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Abstract

A lack of mature domain knowledge and well established guidelines makes the medical diagnosis of skeletal dysplasias (a
group of rare genetic disorders) a very complex process. Machine learning techniques can facilitate objective interpretation
of medical observations for the purposes of decision support. However, building decision support models using such
techniques is highly problematic in the context of rare genetic disorders, because it depends on access to mature domain
knowledge. This paper describes an approach for developing a decision support model in medical domains that are
underpinned by relatively sparse knowledge bases. We propose a solution that combines association rule mining with the
Dempster-Shafer theory (DST) to compute probabilistic associations between sets of clinical features and disorders, which
can then serve as support for medical decision making (e.g., diagnosis). We show, via experimental results, that our
approach is able to provide meaningful outcomes even on small datasets with sparse distributions, in addition to
outperforming other Machine Learning techniques and behaving slightly better than an initial diagnosis by a clinician.
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Introduction

Skeletal dysplasias are a heterogeneous group of genetic

disorders affecting skeletal development. Currently, there are over

450 recognised bone dysplasias, classified into 40 groups. Patients

with skeletal dysplasias can have complex medical issues including

short stature, skeletal deformities, multiple fractures and neuro-

logical complications. However, since most skeletal dysplasias are

very rare (,1:10,000 births), data on clinical presentation, natural

history and best management practices is sparse. Another reason

for data sparseness is clinical variability, i.e., the small number of

clinical features typically exhibited by patients from the large

range of possible phenotypic and radiographic characteristics

usually associated with these diseases. Due to the rarity of these

conditions and the lack of mature domain knowledge, correct

diagnosis is often very difficult. In addition, only a few centres

worldwide have expertise in the diagnosis and management of

these disorders. This is because, in the absence of defined

guidelines, the diagnosis of new cases relies strictly on identifying

similarities to past cases.

Medical decision support approaches, developed for particular

diseases or groups of diseases (e.g., [1], [2], [3], [4], [5]), have

demonstrated capabilities in assisting clinicians and researchers in

research, as well as in the decision making process (e.g., diagnosis).

Their main weakness is the need for well-documented domain

knowledge built on generalised guidelines and supported by large-

scale patient studies. Until now, this weakness has hindered the

development of decision support methods in the bone dysplasia

domain. Case-based reasoning [6] uses non-generalised evidences

that do not guarantee correctness. Rule based systems [7] and

fuzzy rule-based classification [8] use exact matching on rules that

are built on mature and established domain knowledge – which is

inapplicable in a domain that suffers from data sparseness. Neural

networks [9] cannot provide justification for the resulting

knowledge because they fuse all evidence into internal weights.

In the skeletal dysplasia domain, however, justification is very

important to both clinicians and researchers as it enables a better

understanding of the underlying causal elements. Moreover,

neural network approaches require large amounts of data for

training.

Probabilities are useful when the knowledge required for

inferencing or decision-making is not complete. Bayesian reason-

ing [10] is a widely used probability formalism, but it is

problematic when applied in this domain due to the estimation

of the prior and conditional probabilities. For example, in

Bayesian reasoning, the probability of Fruit = Apple being given

Colour = Green, i.e., Pr(Fruit = Apple | Green) would be zero if the

training data set only contains Fruit = Apple in conjunction with

Colour = Red. Laplace estimator is used to fix this issue by adding

one to each count. This ensures that an attribute value that occurs

zero times receives a probability that is nonzero. Although it works

well in practice for many data sets, there is no specific reason for

adding 1 to the counts. Dempster-Shafer theory (DST) [11], [12] is

an alternative to representing probabilistic uncertainty mathemat-

ically. This is a potentially valuable tool in the decision making

process when precise knowledge is missing [13]. An important

aspect of this theory is the combination of evidence obtained from

multiple sources with the computation of a degree of belief that

takes into account all of the available evidence. Also, as opposed to
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Bayesian reasoning, DST does not require an estimation of the

prior and conditional probabilities of the individual constituents of

the set. Most of the previous applications of DST in medical

decision support methods target bi-polar problems and require the

existence of a domain knowledge base [14], [15].

In this paper, we describe an improved solution that minimises

the impact of the data sparseness issue. Our approach is to analyse

the underlying data characteristics to provide meaningful results

from a set of inputs that are much smaller than the datasets usually

required by decision support systems. The approach relies on

mining association rules from patient descriptions (i.e., clinical

features + diagnosis) and then using the Dempster-Shafer theory to

produce probabilistic candidate rankings. Our goal is not to design

a disease classifier (in the traditional sense), but rather to provide a

data exploration mechanism to support clinicians in their decision

making process. Hence we have chosen to produce probabilistic

rankings associated with the underlying data justification.

Materials and Methods

Ethics Statement
The research and experiments presented in this paper have

been conducted on anonymized data and with the consent of

ESDN Clinical and Radiographic Management Group (ESDN-

CRMG, http://www.esdn.org/).

Data Characteristics
Data acquisition in the bone dysplasia domain is a

challenging task. Different research groups around the world

have, over time, built small patient registries that are neither

open nor interoperable. In 2002, the European Skeletal

Dysplasia Network (ESDN, http://www.esdn.org/) was created

to alleviate, at least partly, the data sparseness issue, and at the

same time to provide a collaborative environment to help with

the diagnosis of skeletal dysplasias and to improve the

information exchange between researchers. To date, ESDN

has gathered over 1,200 patient cases, which have been

discussed by its panel of experts.

The ESDN case workflow consists of three major steps: (1) a

patient case is uploaded and an initial diagnosis is set by the

original clinician that referred the case. Patient cases contain a free

text clinical summary and associated X-Rays; (2) the panel of

experts discusses the case until an agreement is reached; (3) the

panel of experts recommends a diagnosis.

The approach described in this paper uses ESDN’s unique

source of data for training and testing purposes. More specifically,

we extracted clinical features from 1,281 patient clinical summa-

ries and recorded the initial and final diagnoses. Among these

cases, 744 have a bone dysplasia diagnosis (the remaining cases

were not thought to be true bone dysplasias by the experts), and in

total, there are 114 different skeletal dysplasias present. A brief

analysis of the data reveals three important characteristics: (i)

rareness, (ii) sparseness, and (iii) high dimensionality.

Rareness. Fig. 1 shows the relative distribution of diagnoses

according to the number of cases. It can be observed that the vast

majority of bone dysplasias (70%) have a very small number of

cases (i.e., 1–2 or 3–5), while dysplasias well represented (i.e., over

50 cases) are a mere fraction of the total number (4%).

Sparseness. The coverage of clinical features in the patient

clinical summaries provides a good indication of the data

sparseness. The coverage of a single feature can be defined as

the percentage of cases diagnosed with a particular dysplasia in

which this phenotype is present. Table 1 shows a fragment of the

coverage of some phenotypes, i.e., top three and bottom three. We

exclude unique phenotypes occurring in a single case that has only

this case as representative. The maximum coverage achieved is

50% (e.g., subglottic stenosis) and the minimum is 0.99% (e.g.,

immunodeficiency). Hence, the average coverage is 11.33%, with

a median of 8% and a mode of 0.99%.

Figure 1. Relative distribution of dysplasia diagnoses according to different ranges of number of cases. More than 70% of the bone
dysplasias present in the ESDN dataset have a very small number of cases (up to 5), while those that are well represented (i.e., over 50 cases)
represent a mere fraction of the total number –4%.
doi:10.1371/journal.pone.0050614.g001
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High dimensionality. The skeletal dysplasia data emerging

from the ESDN cases is characterised by a total of 602 unique

clinical and radiographic features. Unfortunately, the distribution

of these features across the different types of dysplasias is heavily

skewed. Consequently, there are dysplasias characterised by 151

or 128 phenotypes (Spondyloepiphyseal dysplasia congenital –

SEDC and Multiple epiphyseal dysplasia Autosomal Dominant -

MED (AD), respectively), but there also are dysplasias with four or

five phenotypes (e.g., Frontometaphyseal dysplasia or Neonatal

Caffey disease). The average count of phenotypes per dysplasia is

21.58, with a median of 15 and a mode of 5.

Proposed Classification Approach
We propose an approach that consists of three steps, discussed

in the following sections: (i) data pre-processing, (ii) association rule

extraction, and (iii) DST-based evidential reasoning. The data pre-

processing phase extracts phenotypes from the patient clinical

summaries using the Human Phenotype Ontology (HPO) [16] and

structures the resulting annotations in a format suitable for input to

the second step. The associate rule extraction uses a level wise

search algorithm to infer evidences, which are then input to the

evidential reasoning step. The confidence value of each association

rule (evidence) is the conditional probability or the probabilistic

uncertainty of the rule (the evidence). Based on a given set of

clinical features, a set of suitable rules is selected from the rule base

(that resulted from the rule extraction step). Finally, Dempster-

Shafer theory is applied to compute the belief values for each

candidate hypothesis that results from the selected set of rules.
Data pre-processing. As described above, patient clinical

summaries in ESDN are represented in a free text format. In order

to be able to use this data, we extracted patient phenotypes by

annotating the text with corresponding terms from the Human

Phenotype Ontology (HPO). In recent years, phenotype ontologies

have been seen as an invaluable source of information, which can

enrich and advance evolutionary and genetic databases [17]. HPO

is currently the most comprehensive source of such information,

comprising more than 10,000 terms organised in a hierarchical

structure based on the anatomical localisation of the abnormality.

The actual annotation process was performed using the National

Centre for Biomedical Ontology (NCBO) Annotator [18], [19], an

ontology-based web service for annotation of textual sources with

biomedical concepts.

The annotation of a clinical summary results in a set of HPO

terms, which are then transformed, together with the diagnosis,

into a symbolic vector using a pre-computed domain dictionary.

For example, Short stature is mapped to S1, Cleft palate to S2,

Achondroplasia to D1, etc. The symbolic vector associated with

each patient is used as input for the association rule mining

process.

Association rule extraction. Association rule mining [20]

discovers interesting associations within large sets of features, in

principle, by considering the features that occur frequently

together in a given dataset. For example, the association rule

{Dwarfism} R {Achondroplasia} in a diagnosis context implies

that if {Dwarfism} is present as a clinical feature in a patient, then

the patient is likely to have Achondroplasia. Association rules

provide knowledge in the form of probabilistic ‘‘if-then’’

statements. The head of the association rule (i.e., the ‘‘if’’ part) is

called antecedent, while the body (i.e., the ‘‘then’’ part) is called

consequent. The antecedent and consequent of an association rule

are disjoint – they do not have any items in common. To express

the uncertainty in association rules, two quantifiers are used:

support and confidence. Support represents the number of transac-

tions that include all items in the antecedent and consequent, and

confidence is the ratio between the number of transactions that

include all items in the consequent, as well as in the antecedent

(namely, the support) and the number of transactions that include

all items in the antecedent.

Algorithm 1 Discovery of evidence candidates

Require: DataSet, min_support

Ensure: Itemsets which are strong candidates of Evidences.

K = 1, S = w
Ik = Select all 1-itemsets with support greater or equal to

min_support

While Ik?w do
K++
Ck = CandidateGeneration(Ik21)

for all transactions tMDataRows do
Ct = Find subset candidates in t do
for all cMCt do

count(c)++
end for

end for
Ik = SelectDesiredItemSet(Ck, Sk, min_support)

S = S<Sk

end while

Algorithm 2 CandidateGeneration procedure

Require: Ik21

Ensure: Ck

for all Itemsets i1MIk21 do
for all Itemsets i2MIk21 do

New candidate NC = <(i1, i2)

if size(NC) = = k then
if NC contains one or no Diagnosis then

Add NC to Ck if every subset of items is frequent

end if
end if

end for
end for

Our goal in this step is to automatically discover evidences for

evidential reasoning, or more concretely, to find association rules

of the form {S} R {D}, where S represents patient clinical

features, and D is a skeletal dysplasia diagnosis. We have adapted

the Apriori algorithm by adding two constraints, required to

match our data characteristics: (1) every desired itemset must have

Table 1. Coverage of clinical and radiographic features in the
ESDN dataset.

Clinical Feature No. cases
Total
diagnoses

Coverage
(%)

Cystic hygroma 2 4 50

Subglottic stenosis 1 2 50

Cyanosis 1 2 50

Hypopigmentation of the skin 1 101 0.99

Immunodeficiency 1 101 0.99

Clumsiness 1 101 0.99

The table presents the top 3 and bottom 3 coverages. Coverage is computed by
dividing the number of cases that contain the clinical feature by the total
number of diagnoses denoting the bone dysplasias assigned to the cases. For
example, Cystic hygroma appears in 2 of the total 4 cases diagnosed with
Achondrogenesis type 1A.
doi:10.1371/journal.pone.0050614.t001

Decision Support in the Bone Dysplasia Domain

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e50614



one set of clinical features and a single dysplasia, and (2) Both

candidate itemsets and frequent itemsets can have at most one

dysplasia item.

Algorithm 3 SelectDesiredItemSet procedure

Require: Ck, Sk, min_support

Ensure: I

for all Itemsets cMCk do

if c contains only Symptoms then

if c.suport$min_support then

Add c to I

end if

else

if c contains Diagnosis then

if c.suport$min_support then

Add c to I

Add c to Sk

end if

end if

end for

end for

Algorithm 4 Finding rules in the evidence candidate list

Require: S (Desired item sets), minimumconfidence

Ensure: R (set of Evidences )

R = w
for all XMS do

Symptom set P = {p1, p2, …, pn}

where pMX and AC(p)?2

Diagnosis set Q = {q1}

where qMQ and AC(q)?1

C = calculateConfidence(P, Q)

if C#minimumconfidence

P«Q is a valid evidence

R = R<{P«Q}

end if

end for

The actual extraction process consists of two parts: (1)

discovering the trend in the instance data by finding a desired

itemset using the adapted level wise search algorithm, and (2)

finding rules (evidences) from the desired itemset. Alg. 0 details the

trend discovery algorithm and Alg. 0 details the rule finding

algorithm from desired itemsets. Following the discovery of the

desired itemsets, these are partitioned into two components: a

component containing the skeletal dysplasia and one containing

the phenotypes. A boolean function that determines the type of a

component is used to perform this classification. Subsequently, we

calculate the confidence between the bone dysplasia component

and the phenotype set of the rule (evidence) and use its value as the

basic belief assignment of DST. For a better understanding,

Appendix A within Supporting Information S1 contains a detailed

example that illustrates this step.

We have used a relatively low minimum support of 2/N, where

N is the total number of cases, because we are interested in

extracting both frequent and rare associations. In addition, we

need to take into account the fact that the data in our domain is

rare. Every rule (evidence) contributes to the DST belief value of a

proposition if the evidence is applicable to the proposition.

Therefore, controlling the number of rules (evidences) using any

minimum confidence threshold can bias the belief value and

hence, the overall result. That is why we do not use this parameter

to control the number of rules. We have also used a maximum

itemset size of 10 as the computation cost increases exponentially

with the itemset size in association rule mining.

DST-based evidential reasoning. Shafer [21] has expand-

ed Dempster’s work [22] and proposed an evidence theory,

currently referred to as the Dempster-Shafter Theory (DST). DST

is a mathematical tool to express uncertain judgments based on all

available evidences. The main advantages of DST over other

probabilistic approaches are its ability to: [(i)] ‘‘model the

narrowing of a hypothesis set with the accumulation of evidence’’

[23]; provide a representation for ignorance that is not uniformly

distributed across all other alternative propositions; and avoid the

Bayesian restriction according to which the commitment of belief

to a hypothesis implies commitment of the remaining belief to its

negation [23] – i.e., ‘‘Bayesian theory cannot distinguish between

the lack of belief and disbelief’’ [21].

In addition, another important advantage of DST is that it

allows evidence aggregation independent of the order of its

gathering [23]. Finally, as opposed to Bayesian reasoning,

Dempster-Shafer theory does not require an estimation of the

prior and conditional probabilities of the individual constituents of

the set. This is a potentially very important advantage in the

decision making process where precise knowledge is missing. DST

exposes four major functions: [(i)] Basic Belief Assignment (BBA);

Combination of Evidence; Belief (Bel); and Plausibility An

example that illustrates the use of these functions is presented in

Appendix B within Supporting Information S1.

Basic Belief Assignment (BBA). BBA expresses the degree

of belief in a proposition and is the main information carrier. It

does not refer to probability in the classical sense. BBA is assigned

by making use of a mapping function (m) in order to define a

mapping of the power set to the interval between 0 and 1, where

the BBA of the null set is 0 and the summation of the BBA of all

subsets of the power set is 1. The number m(A) refers to the

portion of total belief assigned exactly to proposition A.

Mathematically, we can represent this in the following way:

m : 2x?½0,1�,m(w)~0 ð1Þ

X

A[2x

m(A)~1 ð2Þ

where x is the universal set and w is the empty set.

Belief and plausibility functions. In order to infer mean-

ingful information using BBA, it is imperative to impose a

restriction on the total degree of belief in a proposition, as opposed

to a single value of belief. This restriction on a proposition A is

expressed by ½Bel(A),Pl(A)� and it lies in the unit interval ½0,1�,
where Bel(A) and Pl(A) are given as:

Bel(A)ƒP(A)ƒPl(A) ð3Þ

Bel(A)~
X

BDB(A

m(B) ð4Þ

Pl(A)~
X

BDB\A=w

m(B) ð5Þ

Here, A is a set of items and B is a subset of the set A. Bel(A) is

the lower bound of the total degree of belief in a proposition A and

Decision Support in the Bone Dysplasia Domain
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is the sum of all BBAs of propositions that are fully included in

proposition A. Pl(A) is the upper bound of the total degree of

belief in a proposition A and is the sum of all BBAs of propositions

whose intersection with proposition A is not empty. The set of all

propositions that are of interest in DST is known as the frame of

discernment.

The combination of evidence. The purpose of Combina-

tion of Evidence is to meaningfully summarize and simplify

evidences, where the evidences are obtained from several

independent knowledge sources over the same frame of discern-

ment. In other words, this represents an evidence fusion. Evidence

fusion refers to the combination of multiple sources to obtain an

improved evidence by aggregating the complementary and/or

redundant evidences. In widely used probability formalisms,

probabilities are combined through the general multiplication

operation. As DST is a generalisation of such probability

formalisms, a more advanced multiplication rule is required for

the combination of evidences. Dempster introduced Dempster’s

rule of combination, which combines multiple evidences through

their Basic Belief Assignments (m). These evidences are defined on

the same frame of discernment and are independent. The rule is

purely a conjunctive operation (AND) and results in a belief

function based on conjunctive pooled evidence. If we obtain two

masses m1 and m2, the combination (called the joint m1,2) is

calculated from two BBA’s m1 and m2 in the following manner:

m1,2(w)~0 ð6Þ

m1,2(A)~

P
B\C~A=w

m1(B) �m2(C)

1{K
ð7Þ

where

K~
X

B\C~w

m1(B) �m2(C) ð8Þ

Here, B and C are propositions from different knowledge sources,

and K is a measure of the amount of conflict between the two

masses m1 and m2. An example that illustrates the use of these

functions is presented in Appendix B within Supporting Informa-

tion S1. In practice, we model DST to express uncertain

judgments about a set of conclusions in the presence of a set of

observations, based on all available association rules (evidences).

Belief and plausibility function for a conclusion in the

presence of a subset of observations. If we consider

O~fo1,o2,:::omg a set of observations and C~fC1,C2,:::,Ckg a

set of conclusions, our goal is to find the overall belief of a

conclusion in the presence of a subset of observations (the subset of

observations that causes the conclusion). A proposition in our

setting consists of a subset of observations O, named A, and an

element of the conclusion set C, named Ci. Hence, the proposition

is (fAg,fCig). To achieve this, we have constrained the belief and

plausibility function of Dempster-Shafer theory. We define the

constrained belief, denoted by CBel(fAg,fCig), and the con-

strained plausibility, denoted by CPl(fAg,fCig), as follows:

CBel(fAg,fCig)~
X

BDB(A

m(fBg,fCig) ð9Þ

with A being a subset of observations O, B a subset of A and Ci a

conclusion in the set C. The belief CBel(fAg,fCig) for the

proposition (fAg,fCig) is defined as the sum of all masses of both

subsets of A and Ci

CPl(fAg,fCig)~
X

BDB\A=w

m(fBg,fCig) ð10Þ

CBel(fAg,fCig) is the lower bound of the total degree of belief of

a conclusion in the presence of a subset of observations. It is the

sum of all BBAs of those proposition subsets that have their

observation elements fully included in proposition A and have the

conclusion Ci. CPl(fAg,fCig) is the upper bound of the total

degree of belief of a conclusion in the presence of a subset of

observations. It is the sum of all BBAs of those proposition subsets

that have observation elements included in proposition A (i.e.,

their intersection with A is not empty) and have the conclusion Ci.

If we consider a proposition to be a particular dysplasia in a

patient, in the presence of a subset of observations, by calculating

the belief and plausibility values, we can get the overall belief and

plausibility degrees of the dysplasia in that patient. The soundness

of the provided evidences is pivotal in medical decision-making.

The plausibility value calculation takes into account the evidence

that may exist or occur, while the belief value calculation relies on

the evidence that must exist. Therefore, it is crucial to use only the

belief value for decision-making and, hence avoid plausibility.

Appendix C within Supporting Information S1 presents an

example of the computation of these values extracted from the

ESDN dataset.

Other Classification Approaches Applied on the Dataset
Decision trees is a classification technique that maps observa-

tions about an item to conclusions about the item’s target value.

Based on the training data, the decision tree learning algorithm

constructs a tree-shaped model using inductive reasoning. To

classify input data, each leaf of the tree represents a class label and

the branches represent conjunctions of features that lead to those

class labels. On the positive side of things, decision trees require no

domain knowledge or parameter setting, and are easier to read

and interpret. On the negative side of things, decision trees are

unstable, in addition to being a hard classification model – i.e., it is

limited to one output attribute. An improvement to the original

algorithm has been brought by Quinlan, who proposed the

Interactive Dichotomiser 3(ID3) [21]. ID3 uses information gain to

select attributes to build the tree structure. Consequently, the

process may result in a bias towards attributes with higher values.

Random forest is an ensemble classifier constructed from a

number of decision trees [25]. Similar to the direct decision trees,

random forest maps input data points to leafs in the tree, however,

in this case, each tree in the forest assigns class label. The final

class label for a point is assigned via voting, i.e., the class label that

receives the most votes within the entire set of trees in the forest.

For standard trees, nodes are split using the best split among all

variables, whereas for random forests, nodes are split using the best

among a subset of predictors randomly chosen at that node.

Random forest has a number of advantages, such as the capability

of handling high dimensional data, the effective method for

estimating missing data, or the ability of generating an internal

unbiased estimate of the generalisation error. Among the

disadvantages, we can mention that it is, subject to the input data

sets, prone to overfitting the data.

The naive Bayes classifier [26] is a classifier based on

conditional probabilities and that is governed by the feature

independence assumption. Despite this unrealistic assumption, the

Decision Support in the Bone Dysplasia Domain
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resulting classifier is remarkably successful in practice, often

competing with much more sophisticated techniques [26]. It has

proven results in most real-world applications, including text

categorisation, medical decision support, and systems performance

management [26]. The Naive-Bayes classifier features an ex-

tremely fast learning process that requires a single pass through the

data. In addition, it usually requires a fairly small amount of

training data, when compared to other approaches that achieve

similar results. In our setting, since the skeletal dysplasia data is

sparse, we have used the Laplace estimator to assign prior

conditional probabilities when an attribute occurs zero times.

Medical decisions in the bone dysplasia domain are difficult as

data is sparse. Subsequently, the representation of this sparse

knowledge acts as a critical and differentiating factor between the

methods that can be used as foundation for the decision support. A

relevant example is the comparison between Bayesian and DST-

based methods. A Bayesian method implies a precise value for

prior probabilities. A critical difference, hence, between Bayesian

and Dempster-Shafer-driven approaches lies in the representation

of ignorance. In the computational phase of DST, all prior

probabilities can be left unspecified, as opposed to a Bayesian

method, which often requires an estimator to assign prior

probabilities to random variables (e.g., by adding 1 where an

attribute occurs zero times, so that its prior probability is non-

zero).

Support Vector Machine (SVM) is a widely used machine

learning technique, pioneered by Vapnik [27]. SVM trades off

accuracy for the generalisation error. For pattern classification,

SVM constructs a multidimensional hyperplane that optimally

discriminates between two classes by maximising the margin

between the two data clusters. To achieve a high discriminative

power, SVM employs special nonlinear functions named kernels to

convert the input data into a high-dimensional space.

The k-nearest neighbour algorithm (k-NN) [28] is a method for

classifying an object by associating each data point of the object

with its k-nearest neighbours. k-NN is unfortunately unable to

provide a meaningful interpretation of high dimensional data. As

the dimensionality of the data increases, the distance to the nearest

point approaches the distance to the most distant point. k-NN also

suffers from the data sparseness problem [29]. In the bone

dysplasia domain, patients exhibit only a handful of clinical

features from the entire range of possible phenotypic character-

istics associated with bone dysplasias. Hence, each feature vector

attached to a patient is very sparsely filled, while the missing

features are different among the vectors. As a result, no similarity

measures (e.g., Euclidean Distance, Hamming Distance, etc.) can

provide meaningful interpretations to gauge similarity of samples

in this domain. Support vector machines [27] also use similarity

measures.

Experimental Design
We compared our results against the initial diagnoses

established by clinicians and against a set of well-known Machine

Learning techniques. In order to provide the same experimental

conditions, each approach used the same training and testing

subsets. Some additional details associated with this comparative

evaluation include: (i) Support Vector Machines (SVM) have been

used with Sequential Minimal Optimisation for training and a

polynomial kernel; (ii) the Naive Bayes classifier required the

Laplace estimator to fix the absence of prior probability that

occurs in sparse data; (iii) for k-NN we used k = 3; (iv) in the case

of decision trees, we have used the ID3 algorithm.

Dataset. In order to achieve realistic results Using machine

learning methods, from the 114 existing types of dysplasias

described in the ESDN dataset, we chose the types, each of which

is represented by more than 20 patient cases. Table 2 displays the

list of dysplasias (with . 20 patient cases) and the associated

number of cases and other attributes. In total, 283 patient

descriptions were considered (around 22% of the total cases). As

shown in Table 2, the characteristics of the dataset we have chosen

is similar to the general characteristics of the entire ESDN dataset.

Cross-validation. To estimate the predictive accuracy of

diagnostic models, the dataset is usually split into two parts: a

training set and a test set. The training set is used to establish the

decision support model, while the test set is used to test the

generalisation capability of the model. In this study, we applied a

5-fold cross-validation method to assess the model’s performance –

training sets contain 80% of the cases and test sets contain 20% of

the cases. As the dataset is very sparse, with some skeletal

dysplasias having only 20 to 30 cases, 5-fold cross validation has

the advantage that the resulting test sets are reasonably sized and

have a fair distribution of clinical features for each bone dysplasia

that we consider. The data listed in Table 2 was thus equally

divided into five folds (F1 to F5) and five different sets of

experiments were performed. Each of the 5 random partitions of

the data serves as a test set for the diagnostic model trained with

the remaining four partitions. The overall accuracy, precision and

recall reported later in the paper represent an average across all 5

training set partitions.

The actual formulae used to compute these metrics are the

following:

Table 2. Characteristics of the skeletal dysplasias with more than 20 cases.

Diagnosis Symbol No. cases Total features Min Max Average Max coverage

Largest
common set
coverage

Hypochondroplasia SD1 22 69 1 15 5 (7.24%) 54.54% 27% (3)

SEDC SD2 75 151 1 17 4.65 (3%) 40% 26% (2)

Pseudoachondroplasia SD3 33 72 1 12 4.15 (5.76%) 57.77% 12% (3)

Cartilage-hair-hypoplasia SD4 28 80 1 11 4.89 (6.11%) 46.42% 10% (4)

MED (AD) SD5 101 128 1 20 3 (2.34%) 28.71% 19% (3)

rMED SD6 24 59 1 13 3.87 (6.55%) 25% 25% (2)

The set of dysplasias used within our experiments follow, in principle, the general characteristics of the ESDN dataset. The average maximum coverage of phenotypes is
around 43%, while the average largest common set (i.e., the set of phenotypes common to all cases diagnosed with a particular disorder) is around 20%.
doi:10.1371/journal.pone.0050614.t002
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where N is the total number of patient cases, L is the total number

for correct predictions, M is the total number of incorrect

predictions, and N~LzM. Nx is the total number of dysplasia

Dx in N, CDx is total number of correct Dx predictions, IDx is total

number of incorrect Dx predictions.

Results

In this section we discuss some experimental results we have

achieved by applying our method to the ESDN dataset to examine

its predictive capability in identifying classes of skeletal dysplasia.

Table 3 displays the accuracy, precision and recall for each cross

validation experiment with their corresponding intervals and mean.

(each CVx column refers to cross-validation on fold Fx). The

accuracy rate across the five folds is fairly constant, resulting in a

mean of 47.43%. Unlike accuracy, precision and recall are less

stable, resulting in a fairly large interval of values with a mean of

39.34% for precision and 34.89% recall. To examine the prediction

capability of the approach in a clinical setting, we compared the

achieved accuracy against the initial diagnoses assigned to patient

cases in ESDN. The comparison result, i.e., our average accuracy of

47.43% vs. the accuracy of the initial diagnoses –39.66%, shows

that our approach outperforms these initial diagnoses by around

9%, which is an average decrease in error of 12%.

Discussion

In the previous section, we described the cross validation result

of our approach, which has mean accuracy of 47.43% on the

ESDN dataset and outperforms the clinicians’ initial diagnoses by

around 9%. While the comparison of our approach against initial

diagnosis is tempered because we have only considered six bone

dysplasias, in practice, this level of improvement is realistic

because for the initial diagnosis phase, on average only the 20 most

common dysplasias are considered.

In the rest of this section, we provide a compare the results

achieved by our solution against other Machine Learning

approaches, and then we discuss our main findings, some related

work and the limitations of our approach.

Comparison Against other Machine Learning Approaches
For completeness purposes, we have compared our solution

against the five most common Machine Learning approaches.

Table 4 presents the experimental results. Overall, our approach

outperforms all the other approaches. There are, nevertheless,

some features that are worth noting. The Naive Bayes classifier

performed well on SD2, SD3 and SD5, which is expected since it

overfits the classes that provide more data at the expense of those

that don’t. These dysplasias were the top three in terms of number

of cases (see Table 2). Consequently, SD6 has 0% precision and

0% recall, while SD4 has 20% precision and 4% recall using the

Naive Bayes classifier compared to 50% precision and 32% recall

achieved by our approach. On a different note, our approach and

SVM both performed uniformly across all classes, because they

both generate an evenly distributed model – an overall best effort

approach. Moreover, in the case of our solution, it can be clearly

seen that precision and recall increase with the amount of data

provided, reaching a maximum of 58.47% precision with only 101

patient cases provided for MED (AD).

Decision tree (ID3), on the other hand, prefers features with

many values. The coverage of clinical features is an indicator of

the data sparseness (i.e., features with a few or many values). The

diagnoses built using a few examples, specifically SD1 (22), SD4

(28), SD6 (24), have an average coverage of 7.24%, 6.11% and

6.55%. These are greater than the average coverage of SD2 (75),

SD3 (33) and SD5(101) –3%, 5.76%, 2.35% – which represent

diagnoses with many examples. Consequently, we can infer that

the SD1, SD4 and SD6 data is dense when compared to the SD2,

SD3 and SD5 data. We believe that this is the reason behind the

good performance achieved by the decision tree (ID3) approach.

Finally, when compared to the naive Bayes classifier, our

approach shows improvements in the average accuracy from

44.12% to 47.43%, average precision from 29.54% to 39.34% and

average recall from 25.08% to 34.89%. The justification of these

results is the following: [(i)] unlike in Bayesian reasoning,

ignorance is not represented as an uniform distribution in DST,

and as opposed to DST, Bayesian reasoning uses Laplace

estimator to estimate prior conditional probabilities when an

attribute occurs zero times (sparse data). Both our approach, as

well as the Bayesian classifier shows significant improvements in

average accuracy, average precision and average recall over k-NN,

which suffers from both the data sparseness and the high-

dimensional data problems. A similar behaviour is observed also in

the comparison against decision trees and random forests. As a

final remark, while these performance indicators may seem low,

they are in reality an improvement on the state of the art in

decision support methods for rare disorders.

Table 3. Experimental results: Accuracy per cross-validation
per fold.

CV1 CV2 CV3 CV4 CV5 Interval
Mean
(%)

Accuracy (%) 41.5 46 49.05 52.97 47.16 [41.5,
52.94]

47.43

Average
precision (%)

31.08 51.63 51.61 41.69 20.71 [20.71,
51.63]

39.34

Average
recall (%)

28.4 38.67 38.31 42.11 26.95 [26.95,
42.11]

34.89

doi:10.1371/journal.pone.0050614.t003
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Main Findings
We have presented an approach that combines association rule

mining with the Dempster-Shafer theory (DST) to compute

probabilistic associations between sets of clinical features and

disorders. These can then serve as support for medical decision

making (e.g., diagnosis). Experimental results show that the

proposed approach is able to provide meaningful outcomes even

on small datasets with sparse distributions. Moreover, the result

shows that the approach can outperform other Machine Learning

techniques and behaves slightly better than an initial diagnosis by

a clinician. To test the accuracy of the approach, we have

performed several experiments comparing human-mediated initial

and final diagnoses, as well as outputs produced by other machine

learning algorithms, in which we have treated our approach as a

traditional classifier. The results show that we can achieve a top-1

accuracy of 47.43% (i.e., the accuracy calculated only via the

candidate with the highest probability) by using disorder

descriptions for 20 to more than 100 cases. This represents an

increase in accuracy of around 7% when compared to the initial

human-made diagnosis, and around 4% when compared to the

next best machine learning approach.

Related Work
The literature contains a few relevant approaches that are very

similar to our general methodology. For example, the research

presented in [30] employs association rule mining, Dempster’s rule

of combination and pignistic approximation for the prediction of

what else the customer is likely to buy. Once the rules are

discovered, they use Dempster’s rule of combination to combine

overlapping rules, followed by pignistic approximation for the final

prediction. As opposed to our approach, the authors don’t use

DST, per se, as they do not calculate any belief or plausibility

values for prediction. However, when predictions systems need to

calculate the joint probability of a set of items, where the items of

the set are present in different association rules, it is imperative to

use the DST believe value calculation. In their approach, the

authors prune the overlapping antecedent rules as both the

antecedent and consequent hold similar types of data (e.g.,

shopping items) in their discovered association rules. This is

different to the way we have modelled the data, as in our case, the

antecedent contains clinical features (observations), while the

consequent holds the diagnosis (an action based on observation).

In [31], the proposed framework discovers interesting associa-

tion rules and use the discovered rules for prediction. The rules get

assigned basic belief values (BBAs) and are combined using

Dempster’s rule of combination. Finally, maximum belief with

non-overlapping interval strategy (maxBL) [32] or pignistic

probability are used for prediction. In short, the authors use

Dempster’s rule of combination to facilitate uncertainty manage-

ment, without calculating belief and plausibility values as per DST.

The both of the above mentioned related works do not use DST

to its full extent, but rather only Dempster’s rule of combination,

in order to prune the number of rules. Instead of combining

multiple evidences using a belief function, they choose the best

evidence using a pignistic probability. Another significant differ-

ence is that they perform association rule mining for each query,

whereas we generate evidences only once and use them as a

knowledge base for all queries. The targeted domain of the first

related work is market basket analysis. Like other classification

algorithms, they do not measure accuracy to show the perfor-

mance of their classification system. However, they measure

precision and recall.The precision and recall is in the range of 40%

to 60% and 50% to 60%, respectively, based on their synthetic

dataset. The targeted domain of the second related work is sensor

data analysis. The average accuracy of their proposed system is

47% based on the recorded sensor data. The characteristics of the

data in our domain are significantly different than those of data in

their domains. This makes it impossible to perform a fair

performance comparison against them.

Finally, the research described in [33] employs evidence-based

confidence, as opposed to traditional confidence, in the association

rule mining, in order to describe evidences in a more sophisticated

way. Their assumption is that some co-occurrences might be

contingent in some datasets. The authors leverage DST to

compute evidence-based confidence by introducing various kinds

of ‘a posteriori’ pragmatic knowledge. Consequently, they focus on

discovering sophisticated association rules, while we focus on using

rules in conjunction with DST for classification purposes.

Table 4. Experimental results: Overall comparative accuracy across all considered approaches.

Our approach Naive Bayes SVM Decision trees Random forests k-NN (K = 3)

P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

SD1 6.67 5 20 5 11.66 10 13.16 15 15.54 15 10 5

SD2 47.71 70.12 53.66 34.72 38.12 40.46 29.78 32.98 36.98 33.08 31.92 38.34

SD3 42.41 27.78 41.66 9.16 36.42 25.26 25.18 26.94 25.8 24.98 5.84 11.66

SD4 50.67 32 20 4 33.08 32 44 24 21.42 20 20 4

SD5 58.47 59.43 41.94 97.64 47.07 64.14 52.88 45.52 50.64 59.2 45.04 62.52

SD6 30 15 0 0 40 15 21.68 31.66 10 10 0 0

Average
recall (%)

34.89 25.08 31.14 29.35 27.55 20.25

Average
prec. (%)

39.34 29.54 34.38 31.11 26.8 18.8

Accuracy
rate (%)

47.43 44.12 41.08 33.83 36.89 34.23

Our solution outperforms the five Machine Learning approaches we have considered within our experiments: around 4% more accuracy than Naive Bayes and around
6% more accuracy than SVM. Although Naive Bayes has performed very well, its results are boosted by overfitting the classes that had more data (e.g., ) at the expense
of others, such as for which it achieved 0 precision and recall. Unlike Naive Bayes, our approach has performed fairly uniform and consistent across all classes.
doi:10.1371/journal.pone.0050614.t004
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Limitations
Two limitations are directly observable in the context of the research

presented within this paper. Firstly, the ESDN dataset used within our

experiments is based strictly on patients suspected to have a bone

dysplasia. These patient cases are usually highly challenging, and thus,

are submitted for evaluation by the ESDN panel of experts. Moreover,

clinicians submitting cases to ESDN usually focus on providing only

dysplasia-relevant data. Consequently, our experiments frame the

underlying research question only to patient data that has a high

probability to be associated with a bone dysplasia.

Secondly, our current analysis features only the combination of

association rule mining with DST, and hence it does not reveal the

results attributable individually to the association rule mining or to

DST. As a remark, within our framework, we discover association

rules that, by nature, cannot be used for classification (i.e., we do

not discover classification rules similar to a branch in decision

trees). To achieve this goal, such association rules require the

conjunction with a prediction technique, e.g., voting [34],

weighted voting [34], CMAR [35] or DST. In this paper, we

have shown how to create an ensemble that combines association

rules with DST. Future work will include also the evaluation of the

other prediction techniques, in order to obtain an general view

over the best classification method in our domain.

Conclusion
The decision support method presented in this paper combines

association rule mining with the Dempster-Shafer theory to produce

probabilistic candidate phenotype–disease rankings. The experimen-

tal results we have presented demonstrate that, given a reasonable

amount of data (considering the focus on rare diseases), our approach

can outperform other Machine Learning techniques and behaves

slightly better than an initial diagnosis by a clinician – which is often

enough to guide further research on the case in the correct direction.

Future research will focus on the use of semantic relationships

between patient phenotypes, expressed via the Human Phenotype

Ontology, when mining association rules. For example, we will

consider generalisations (i.e., is-a relationships) and partnonomies

(i.e., part-of relationships) between the patient clinical and

radiographic features. At the same time, we intend to incorporate

and experiment with additional types of related data, such as, gene

mutation data – in order to predict correlations between sets of

phenotypes and gene mutations in the context of bone dysplasias.
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