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Abstract

The statistical validation of database search results is a complex issue in bottom-up proteomics. The correct and incorrect
peptide spectrum match (PSM) scores overlap significantly, making an accurate assessment of true peptide matches
challenging. Since the complete separation between the true and false hits is practically never achieved, there is need for
better methods and rescoring algorithms to improve upon the primary database search results. Here we describe the
calibration and False Discovery Rate (FDR) estimation of database search scores through a dynamic FDR calculation method,
FlexiFDR, which increases both the sensitivity and specificity of search results. Modelling a simple linear regression on the
decoy hits for different charge states, the method maximized the number of true positives and reduced the number of false
negatives in several standard datasets of varying complexity (18-mix, 49-mix, 200-mix) and few complex datasets (E. coli and
Yeast) obtained from a wide variety of MS platforms. The net positive gain for correct spectral and peptide identifications
was up to 14.81% and 6.2% respectively. The approach is applicable to different search methodologies- separate as well as
concatenated database search, high mass accuracy, and semi-tryptic and modification searches. FlexiFDR was also applied
to Mascot results and showed better performance than before. We have shown that appropriate threshold learnt from
decoys, can be very effective in improving the database search results. FlexiFDR adapts itself to different instruments, data
types and MS platforms. It learns from the decoy hits and sets a flexible threshold that automatically aligns itself to the
underlying variables of data quality and size.

Citation: Yadav AK, Kumar D, Dash D (2012) Learning from Decoys to Improve the Sensitivity and Specificity of Proteomics Database Search Results. PLoS
ONE 7(11): e50651. doi:10.1371/journal.pone.0050651

Editor: Lennart Martens, UGent/VIB, Belgium

Received April 26, 2012; Accepted October 25, 2012; Published November 26, 2012

Copyright: � 2012 Yadav et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Council of Scientific and Industrial Research(CSIR), India-Senior Research Fellowship (AKY), Department of Science and
Technology(DST), India-INSPIRE-Junior Research Fellowship (DK), CSIR network project on Plasma Proteomics-Health, Environment and Disease NWP-04 (DD) and
In-Silico Biology CMM-0017 for compute infrastructure. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ddash@igib.res.in

Introduction

Database searching is an important step in high-throughput

proteomics analysis and requires computational tools that can

assign spectra with good statistical confidence. Due to an inherent

lack of complete fragmentation knowledge it is difficult to separate

the interesting spectra (containing peptide sequence information)

from the uninteresting noisy ones. Controlling an expected

proportion of false positives above a threshold is a useful and

preferred methodology [1], known as the false discovery rate

(FDR) [2]. FDR has become a widely accepted method for

multiple testing corrections in genomics [3] and proteomics [1].

Search engines will invariably score all searched spectra. Some

spectra do not originate from peptides while the correct peptides

for others are absent in the database searched. These spectra are

assigned to incorrect peptide sequences. Such PSMs need to be

discriminated for better automated survey of the proteomes. In an

ideal scenario, a mass spectrometry instrument should spew out

perfect data (without noise, contaminants or any other systemic

aberrations). This goes into a hypothetical perfect search engine

that identifies all proteins present and does not identify anything

else. In reality, raw database search scores need to be calibrated

for better discrimination between target and decoy hits which is an

important but difficult task in post database search workflows. In

general, applying filters on the search results is a popular method

of post processing [4–6]. For example, XCorr and DCn for

Sequest [7–11], Mascot identity and homology thresholds [12,13],

e-value based filters for X!Tandem [14] and OMSSA [15]. The

issue has started to be taken more seriously and many algorithms

have been devised to tackle the peptide identification quality [16]

from primary database search results. The quality control of

peptide matching is a matter of high concern [17] and employing

robust statistics based on target-decoy strategy and other statistical

models for re-scoring and FDR calculation have been of help in

many studies. Methods based on machine learning have been

developed for better information retrieval from the mass

spectrometry data [18–21]. For example- Peptide Prophet which

was developed originally for SEQUEST [22], and was further

improved by exploiting the target decoy strategy [23,24].

Percolator [12,25,26] and PROVALT [13] used decoy for

enhancing Sequest and Mascot performance. Apart from these,

there are many other tools that have been interfaced with the

common search algorithms to enhance the number and quality of

matches using machine learning and statistical techniques like

linear discriminant function [10,24,27], non-linear discriminant

function [28], clustering [29], regression [9] and Bayesian models

[30,31]. Non-linear curve fitting has also been used in the PSPEP

method employed in Protein Pilot for calculating local FDRs [32].
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Our method is aimed at utilizing the information content from

decoy results for increasing the sensitivity and specificity of

database search results taking MassWiz [33] search algorithm as

an example. Its applicability is also demonstrated for Mascot.

MassWiz is an open-source algorithm which performs with high

discriminative power like Mascot. It has been a part of two large

scale studies –mining the affinity-depleted plasma proteome [34]

and Mycobacterium tuberculosis H37Rv proteogenomics [35].

Improving its performance will be helpful to the community as an

open-source alternative to proprietary search tools. Most machine

learning methods take database search scores and other related

features for discriminant analysis. The resulting coefficients may

not be generally applicable to different datasets and different

platforms. A better alternative is to have platform specific scoring

system with known features obviating the need for discriminant

analysis. Nevertheless, no scoring system can be perfect and some

discriminative power is contained in features other than the raw

scores [36] (like DCn, peptide length/mass, shared peak counts

etc.). Our method tries to account for bias caused by correlated

variables as examined from a decoy search.

Utilizing the decoy database as a null model, we explored the

decoy results to gain insights into MassWiz and Mascot score

properties, understand the inherent weaknesses and improve the

results, if possible. MassWiz is based on peptide fragmentation

heuristics that include product ion continuity, intensities, support-

ing neutral losses and immonium ions customized for different

mass spectrometric(MS)-platforms, imparting it good discrimina-

tive power. This has one shortcoming- as the peptide mass

increases, so does the scores. This results in neglecting true hits

from low mass region and accepting false hits from high mass

regions. Similar but opposite effect is observed for Mascot scores.

The degree of this effect is variable for various charge states and

also for data sets from different MS-platforms. Therefore,

proposed methods for score normalization and re-calibration (as

in case of XCorr) did not work. Setting different thresholds for

different mass regions using mass-bin based approaches [37] can

be used to exploit the bias. Although this is a good strategy, a

noticeable drawback is the requirement of a wider mass tolerance

search which is time-consuming. We tackle the problem with a

regression based method. Taking advantage of the mass bias of

decoys, we use a linear regression model on mass and score for

different charge states to calculate the average decoy score for any

given mass and based on this regression line, the threshold is set as

a parallel line that can be adjusted according to the desired FDR

level. This is highly adaptive to different data-sets, instrument

types and search parameters and thus directly learns the bias from

decoy search results. It is not dependent on any specific type of

search strategy and works well on both separate and concatenated

search strategies, ppm tolerance searches, semi-tryptic searches

and searches with variable modifications.

Results and Discussion

The MassWiz scores were found to be correlated with peptide

mass. With an increase in mass, the decoy scores increased and

this effect was seen to be affected by charge state (Figure 1). For

higher charge states (,5 or more), the mass dependence may

weaken or show negative effect. This effect was also observed for

data sets from various platforms and few of them have been shown

in Figure S1. By regressing decoy hits based on charge, a variable

FDR threshold could be calculated for different peptide masses.

This method, named FlexiFDR, was applied to various diverse

data sets. To evaluate the accuracy of FlexiFDR, we tested it

Figure 1. The concept of FlexiFDR method. The linear regression line of decoy hits is represented by the line equation y~mxzc to show the
effect of increasing mass on decoy hits (PSMs) in QTOF dataset. Two lines are shown for two different charge states (+2 and +3). When a simple FDR is
calculated on MassWiz scores (shown by dotted line), many correct hits (green and blue dots) are lost in lower mass regions with high density. The
FlexiFDR method uses a line y0~mxzc0 for every charge state (colored solid lines), parallel to the decoy line of that charge, as a dynamic threshold
based on decoy results to estimate FDR. The scores are transformed using this equation of line. This method helps in enhancing the true hits and
decreasing the false hits at ,1%FDR and reduces the time spent for manual validation.
doi:10.1371/journal.pone.0050651.g001

FlexiFDR - Learning from Decoys
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across instruments, data types, MS platforms and search

methodology. For accomplishing this, we used known standard

mixtures of increasing complexity-18,49 and 200 mix, obtained

from disparate instrument types and calculated the FDR using

both separate and concatenated database search strategies. A strict

FDR threshold of #1% was applied to all search results before

comparison. After calculating FDR with general and FlexiFDR

method, comparisons were made at unique spectra and peptide

levels. All results provided in main text are compiled from

concatenated search results while the separate search results are

provided as supplementary figures.

For comparative evaluation, the related terminology is ex-

plained in Figure 2. Since FlexiFDR primarily is a rescoring

method, most PSM and peptide identifications compared to

general FDR are expected to be common. Comparing the number

of hits (PSMs and peptides) does not provide a true picture. The

true positives, false positives, true negatives and false negatives are

defined with respect to FlexiFDR (Figure 2). Several datasets of

varying complexity were searched with both separate and

concatenated database search approaches, called FDRs and FDRc

respectively. The comparisons for concatenated search are shown

as Venn diagrams in Figure 3. Similar results are observed for

separate database search (Figure S2). The complete results are

tabulated as Table S1 and S2.

Analysis of identifications unique to FDR and FlexiFDR

provides a better depiction of the merit of one method over the

other. A comparison of the unique identifications from FDRc for

standard data sets is represented as bar graphs in Figure 4. Figure

S3 depicts similar results for comparison of separate searches.

FlexiFDR leads to higher number of unique identifications in both

methods. The numbers of true identifications are much higher in

FlexiFDR as compared to FDR. FlexiFDR also decreases the false

positives thereby enhancing the performance (Figures 3 and 4).

FlexiFDR could enhance up to 14.81% Net Positive Gain in

spectra identifications and upto 6.2% peptide identifications

(Table S1). On an average, FlexiFDR identified up to , 4.33%

net positive gains in spectral identifications and 3.55% in peptide

identifications in the standard mix datasets (Table S1.A and S1.B).

For unique identifications, the net positive gain was up to ,13.85

times more true spectral hits and up to ,2.3 times more true

peptide hits (Table S1 and S2).

In general, it is known that lower mass peptides have a greater

chance of being a false positive. By lowering the threshold in low

mass region, one should expect more false positives. However, we

have shown that proper threshold learnt from decoys, can be very

effective in improving the results even at lower mass regions.

Employing a charge based threshold allows for flexible modeling

irrespective of the slope of the linear regression.

For the complex data sets from E. coli and Yeast, since the true

and false identifications cannot be easily defined, we compared

their identifications by showing number of spectral and peptide

identifications (Figure 3 and Figure S2). The comparisons at

1%FDR threshold are tabulated in Table S2. We observed that

FlexiFDR assigned more spectra and peptides for both FDRs and

FDRc. Average Percentage gain in spectral identification was

8.29% and peptide identification was 7.05%. Unique identifica-

tions were enhanced by more than double increment in spectra

and peptide numbers.To check whether the trends hold true for

different kinds of searches, we carried out high mass accuracy

searches (ppm level), searches with semitryptic option and searches

with variable modifications of phosphorylation at serine, threonine

and tyrosine residues. In all these searches, similar trends were

observed and FlexiFDR application resulted in better performance

(Figure 5). The Venn diagrams (Figure 5A) and Bar graphs

(Figure 5B) show that FlexiFDR is applicable across different

methods of data analysis.

To further explore the mass dependency, we tried to observe the

effect on different search algorithms. We found that X!Tandem

and OMSSA being dependent on calibrated e-values, do not have

such bias. Interestingly, X!Tandem’s raw score, the hyper score,

shows such a dependence (Figure S4). Mascot ion score, however,

showed negative dependence on mass (Figure S5). Since FlexiFDR

depends on the slope, it can adapt to any linear relation with mass

and charge. FlexiFDR was applied to few standard datasets for

Mascot for evaluation. As expected, we found better results

(Figure 6) except for QTOF dataset where the results were nearly

similar to previous results. These results show that this method is

applicable to other algorithms as well and is versatile in

application.

Conclusion
This approach noticeably has many advantages- it adapts itself

to different instruments, data types and MS platforms. Given any

dataset, it learns from the decoys and sets a flexible threshold that

automatically aligns itself to the underlying variables of data

quality and size. It recovers many border line true spectra. By

Figure 2. Database composition and evaluation terminology.
(A) The composition of databases used for searching standard mix
datasets is shown. Database consists of standard mix proteins and
common contaminants, both of which are considered true proteins
(shown in green). It also consists of sequences from an unrelated
organism which represent the entrapment sequences or false proteins
(shown in red). The sizes of these two parts show that the true proteins
were outnumbered by entrapment sequences. (B) For evaluating the
FlexiFDR method, the definitions of true and false positives and
negatives are relative to the unique sets identified by only one method-
either FDR or FlexiFDR.
doi:10.1371/journal.pone.0050651.g002

FlexiFDR - Learning from Decoys
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recovering true spectra and eliminating false ones, this method will

aid in improved performance in label-free quantitation studies. It

is also easily applicable to other algorithms after the correlated

variables have been found. Although we have shown charge and

mass dependence in this work, it could be other variables for

different algorithms.

The slopes of decoy regression lines shown in this study are

positive. But FlexiFDR is not restricted to work only on such data.

It will work even if different charge states have different slopes

including a mixture of positive and negative slopes for different

charges. This has been successfully applied on Mascot results

depicting its broader utility. For higher charge state data (.5),

sometimes there are low number of spectra acquired. This may

not be suitable for this method if the points are too few and skewed

towards one side. Large datasets should benefit more from

FlexiFDR method. Another related pitfall is that FlexiFDR might

not work on very small datasets since it needs enough data to learn

accurately from it. This is a general property of any FDR method

per se and therefore it cannot be used where FDR cannot. The

method is simple to use and extensible in design. It can be freely

downloaded from https://sourceforge.net/projects/mssuite/files/

FlexiFDR/.

Materials and Methods

Data sets and Database Search
Several standard mixtures of increasing complexity (18 mix,

49 mix and 200 mix) along with few complex data sets of Yeast

and E. coli from high resolution instruments were used to

demonstrate the enhancement due to FlexiFDR. Additionally,

one dataset from our previous study [34] (A14S3) was used to

demonstrate effect of ppm searches. A human phosphorylated

data set [38] was used to depict the effect of variable

modification (phosphorylation).

The MS/MS spectra (MIX 3) were taken from 18 protein

mixture [39] Seattle Proteome Center (http://regis-web.

systemsbiology.net/PublicDatasets). ISB standard mix as de-

scribed in Klimek et al. [40] was downloaded and searched as

described in MassWiz article. MzXML files from the Mix 3

dataset were converted to mascot generic format (mgf) using

mzXML2Search program. The mgf files for each instrument type

were collated into a single mgf file for search. The target database

consisted of standard mix proteins (true), known contaminants

(true) and appended H. influenza proteins (entrapment or false).

A standard 49-mix dataset downloaded from peptidome. (PSE

108) converted to mgf and collated together. This was searched

Figure 3. Comparison of spectra and peptides assigned by FDR and FlexiFDR for concatenated search. Comparison of spectra and
peptides assigned by FDR (pink) and FlexiFDR (blue) for concatenated database search. The number of spectra is shown on top with the number
peptides in brackets beneath them. For the standard mixtures, the true positives (green) and false positives (red) identified exclusively are
highlighted. FlexiFDR identifies a higher number of true unique spectra and peptides than FDR in almost all cases. The proportion of false positives in
exclusively identified set is higher in FDR than FlexiFDR. A star symbol (*) depicts that although there are non-zero true positive spectra identifications
in few cases of FDR, they could not bring in any new peptide identification. The peptides they identified were already identified by other spectra
(which are shared by both FDR and FlexiFDR).
doi:10.1371/journal.pone.0050651.g003

FlexiFDR - Learning from Decoys
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Figure 4. Comparison of unique identifications (spectra and peptides) from concatenated search. Top and Bottom panels depict spectra
and corresponding peptide comparison from a concatenated search. The blue colored bars represent the unique true hits added by FlexiFDR alone
while green colored bars represent unique true hits from FDR alone. Similarly, the pink bars denote false hits from FlexiFDR alone while red bars
denote false hits from FDR alone. The spectral hits from FDR can be mapped to unique peptides right in the lower panel. The false spectral hits in
case of FDR alone bring more false peptide identifications than FlexiFDR (compare bars from A to B vertically). FlexiFDR brings more unique true hits
than FDR and brings lesser number of unique false hits. This enhances the true positives and decreases false positives in the datasets shown.
doi:10.1371/journal.pone.0050651.g004

FlexiFDR - Learning from Decoys
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against a database of 49 proteins with contaminants (true) and an

appended database of Mycobacterium tuberculosis H37Rv

(entrapment or false). This dataset was searched with the following

parameters-trypsin enzyme with 1 missed cleavage, fixed modifi-

cation of Carbamidomethylation, variable modification of Methi-

onine oxidation, peptide tolerance 1 Da and fragment tolerance

0.8 Da.

A complex standard mix of 200 proteins, SC 200 (Seattle

Children 200), developed by Bauman et al. [41] (kindly provided

by Dr. Eugene Kolker, personal communication). Database used

for search was constituted from the standard proteins (true),

common contaminants (true) from cRAP (112 sequences from

http://www.thegpm.org/crap/index.html), unrelated organisms

(entrapment or false) -Rhodobacter sphaeroides (4131 sequences) and

E.coli (9525 sequences). Precursor ion tolerance of 1 Da, product

ion tolerance of 0.6 Da, trypsin digestion with 1 missed cleavage, a

fixed modification of +57.03Da (Carbamidomethylation) at

Cysteine residues.

Mid log phase Yeast dataset [42] PSM 1001 (from PSE 101)

downloaded from peptidome. For the yeast data set from ESI-

TRAP, a 3 Da error window was allowed for precursors while

fragment masses were allowed to be matched at 0.6 Da. Tryptic

digestion with 1 missed cleavage was considered with carbamido-

methylation as the fixed modification and oxidation of methionine

residues as variable modification for the search.

E. coli dataset [43] PSM 1224 (from PSE 126) downloaded from

peptidome. This data was searched with 30 ppm precursor

tolerance and 0.5 Da fragment tolerance, instrument type-FTICR,

trypsin enzyme with 1 missed cleavage, fixed modification of

carbamidomethylation at cysteine residues, variable modifications

of deamidation and methionine oxidation.

Semi tryptic search in MassWiz was carried out for QTOF

dataset with similar parameters as above except for semi-tryptic

cleavage. MassWiz search for Phosphorylated dataset [38] was

conducted in Human protein database (RefSeq) with 20 ppm

precursor accuracy and 0.8 Da fragment tolerance, trypsin with 2

missed cleavages. Carbamidomethylation was defined as fixed

modification and Phosphorylation of STY residues as variable

modification along with methionine oxidation. One dataset from

our previous study on plasma [34], A14S1 was used to depict effect

of ppm search. The database searches were performed with

10 ppm precursor and 0.6 Da fragment ion tolerances in IPI

Human database (v3.74). All cysteines were considered modified

with carbamidomethylation and a variable modification of

methionine oxidation was also taken into account. Tryptic

digestion with a maximum of 2 missed cleavages was considered.

Effect of mass on X!Tandem hyperscore was observed on

QTOF dataset searched with following parameters - 2Da

precursor tolerance, 0.6 Da fragment tolerance, trypsin with one

missed cleavage, fixed modification of carbamidomethyl and

methionine oxidation as variable modification.

For analysis and validation of the robustness of an algorithm/

analysis pipeline, a gold standard dataset is an important pre-

requisite. A protein mixture with known proteins (and well known

contaminants) can effectively act as a standard dataset. Several

attempts at providing such standard datasets have advanced the

computational proteomics field [40,41,44–46]. There is no

assurance that all ionized peptides from these proteins (along with

the known contaminants) can be identified or all peptides

Figure 5. ppm, semi-tryptic and modification searches. This figure denotes versatility of FlexiFDR on ppm based (plasma data), semi tryptic
(QTOF) and Phosphorylation modification searches (Phospho data). Details for searches are given in methods. These different searches depict
improved performance after applying FlexiFDR. Panel A shows direct Venn comparisons for the three searches. Their corresponding unique spectra
are compared in bar graphs below them in panel B to show the effect.
doi:10.1371/journal.pone.0050651.g005

FlexiFDR - Learning from Decoys
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identified from these proteins are essentially correct. But, at strict

False Discovery Rates (FDR) #1% used throughout this study, it

can be safely assumed that the PSMs from standard samples can

be considered as true hits. Recently, Granholm et al. [47] assessed

the statistical calibration of scores using samples of known proteins

and entrapment sequences. Borrowing their terminology, the

proteins other than those from the standard mix and known

contaminants will be referred to as entrapment sequences i.e.

known incorrect proteins from target database which can be used

to assess the actual FDR but not directly used for FDR calculation.

For estimation of FDR, a decoy database was created by reversing

all target database proteins. The terminology used is described in

Table 1 and Figure 2. This terminology aids in objective

comparison and assessment of the performance of the new

algorithm introduced in this paper.

Figure 6. FlexiFDR on Mascot concatenated searches. FlexiFDR was also applied to Mascot and results for concatenated searches are shown
for the unique identifications in some standard mix datasets. Except for QTOF, the other datasets showed improvement in number of spectra and
peptide identifications.
doi:10.1371/journal.pone.0050651.g006

FlexiFDR - Learning from Decoys
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False Discovery Rate Calculation
All searches were initially conducted as separate target-decoy

searches. FDR for both separate target-decoy method [48] and

concatenated target-decoy method [1] was calculated from the

same files using the ProteoStats library (developed in house). The

decoy peptides which had an identical peptide in target database

were ignored from decoy results during FDR calculation. Leu/Ile

were considered indistinguishable and treated as identical. FDR

was calculated from database search scores. The FDR for separate

target-decoy search, FDRs, was calculated as -

FDRs~
No:of decoy PSMs above threshold

No:of target PSMs above threshold

and the FDR for concatenated target-decoy search, FDRc was

calculated as -

FDRc~

2|No:of decoy PSMs above threshold

No:of target PSMs above thresholdzNo:of decoy PSMs above thresholdð Þ

The target and decoy scores were sorted in descending order

and FDR calculated at each decoy score taken as the threshold.

The score at which the FDR was calculated to be 1% or

immediately below 1% (i.e. FDR #1%) was taken as the score

threshold.

FlexiFDR Methodology
Better separation of target and decoy results is an important

aspect of current proteomics research. Decoy results from multiple

search results were explored to understand the reasons for false

positives and negatives. MassWiz decoy scores were observed to be

dependent on peptide mass and charge state. Performing a linear

regression on the decoy hits based on mass for different charge

states provides a better alternative for FDR calculation. A bin

based approach could help but that does not provide fine control

while a linear regression gives a smooth threshold. It can be

considered akin to an infinitely small bins approach to calculate

FDR. For rescoring the results for better discrimination, the decoy

scores were fit using a linear regression model against the peptide

mass. This is an indirect effect caused due to peptide length and

charge which are known to cause differential fragmentation in

Collision induced dissociation (CID) [49]. There is no directly

predictable rule which can be modelled into any scoring function

per se. This effect is highly variable for peptide length, instrument

type, collision energy etc. As shown in Figure 1, if the peptide mass

effect is unknown, we calculate FDR on the scores using a fixed

threshold on y-axis. In the generally followed simple FDR

scenario, it is a linear threshold across all peptide masses (shown

by dotted line). The FlexiFDR threshold is a dynamic threshold set

according to the score distribution of decoy results for different

charge states. This threshold is a line parallel to the decoy

regression line (shown by dashed line for different charges).

Application of this threshold for different charges helps accentuate

many true positives (see Table 1 for terminology), i.e. matches that

were originating from correct proteins and removing many false

positives. Many correct PSMs that were on the borderline region

(just below FDR) could now be assigned and some incorrect PSMs

that earlier passed the threshold, could now be removed at the

same FDR threshold (#1%FDR). This approach improved the

sensitivity and specificity of the algorithm.

For implementation of FlexiFDR algorithm, the linear regres-

sion of decoy hits was modelled as an equation of a line, which

provides an analytical function to adjudge the mean decoy scores

at a particular mass.

In other words, using this analytical function, one can predict

what would be the average random hit score for any given mass.

But this is of little use directly since we are not interested in

knowing the average decoy score.

By drawing a line parallel to this decoy regression line, flexible

threshold for FDR can be calculated for different charge states.

Before the regression, all peptides from decoy that resembled

target peptides were removed. Leu and Ile were considered as

indistinguishable and thus were considered identical. Linear

regression is then performed for different charge states by taking

mass as independent variable and score as dependent one. After

the regression line is calculated and the slope m is determined, we

can calculate a parallel line through every point (with coordinate-

mass, score) that gives a projection (in the form of intercept) on the

y-axis. For every decoy and target score as y’, and known slope m,

we calculate the intercept c’ that becomes the new score.

y0~mxzc0

This is easy to calculate from the above equation. The next step

calculates FDR using this new score, called FlexiScore. In effect,

this rescoring brings about the desired flexible threshold using an

analytical algebraic function, which in essence gives the score’s

projection on y-axis after learning the trend from decoy hits. The

advantage of this method is the ease of calculation, robustness and

accuracy.

Table 1. Terminology used for assessing the quality of database peptide matches to spectra.

Term Definitions (also see Fig 2A and 2B)

True Positive All identified matches (PSMs/Peptides) at 1% FDR that come from a standard protein or a known contaminant and found only in FlexiFDR but not
simple FDR

False Positive All identified matches (PSMs/Peptides) at 1% FDR that come from unrelated/entrapment organism (H. influenza/Mycobacterium tuberculosis/
Rhodobacter sphaeroides/E.coli) proteins, are not shared by standard proteins or known contaminants, and are found only in FlexiFDR but not simple
FDR

True Negative All identified matches (PSMs/Peptides) at 1% FDR that come from unrelated/entrapment organisms’ proteins(mentioned above), are not shared by
standard proteins or known contaminants, and are identified only by simple FDR but not FlexiFDR

False Negative All identified matches at 1% FDR that correspond to the standard mix proteins and identified contaminants, and are found only in simple FDR but
not FlexiFDR

doi:10.1371/journal.pone.0050651.t001

FlexiFDR - Learning from Decoys
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Supporting Information

Figure S1 Mass bias trends for few more datasets. The

figure shows the mass bias trend as shown for QTOF data in

figure 1. This depicts the observation of the mass bias trend for

different charge states in few more datasets. This observation is

repeatable and forms the basis of FlexiFDR.

(TIF)

Figure S2 Comparison of spectra and peptides assigned
by FDR and FlexiFDR for separate search. Comparison of

spectra and peptides assigned by FDR (pink) and FlexiFDR (blue)

for separate database search. The number of spectra is shown on

top with the number peptides in brackets beneath them. For the

standard mixtures, the true positives (green) and false positives

(red) identified exclusively are highlighted. FlexiFDR identifies a

higher number of true unique spectra and peptides than FDR in

almost all cases. The proportion of false positives in exclusively

identified set is higher in FDR than FlexiFDR. A star symbol (*)

depicts that although there are non-zero true positive spectra

identifications in few cases of FDR, they could not bring in any

new peptide identification. The peptides they identified were

already identified by other spectra (which are shared by both FDR

and FlexiFDR).

(TIF)

Figure S3 Comparison of unique identifications (spec-
tra and peptides) from separate search. Top and Bottom

panels depict spectra and corresponding peptide comparison from

a separate search. The blue colored bars represent the unique true

hits added by FlexiFDR alone while green colored bars represent

unique true hits from FDR alone. Similarly, the pink bars denote

false hits from FlexiFDR alone while red bars denote false hits

from FDR alone. The spectral hits from FDR can be mapped to

unique peptides right in the lower panel. The false spectral hits in

case of FDR alone bring more false peptide identifications than

FlexiFDR (compare bars from A to B vertically). FlexiFDR brings

more unique true hits than FDR and brings lesser number of

unique false hits. This enhances the true positives and decreases

false positives in the datasets shown. The FlexiFDR method is not

search strategy dependent.

(TIF)

Figure S4 Mass bias trend for X!Tandem hyperscore.
Although X!Tandem values do not show mass bias, the hyperscore

does show dependence on mass and thus the same trend as

MassWiz. QTOF dataset is shown here as an example.

(TIF)

Figure S5 Mass bias trend for Mascot ion score. Mascot

ion scores also show a mass bias although with negative slope.

QTOF and LCQ Deca datasets have been shown as examples.

(TIF)

Table S1 Spectra and peptide identifications from concatenated

and separate database searches for the standard mix data sets.

(DOC)

Table S2 Spectra and peptide identifications from separate and

concatenated database searches for the E. coli and Yeast data sets.

(DOC)
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