pass the ones ascertained in SAGE. We applied this same

approach to analyze the ARIC dataset, which was genotyped

using the Affymetrix platform. Moreover, apart from the

differences in the enriching genes, all of the replicated GO terms

and KEGG pathways were also significant when we restricted

analysis of ARIC to the genotyped SNPs in the Affymetrix Human

SNP Array 6.0 (data not shown).

We found GO terms for the cholinergic receptors, that included

genes tagged by SNPs previously reported to achieve genome-wide

significant levels (i.e. 5.0E208), although these SNPs did not

necessarily achieve this level in the datasets we evaluated. In

addition, other cholinergic receptor genes with more modest p-

values were also enriched in these GO terms. Each study identified

CHRNA7 but the significant SNPs were different and in low r2

(,0.20) but high D’ (.0.80) values, suggesting the existence of a

shared risk allele. However, we could not identify a same SNP that

was significant for the three studies in the region (p-value,0.05).

This might indicate the presence of an untyped SNP, possibly with

a minor allele frequency too low to be accurately imputed, or

might be a synthetic association representing the effects of multiple

rare variants. In contrast, for the CHRNA9 gene, we could neither

identify a common significant SNP nor a common allele tagged by

SNPs in linkage disequilibrium (r2.0.5 or D’.0.5). Despite this,

the pathway analysis was robust enough to highlight the

associations of these two genes to smoking quantity. Indeed, the

Figure 1. Go terms for cholinergic receptors and significant genes. The p-value of each gene was assigned based on the most significant
SNP in gene sequences and flanking regions (Left panel). SNPs in linkage disequilibrium (r2.0.2) and in a local proximity (1 Mb) were removed.
Colored boxes in the right panel reflect the assignment of each gene to the different GO terms.
doi:10.1371/journal.pone.0050913.g001
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presence of these moderate signals in CHRNA7 and CHRNA9, as

well as the ones in cholinergic muscarinic receptors, sustained the

significance of the terms GO:0005892, GO:0042166,

GO:0004889 and GO:0015464 for the analysis of the least

stringent threshold for SNPs (Table 3). In contrast, the absence of

these moderate signals resulted in the terms GO:0035095,

GO:0035094 and GO:0007274 only being significant for the

analysis of the SNPs that satisfied the most stringent threshold

(Table S2).

We did not restrict our analysis to the ALIGATOR method, but

also applied the MAGENTA method, as each of these methods

can provide complementary findings [35]. Only the GO terms for

cholinergic receptors were consistently significant in the OZALC-

NAG, SAGE and ARIC studies using the MAGENTA method,

increasing the levels of certainty of the original ALIGATOR

predictions. In contrast, the ALIGATOR method identified other

GO terms and KEGG pathways common to the three datasets.

We verified if the assumption of one causal gene per signal made

by the MAGENTA method caused the different results. However,

correcting or not for physically proximal genes did not change

substantially the MAGENTA results for these categories of genes.

It could be argued that ALIGATOR results are a product of the

specificity of the method, and are not susceptibility factors for

smoking. However, some of the genes included in these significant

GO terms were previously reported to influence smoking

behaviors, which increases the confidence in these findings (e.g.,

GRM8 [32] and GRM7 [31], [30]). Our analysis detected other

genes common to all datasets, including the bitter taste receptor

TAS2R1, suspected to be able to sense the nicotine in cigarette

smoke [36]. It has been shown that nicotine activates taste

receptor pathways both specific for nicotine and also common to

other bitter substances [37], [38]. This provides support for the

finding that variants in some of the taste receptors can modulate

cigarette consumption. Similarly, retinoic acid genes were also

specific to the ALIGATOR analysis; but again it has been

suggested that the activation of nicotinic receptors affects cellular

signaling associated with retinoic acid target genes [39].

One caveat to consider when performing pathway analysis is

that the results obtained are biased, or at least restricted, to the

biological knowledge that is incorporated into the GWAS, as well

as its representation and modeling. This may explain the absence

of any replicated GO term or KEGG pathway for the metabolism

of nicotine. CYP2A6 encodes the enzyme that metabolizes

approximately 70 to 80% of nicotine to cotinine [10,40,41]. A

single SNP in this chromosomal region is typed by the Illumina

Human 1 M chip.: rs3733829, which is in the first intron of

EGLN2 located 40 kb downstream from CYP2A6 [10]. This SNP

is not in high linkage disequilibrium with any other SNP included

in the chip in the extended genetic region considered for the

CYP2A6. Moreover, CYP2A6 is a complex locus involving

structural and rare functional variants that are not well tagged

by the SNPs included in the genotyping platforms. The UGT

complex of genes, which catalyze nicotine and cotinine glucur-

onidation [34], were significant in both the OZALC-NAG and

SAGE studies, and were identified among the other retinoid

binding genes. Furthermore, the flavin monooxygenase 1 gene

(FMO1) is also associated with nicotine metabolism [42] and was

tagged in the three studies. There is one KEGG pathway

(hsa00982 ‘‘Drug metabolism – cytochrome P450’’) and two GO terms

(GO:0005792 ‘‘microsome’’ and GO:0042598 ‘‘vesicular fraction’’)

Table 4. MAGENTA Significant categories of genes with nominal p-value,0.05 in the OZALC-NAG and the SAGE studies and ARIC
corresponding results.

OZALC-NAG SAGE ARIC Combined

Threshold Acc Name p-value p-value p-value p-value*

0.005 GO:0035095 behavioral response to nicotine 2.20E203 2.20E203 2.00E203 8.29E206

GO:0060084 synaptic transmission involved in micturition 8.50E203 7.20E203 7.90E203 1.91E204

0.01 GO:0006942 regulation of striated muscle contraction 6.50E203 6.30E203 1.00E+00 2.94E201

0.05 GO:0004889 nicotinic acetylcholine-activated cation-selective channel
activity

8.50E205 4.06E202 6.00E204 7.83E207

GO:0005892 nicotinic acetylcholine-gated receptor-channel complex 8.20E205 4.36E202 1.10E203 1.60E206

GO:0015464 acetylcholine receptor activity 2.68E204 2.50E202 2.20E203 5.90E206

GO:0005230 extracellular ligand-gated ion channel activity 3.50E203 1.65E202 1.76E202 3.43E204

GO:0007271 synaptic transmission, cholinergic 3.30E203 2.63E202 2.60E202 6.41E204

GO:0042060 wound healing 3.00E204 1.69E202 3.22E201 6.05E203

GO:0006940 regulation of smooth muscle contraction 2.50E202 2.61E202 1.33E201 1.68E202

GO:0005216 ion channel activity 2.52E202 1.53E202 1.88E201 2.23E202

GO:0042552 myelination 1.51E202 1.64E202 4.35E201 5.94E202

GO:0007257 activation of JUN kinase activity 3.42E202 3.61E202 3.52E201 7.47E202

GO:0006548 histidine catabolic process 4.71E202 4.27E202 3.04E201 7.52E202

GO:0034185 apolipoprotein binding 4.20E202 4.12E202 1.00E+00 1.45E201

GO:0007265 Ras protein signal transduction 4.17E202 4.99E202 8.33E201 3.14E201

Threshold of significance satisfied by both NAF and SAGE; acc: identifier for the category of genes and name. For each study, the nominal GSEA p-value is shown (see
Table S4 for false discovery rate).
*Combined p-values were calculated employing the weighted Z-score method.
doi:10.1371/journal.pone.0050913.t004
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with less than 500 genes that include FMO1 and UGT1A4.

However, each of these terms and pathways has a very large

number of genes (i.e., 73, 241 and 248 genes respectively); and

thus are not specific enough to formally represent nicotine

metabolism genes. In contrast, the identification of ribosome

genes was an unexpected result of our analysis. The relationship, if

any, of this gene family to nicotine consumption is not currently

understood.

Both ALIGATOR and MAGENTA provide methods to correct

for the multiple pathways tested. ALIGATOR applies a bootstrap

approach [15] whereas MAGENTA implements both Bonferroni

multiple test correction and false discovery rate method [27]. To

analyze the combined evidence of the multiple studies evaluated

independently (Table 3) we chose the most stringent method, the

Bonferroni multiple test correction, although it is most likely too

conservative for the nested organization of GO terms. The

corrected p-value is 6.11E26 for the nominal p-value = 0.05 and

8179 pathways tested. Using this significance level the terms

GO:0042166 and GO:0004984 were significant for the three

combined studies (weighted Z-method [43]) (Table 3). Similarly,

both methods provide mechanisms to correct for linkage

disequilibrium; and thus avoid the situation that a same signal,

which spans across multiple genes, inflates the number of

significant genes in a same pathway. Because this inflation can

be a source of false positive results for terms including clusters of

genes, we re-executed the ALIGATOR method collapsing all

physically proximal genes in the same category into a single entity.

The GO terms representing the cholinergic receptor genes

remained significant (category-specific p-value ,0.05) after this

correction (Table S5) for the OZALC-NAG, the SAGE and the

ARIC studies. Similarly the GO term GO:0004984 ‘‘olfactory

receptor activity’’ remained significant in the three studies, but the

other two sensory perception GO terms were not consistently

significant (Table S5).

Our systematic analysis of smoking quantity, conditioning

GWAS to extrinsic information, has identified both expected

and novel GO terms and KEGG pathways. This new information

should lead to a further prioritization of genes that do not include

genome-wide significance SNPs. Many genetic variants, each one

with small effects, are expected to be associated to complex traits

[44], Pathway analysis can be considered as a signal-to-noise filter

for the true signals that are not strong enough to clearly stand out

from the statistical background in a traditional GWAS.

Supporting Information

Figure S1 Hierarchical clustering of identified GO
terms and KEGG pathway. We calculated the similarity

matrix among the genes included in the 11 GO terms and KEGG

pathway; and created a dendrogram by employing the single

linkage method (i.e., nearest-neighbor).

(TIFF)

Figure S2 GO terms for the sensory perception of
chemical stimulus and smell and significant genes. The

p-value of each gene was assigned based on the most significant

SNP in gene sequences and flanking regions (Left panel). SNPs in

linkage disequilibrium (r2.0.2) and in a local proximity (1 Mb)

were removed. Colored boxes in the right panel reflect the

assignment of each gene to the different GO terms. Only genes

significant in at least two studies are reported.

(TIFF)

Figure S3 Significant genes for significant GO terms
related to Retinoid binding terms. Similar to Figure S2, the

p-value of genes significant in any of the three studies (OZALC-

NAG, SAGE or ARIC) is reported.

(TIFF)

Table S1 Excess of enriched categories of genes iden-
tified by ALIGATOR for OZALC-NAG and SAGE studies
for smoking quantity for Gene Ontoloty terms (A) and
KEGG pathways (B).

(PDF)

Table S2 ALIGATOR identified common OZALC-NAG
and SAGE GO terms for the analysis of SNPS p-value
,0.001 and ARIC replication results. acc: Category of gene

and corresponding name; # Genes Cat.: the total number of

genes grouped by the category; # genes significant; and category

specific p-value; and Expected number of genes for SAGE,

OZALC-NAG and ARIC studies. *Combined p-values were

calculated employing the weighted Z-score method {Stouf-

fer:1949ua}

(PDF)

Table S3 RefSNP (rs) numbers for the SNPs tagging the
GO terms for the cholinergic receptor genes.

(PDF)

Table S4 MAGENTA False discovery rate for categories
of genes with nominal p-value,0.05 in the OZALC-NAG
and SAGE studies and ARIC corresponding results.

(PDF)

Table S5 ALIGATOR enrichment analysis of the col-
lapsed genes (physical distance ,1 Mb) for GO terms
representing the cholinergic receptor and the sensory
perception genes.

(PDF)

Text S1 Samples and study design.

(DOCX)

Text S2 Genotypes.
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Text S3 Statistical analysis.
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