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Abstract

Genotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms
(SNPs), has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically
relied on HapMap reference haplotype panels from Africans (YRI), European Americans (CEU), and Asians (CHB/JPT). The
1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW), but their imputation
performance has had limited evaluation. Using 595 African Americans genotyped on Illumina’s HumanHap550v3 BeadChip,
we compared imputation results from four software programs (IMPUTE2, BEAGLE, MaCH, and MaCH-Admix) and three
reference panels consisting of different combinations of 1000 Genomes populations (February 2012 release): (1) 3
specifically selected populations (YRI, CEU, and ASW); (2) 8 populations of diverse African (AFR) or European (AFR) descent;
and (3) all 14 available populations (ALL). Based on chromosome 22, we calculated three performance metrics: (1)
concordance (percentage of masked genotyped SNPs with imputed and true genotype agreement); (2) imputation quality
score (IQS; concordance adjusted for chance agreement, which is particularly informative for low minor allele frequency
[MAF] SNPs); and (3) average r2hat (estimated correlation between the imputed and true genotypes, for all imputed SNPs).
Across the reference panels, IMPUTE2 and MaCH had the highest concordance (91%–93%), but IMPUTE2 had the highest
IQS (81%–83%) and average r2hat (0.68 using YRI+ASW+CEU, 0.62 using AFR+EUR, and 0.55 using ALL). Imputation quality
for most programs was reduced by the addition of more distantly related reference populations, due entirely to the
introduction of low frequency SNPs (MAF#2%) that are monomorphic in the more closely related panels. While imputation
was optimized by using IMPUTE2 with reference to the ALL panel (average r2hat = 0.86 for SNPs with MAF.2%), use of the
ALL panel for African American studies requires careful interpretation of the population specificity and imputation quality of
low frequency SNPs.
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Introduction

Genotype imputation is often conducted in genome-wide

association studies (GWAS) as an efficient approach to expand

coverage of single nucleotide polymorphisms (SNPs), enabling

meta-analysis of GWAS from different genotyping platforms [1]

and fine-mapping in regions of interest to identify potentially

causal variants [2]. To infer untyped SNP genotypes, imputation

uses reference haplotype panels genotyped at a dense set of SNPs,

historically from the original HapMap [3,4] populations of

Yorubas from West Africa (YRI), European Americans (CEU),

northern Chinese (CHB), and Japanese (JPT). CEU serves as

a good reference for genotype imputation in European or

European American studies, and CHB and JPT serve as good

references for East Asian studies [5].

Genotype imputation in admixed populations has not per-

formed as well, because their genetic diversity is greater than the

original reference populations [6]. In African Americans, com-

bining YRI with at least one other reference population boosts

imputation performance when compared to YRI alone [5,7,8], but

an optimal imputation strategy is not well established. Two or

more reference populations can be combined in their entirety

[9,10], combined in equal proportions [11,12], or weighted to

match the ancestral proportions of the study population [13,14].

Alternatively, the imputation procedure can be conducted

sequentially (once for each selected reference population) rather

than as a combined population, followed by merging the imputed

genotypes [15,16]. Most recently, advancements in imputation

software have been developed to create tailored reference panels

for individual study subjects using all available reference popula-

tions as a starting point [17]. This type of approach is particularly

attractive for admixed populations and is promoted for its

simplistic and practical use for investigators.

Imputation in African Americans has typically relied on some

composition of the YRI, CEU, and CHB+JPT populations from
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HapMap [3,4]. The 1000 Genomes project [18] now offers a wider

range of reference populations that provide a better match of allele

frequencies and linkage disequilibrium patterns for admixed

populations, such as African Americans from the Southwest

United States (ASW). However, there has been limited evaluation

of the imputation performance of the newer reference populations

in admixed study populations [8]. The present study offers

a thorough evaluation of SNP genotype imputation performance

in African Americans, by comparing imputation results using four

different imputation software programs (IMPUTE2, BEAGLE,

MaCH, and MaCH-Admix) and three reference panels consisting

of different combinations of 1000 Genomes (February 2012

release) populations that are either closely or more broadly related

to African Americans.

Methods

Study Subjects, Genotyping, and Quality Control
We obtained genome-wide genotyping data available from

Illumina’s iControl database (iControlDB from Illumina, Inc., San

Diego, CA) for 830 African Americans genotyped for 561,466

SNPs on the Illumina HumanHap550v3 BeadChip. Data were

downloaded on January 19, 2011. Quality control (QC) was

implemented on SNPs and subjects using PLINK [19] unless

otherwise stated. The QC criteria were selected to resemble

standard criteria used for GWAS. Genotyped SNPs were excluded

due to minor allele frequency (MAF) ,1%, call rate,95%, or

Hardy-Weinberg equilibrium (HWE) p-value,0.0001. There

remained 541,860 autosomal SNPs (96.5%), of which 8,101 SNPs

from chromosome 22 were used for imputation.

The subsequent subject-level QC procedures are outlined in

Figure S1. First, we verified that all iControlDB African

Americans had call rates.95%. Identity-by-state (IBS) estimates

were then calculated to identify possibly duplicated subjects. For

pairs of subjects having IBS.99%, we retained the subjects with

the highest call rate from each pair. Identity-by-descent (IBD)

estimates are often generated from GWAS data to remove subjects

with cryptic relatedness, whose inclusion would violate indepen-

dence assumptions in subsequent statistical analyses. However,

population stratification may inflate these estimates, so we used the

KING program, which was designed to circumvent the inflation of

IBD estimates due to stratification [20]. We used a kinship

coefficient threshold of 0.0441 to identify clusters of third-degree

or closer relatives [20], and we retained only one subject having

the highest call rate from each relative cluster. Following the

aforementioned QC criteria, 774 (93.3%) subjects remained. None

of these subjects had excessive homozygosity or discordance

between reported gender and estimated gender based on

chromosome X SNP data.

The iControlDB subjects were then evaluated for population

structure to identify ancestral outliers. We implemented the

pairwise population concordance test in PLINK, which is based on

the observed proportion of IBS loci pairs, and we identified eight

subjects who were significantly different (P,0.0005) from 95% of

the rest of the population. The ancestral outliers were confirmed

using the STRUCTURE program [21] and were excluded from

further analyses. Ancestral proportions of all iControlDB subjects

were inferred via comparison to HapMap CEU, YRI, CHB, and

ASW populations in STRUCTURE. As shown in Figure S2, the

resulting ancestral proportions indicate that the identified ancestral

outliers have relatively high Asian ancestry (up to 78%) or

European ancestry (up to 98%). Given that the minimum African

ancestral proportion among ASW subjects was 52.7%, we

excluded 179 subjects with an African ancestry less than 60%. A

list of subjects excluded due to ancestral misclassification is

provided in Table S1. The final analysis dataset included 595

(71.7%) subjects.

Reference Haplotype Panels
We obtained prephased reference haplotypes from the February

2012 release of the 1000 Genomes project (ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/, accessed

March 7, 2012). We created three reference haplotype panels

based on different combinations of 1000 Genomes populations.

The first 1000 Genomes reference panel was created by

combining YRI (N= 88), CEU (N=85), and ASW (N=61)

populations, which were specifically chosen to provide a close

match to African American study populations. We previously

evaluated several different combinations of HapMap phase III

reference populations for our African American study population

and found that the combined YRI+CEU+ASW panel had optimal

imputation performance [22]. The YRI+CEU+ASW panel has

also been shown elsewhere to outperform other combined

HapMap phase III panels [8].

The second 1000 Genomes reference panel, having eight

populations of African (AFR) or European (EUR) descent, was

chosen as a broader match for African Americans. The combined

AFR+EUR panel included YRI, CEU, ASW, as well as Kenyans

(LWK, N=97), Finns (FIN, N= 93), Britons (GBR, N=89),

Spaniards (IBS, N=14), and Italians (TSI, N= 98). Additional

comparisons of the YRI+CEU+ASW and AFR+EUR reference

panels were made using HapMap phase III (http://hapmap.ncbi.

nlm.nih.gov/downloads/phasing/2009-02_phaseIII/

HapMap3_r2, accessed January 25, 2011) and the August 2010

release of 1000 Genomes (ftp://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/release/20100804/, accessed June 17, 2011), as shown in

Figures S3, S4, S5.

The third, most diverse 1000 Genomes reference panel used all

14 available populations from the February 2012 release of 1000

Genomes (YRI, CEU, ASW, LWK, FIN, GBR, IBS, TSI,

Columbians [CLM, N=60], Mexican Americans [MXL,

N=66], Puerto Ricans [PUR, N=55], Northern Chinese

[CHB, N=97], Southern Chinese [CHS, N=100], and Japanese

[JPT, N=89]). This ‘‘cosmopolitan’’ approach of using all

available reference populations has been advocated by others,

particularly for diverse study populations [2,5,17,23].

Imputation
As reviewed elsewhere [2], there are several software packages

with different algorithms available for genotype imputation. We

compared imputation results using four widely used programs:

IMPUTE2 version 2.2.2 [17], BEAGLE version 3.3 [24], MaCH

version 1.0.16.c [5], and MaCH-Admix (beta version 2.0.150).

MaCH and BEAGLE were previously shown to outperform other

software programs not evaluated here [25], while MaCH-Admix

and IMPUTE2 represent recent software advancements that

create tailored reference panels for individual study subjects. It is

important to note that the current version of MaCH-Admix is

a prerelease. MaCH-Admix is being developed to extend the

capabilities and shorten the computing run time of MaCH 1.0, by

incorporating a novel piecewise reference selection method that

creates the tailored reference panels. All of the available details on

the Mach-Admix beta version can be found at http://www.sph.

umich.edu/csg/yli/MaCH-Admix/.

Imputation using IMPUTE2 [17] was preceded by prephasing

the study genotypes with the ShapeIT program to estimate

haplotypes, using 500 conditioning states, an effective population

size of 17,469 as recommended for populations of African descent,

Imputation Using 1000 Genomes in African Americans
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and default settings for all other program options. The estimated

study haplotypes were then input into IMPUTE2 to impute SNPs

available on the reference haplotype panel. Imputations were done

on 4.5 MB chunks with 1 MB flanking buffers. Default options

were used, except that k_hap was set to the number of haplotypes

in each reference panel. Smaller values of k_hap would likely

produce similar accuracy at lower computational cost [17].

Imputation using BEAGLE [24] was conducted using all default

options. When using MaCH [5], model parameters (crossover and

error rates) were estimated prior to imputation by randomly

selecting a subset of 200 haplotypes from the study subjects and

running 100 iterations with the command options –compact and –

greedy. Genotype imputation was then carried out using the

model parameter estimates from the previous round with

command options of –compact, –greedy, –mle, and –mledetails

specified. When using MaCH-Admix, the step 1 imputation

settings included: –runmode EstimateParameterOnly -r 30, –

fittingstates 200, and –autoflip. MaCH-Admix step 2 setting

included: –runMode ImputeOnly, –compact, and –autoflip.

For each imputed SNP, we obtained a genotype dosage value (a

fractional value between 0 and 2 indicating the expected number

of minor allele copies) and the most likely discrete genotype, either

directly from the output of the imputation software (MaCH,

MaCH-Admix, and BEAGLE) or via conversion of the software

output (IMPUTE2). For all imputation procedures, we masked 2%

of the genotyped SNPs to allow direct comparisons of their true

and imputed genotypes. The imputation procedures were repeated

10 times with 10 different sets of randomly masked SNPs, with one

exception due to excessive computational runtime (MaCH using

the ALL panel, for which only one imputation procedure is

presented). Indel variants from 1000 Genomes panels were not

included, in order to focus on evaluating the performance of SNP

genotype imputation.

Imputation Performance Metrics
For each imputation scenario based on the different software

programs and reference panels, we calculated three imputation

performance metrics, which captured different features of impu-

tation accuracy and quality. First, after masking 2% of the

genotyped SNPs, we calculated the concordance rate as the

percentage of genotype calls for which the true genotype matches

the most likely discrete imputed genotype. This concordance rate

calculation, based on discrete imputed SNP genotypes, has been

used often as a measure of imputation accuracy [6,15,25–29].

Second, using the same masked SNPs, we calculated the

imputation quality score (IQS) as previously described by Lin

et al. to adjust the concordance rate for chance agreement

between imputed and true genotypes [30]. More specifically, the

IQS, which is partly motivated by Cohen’s kappa statistic to

quantify interrater agreement [31], controls for allele frequencies

by taking the observed agreement between imputed and true

genotypes (i.e., concordance rate) and subtracting out chance

agreement, based on the sum of products of marginal frequencies

that would occur if genotypes were called at random [30].

Therefore, the IQS metric is particularly useful for evaluating

imputation accuracy of low frequency SNPs. Concordance and

IQS results were averaged across all masked SNPs and then

averaged across the 10 different sets of randomly masked SNPs.

Third, we calculated r2hat (estimated squared correlation between

each imputed genotype and its true underlying genotype) using the

genotype dosage values and then averaged the r2hat values across

all polymorphic imputed SNPs. Each software program generates

its own imputation quality metric for each SNP (info for

IMPUTE2, allelic r2 for BEAGLE, and r2 for MaCH and

MaCH-Admix), as reviewed by Marchini and Howie [2]. The

program-specific metrics are highly correlated [2], but because

they are different in character, calculation of r2hat (script available

at http://www.sph.umich.edu/csg/yli/software.html) was needed

to generate a single, common metric to assess imputation quality

across the programs.

Given the need for computational efficiency with the large

number of imputations (10 repetitions for each imputation

procedure), our analyses focused on chromosome 22, as other

studies evaluating imputation performance have done [15,29,32].

To ensure comparability of imputation results across chromo-

somes, we conducted imputation using MaCH on chromosomes 1

and 22 with reference to YRI from HapMap phase III. Imputation

performance was slightly better on chromosome 1 (concor-

dance = 92.1% and average r2= 0.83) than on chromosome 22

(concordance = 89.2% and average r2= 0.80), likely due to a larger

number of SNPs available for comparison and slightly higher

linkage disequilibrium levels on the larger chromosome.

Results

The performance results comparing the 12 imputation strategies

(four different programs and three different reference panels from

the February 2012 release of 1000 Genomes) are shown in Figure 1

for concordance, Figure 2 for IQS, and Figure 3 for average r2hat.

Concordance and IQS served as metrics of imputation accuracy of

masked genotyped SNPs, whereas average r2hat served as a metric

of imputation quality of all imputed SNPs. Comparisons of the

imputation performance results based on HapMap phase III and

the August 2010 release of 1000 Genomes (Figures S3, S4, S5)

shows that HapMap gave the best imputation performance.

However, 1000 Genomes offers substantially denser coverage of

the genome, and we found that the February 2012 release

provided notably better imputation performance when compared

to the earlier August 2010 release.

When focusing on the 1000 Genomes February 2012 release,

the highest concordance rates were obtained using IMPUTE2 and

MaCH, and these two programs performed equally well across the

reference panels (Figure 1). Minimal differences were observed

between the most closely related panel (YRI+CEU+ASW,

concordance = 92.4% with MaCH and 92.3% with IMPUTE2)

and the most diverse panel (ALL, concordance= 92.5% with both

MaCH and IMPUTE2), despite the large discrepancy in reference

sample size. Comparisons using HapMap phase III and the

August 2010 release of 1000 Genomes also showed nearly

indistinguishable performance for IMPUTE2 and MaCH, both

of which outperformed BEAGLE and MaCH-Admix (Figure S3).

Unlike concordance, the IQS results revealed that IMPUTE2

had the highest imputation accuracy when taking MAF into

account for the 1000 Genomes (February 2012 release) reference

panels (Figure 2). The IQS results for the three reference panels

were nearly equivalent when using IMPUTE2. As shown in Figure

S4, IMPUTE2 similarly outperformed the other programs when

using reference panels from the older release of 1000 Genomes.

The IQS metric is particularly useful for evaluating performance

of low frequency SNPs, thus suggesting that the better perfor-

mance by IMPUTE2 was driven by its markedly better imputation

of low frequency SNPs.

With regard to average r2hat, IMPUTE2 outperformed all

other programs (Figure 3), but inclusion of more distantly related

subjects led to reduced overall imputation quality (average

r2hat = 0.68 for YRI+CEU+ASW, average r2hat = 0.62 for

AFR+EUR, and average r2hat = 0.55 for ALL). The pattern of

reduced overall imputation quality was entirely driven by low

Imputation Using 1000 Genomes in African Americans
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frequency SNPs (Figure 4), particularly SNPs with MAF#2%,

which represent 48%, 58%, and 64% of the imputed SNPs when

using the YRI+CEU+ASW, AFR+EUR, and ALL panels, re-

spectively. Inclusion of more distantly related subjects did not have

the same effect on average r2hat when using the August 2010

release of 1000 Genomes (Figure S5), likely due to a smaller

proportion of low frequency SNPs (e.g., 23% of imputed SNPs

with MAF#2% when based on the YRI+CEU+ASW panel and

25% when based on the AFR+EUR panel). Nonetheless, when

using the February 2012 release of 1000 Genomes, imputation

quality for low frequency SNPs was highest when using the most

closely related reference panel (average r2hat = 0.51 when using

YRI+CEU+ASW, 0.45 when using AFR+EUR, and 0.37 when

using ALL, for SNPs with MAF#2%). For SNPs in the remainder

of the MAF spectrum, the highest imputation quality was observed

when using the most diverse reference panel (average r2hat = 0.83

when using YRI+CEU+ASW and 0.86 when using either

EUR+AFR or ALL, for SNPs with MAF.2%). This pattern

resulted from poor imputation quality for low frequency SNPs in

the ALL panel that are monomorphic in the more closely related

Figure 1. Concordance resulting from four different imputation programs and three different 1000 Genomes (February 2012
release) reference panels. Concordance rates were based on masking 2% of the genotyped SNPs on chromosome 22 and comparing imputed and
true genotypes. The number of subjects corresponding to each reference panel is shown in parentheses.
doi:10.1371/journal.pone.0050610.g001

Figure 2. Imputation quality score (IQS) resulting from four different imputation programs and three different 1000 Genomes
(February 2012) reference panels. IQS results were based on masking 2% of the genotyped SNPs and adjusting the concordance rate chance
agreement between imputed and true genotypes. The number of subjects corresponding to each reference panel is shown in parentheses.
doi:10.1371/journal.pone.0050610.g002
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panels. The pattern of reduced overall imputation quality in more

diverse panels was similarly observed for the MaCH programs

(Figure 3), due to poor imputation quality of low frequency SNPs

(Figure S6 for MaCH and Figure S7 for MaCH-Admix). When

using BEAGLE, imputation quality of low frequency SNPs was

not negatively affected by the inclusion of more distantly related

populations in the AFR+EUR and ALL panels (Figure 3 and

Figure S8).

We evaluated two practical approaches to minimize the

occurrence of low frequency SNPs that are most likely mono-

morphic in African Americans. First, we used the straightforward

approach of imposing an r2hat threshold (e.g., the widely applied

r2$0.3 threshold) on the imputed SNP set, which reduced, but did

not eliminate, the occurrence of problematic low frequency SNPs.

For instance, 32.7% of the SNPs imputed based on the ALL panel

were monomorphic in the YRI+CEU+ASW panel; after imposing

the r2hat$0.3 threshold, 11.0% of the remaining SNPs were

monomorphic in the more closely related panel. As an alternative

approach, SNPs can be filtered out based on their MAF in

reference panel subpopulations (e.g., removing SNPs from the

ALL reference panel that are monomorphic in the YRI+-
CEU+ASW panel) before or after imputation. For pre-imputation

filtering, IMPUTE2 offers a filtering option (‘‘-filt_rules_1’’) that

removes reference SNPs that are monomorphic in the panel of

interest (e.g., YRI+CEU+ASW for African Americans), hence

leaving fewer input SNP genotypes and speeding the imputation

procedure. For postimputation filtering, SNPs are imputed using

all available reference SNPs as input and then those that are

monomorphic in the panel of interest are removed. We applied

this postimputation filtering strategy to our imputation results.

When considering only the 312,474 SNPs that are polymorphic

across the reference panels (i.e., SNPs that are polymorphic in the

YRI+CEU+ASW panel) out of 475,371 total SNPs on chromo-

some 22, use of the ALL panel resulted in the highest average

r2hat, both overall (Figure S9 for all programs) and across the

MAF spectrum (Figure S10 for IMPUTE2 specifically).

With regard to computational efficiency among the imputation

programs, Howie et al. previously found that IMPUTE2 runs

considerably faster and requires far less computational memory

than BEAGLE [17]. Our own imputation analyses found that

IMPUTE2 and MaCH-Admix were best capable of being scaled

to 1000 Genomes imputations, as expected given the recent

developments in these newest programs to accommodate larger

reference panels while minimizing the impact on computational

burden.

Discussion

The 1000 Genomes project is being increasingly used in GWAS

for SNP genotype imputation, given its highly dense SNP coverage

and diverse selection of reference populations. However, there are

no well-established strategies to optimize imputation performance,

especially in admixed study populations. Our study extends the

findings of previous studies evaluating imputation performance

using 1000 Genomes reference panels [8,29,33,34], by the

following: (1) focusing on the more recent February 2012 release

of 1000 Genomes, (2) considering the most diverse ALL reference

panel, and (3) making comparisons using recently developed

imputation programs for which the ALL panel are specifically

advocated. We found that imputation accuracy (based on

concordance and IQS results) was comparable across the reference

panels. The highest overall imputation quality (based on average

r2hat results) was observed for the most closely related

YRI+CEU+ASW panel, but this finding was entirely driven by

low frequency SNPs, most notably SNPs with MAF#2%. More

specifically, imputation quality based on the most diverse ALL

panel was reduced by an abundance of population-specific SNPs

that are likely absent in African Americans but present in other

populations with differing MAF and linkage disequilibrium

structures. The ALL reference panel had the highest overall

imputation quality when these low frequency, population-specific

SNPs were not considered, and this panel resulted in the highest

Figure 3. Average r2hat values resulting from four different imputation programs and three different 1000 Genomes (February
2012) reference panels. r2hat values were averaged across all imputed SNPs on chromosome 22. The number of subjects corresponding to each
reference panel is shown in parentheses.
doi:10.1371/journal.pone.0050610.g003
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quality for common SNPs (MAF.2%), regardless of the popula-

tion specificity.

Several imputation programs are available, and our results

showed that the highest genotype imputation accuracy and quality

were achieved in African Americans using IMPUTE2. The

IMPUTE2 program is also computationally efficient [17]. Chanda

et al. [8] previously reported that IMPUTE and MaCH

performed equally well in African Americans and that both

programs performed consistently better than BEAGLE, regardless

of the 1000 Genomes reference panel used from the August 2010

and June 2011 releases. Our comparisons of the latest IMPUTE

version (i.e., IMPUTE2), BEAGLE, MaCH, and MaCH-Admix

with reference to more recent 1000 Genomes panels (February

2012 release) showed the same pattern as Chanda et al. [8] when

using the concordance metric to evaluate imputation accuracy.

However, concordance can overestimate the agreement of

imputed and true genotypes when the MAF is low, due to random

chance [30]. By taking the observed agreement (i.e., concordance)

and subtracting out the chance agreement derived from the SNP’s

allele frequencies, IQS is less prone to overestimating the

imputation accuracy of low MAF SNPs. Our calculation of the

IQS metric demonstrated an advantage of using IMPUTE2 to

optimize imputation accuracy, a pattern which was not apparent

from the comparison of concordance rates. The average r2hat

metric further demonstrated that IMPUTE2 outperformed the

other imputation programs, regardless of the reference panel used.

Interestingly, unlike IMPUTE2 and the MaCH programs, the

overall imputation quality of BEAGLE was not negatively affected

by the inclusion of more distantly related reference subjects–

a pattern that might reflect the differing algorithms that underlie

BEAGLE versus the IMPUTE2 and MaCH programs. BEAGLE

is based on localized haplotype clusters, whereas extensions of the

IMPUTE and MaCH programs are based on population genetic

principles for estimating the conditional distribution of haplotypes

[15].

The cosmopolitan approach of combining all available refer-

ence populations incurs more computational burden than other

imputation approaches, but it has been advocated as the simplest

and most practical approach without sacrificing performance

[5,6,17,23]. Studies focusing specifically on African American

study populations have shown that inclusion of diverse reference

panels is clearly advantageous over single ethnic panels [8,28], but

the optimal extent of diversity has not been fully evaluated. In

European-derived study populations, Jostins et al. suggested that

using diverse reference populations improved imputation of low

frequency SNPs. However, their conclusion was drawn from

HapMap phase III imputed SNPs that had already passed an r2

threshold of 0.9 [23]. Our study similarly showed that increasing

the reference sample size by including more distantly related

populations improved imputation quality, but this pattern

pertained mostly to SNPs that were present in populations more

closely related to African Americans. To efficiently remove the

occurrence of low frequency SNPs that are most likely mono-

morphic in African Americans, investigators should consider

filtering SNPs based on their MAF in subpopulations of interest.

We found that postimputation filtering based on MAF in 1000

Genomes YRI+CEU+ASW reference subjects alleviated the

problem with reduced overall imputation quality when including

Figure 4. Average r2hat, based on imputation using IMPUTE2, across the minor allele frequency (MAF) spectrum. Imputation was
conducted for all SNPs available on the YRI+CEU+ASW (N=234, in red), AFR+EUR (N=625, in green), or the ALL (N= 1,092, in blue) reference panel
from 1000 Genomes. Imputed polymorphic SNPs were divided into MAF intervals of 1%, and their average r2hat values were calculated within each
interval.
doi:10.1371/journal.pone.0050610.g004
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more distantly related reference subjects. We also found that the

alternative approach of applying an r2 threshold (e.g., the widely

applied r2$0.3 threshold) was less favorable because it reduced

but did not eliminate the occurrence of monomorphic SNPs in

African Americans. Further, setting a stringent r2 threshold has

been shown empirically to reduce statistical power, especially in

regions of low linkage disequilibrium [35]. Our findings likely

extend to other admixed populations. Future work is needed to

evaluate the impact of using the 1000 Genomes ALL reference

panel on low frequency SNPs for European-derived and other

populations.

There are two potential limitations to the current study that

should be considered when interpreting its results. First, we

obtained genome-wide genotype data for African American study

subjects from Illumina’s iControlDB, and there could be un-

recognized problems in the data collection. Use of publicly

available genotype data for GWAS is becoming more common as

a resourceful approach to testing analytic methods (as done in our

study), among other uses. Genetic studies using controls from

public sources require stringent QC procedures, as demonstrated

by our population structure analyses showing that several of the

publicly available African American study subjects were ancestral

outliers, as previously reported [36]. Second, the imputation

performance patterns were deduced from chromosome 22. We

compared imputation performance metrics between the largest

and smallest autosomes (chromosomes 1 and 22) using the YRI

reference population, and we found that imputation quality and

accuracy were somewhat better on the larger chromosome 1 but

not different in character from the chromosome 22 results. Other

chromosomes likely have higher performance metric values than

those presented here for chromosome 22, but we do not expect the

genome-wide imputation patterns to differ greatly.

Our study is the first to highlight important considerations when

using the cosmopolitan approach with 1000 Genomes to conduct

imputation in an admixed study population, particularly an

African American population. Imputation quality of all low

frequency SNPs was relatively low, and imputation of low

frequency, population-specific SNPs was especially prone to

imputation error. Because imputation error leads to a loss of

statistical power [37,38], p-values of true association signals might

be attenuated for the low frequency SNPs. Further, inclusion of

more distantly related reference panels for imputation in African-

derived study populations has been suggested to weaken associ-

ation signals particularly near loci under strong selective pressure

[39]. Regardless of the software program implemented, an optimal

balance for African American studies may be provided by focusing

GWAS analyses on SNPs imputed with reference to the ALL

panel and then following up implicated regions based only on

SNPs that are present in more closely related populations.

Supporting Information

Figure S1 Quality control procedures for African Amer-
icans genotyped on the Illumina HumanHap550v3
BeadChip from Illumina’s iControlDB. Quality control

procedures were conducted using PLINK, unless otherwise stated.

At each step, the number of excluded subjects is provided. For

each pair or cluster of subjects identified in steps 2 and 3, we

retained only the one subject having the highest call rate.

(DOC)

Figure S2 STRUCTURE triangle plot showing estimat-
ed ancestral proportions of African American study
subjects relative to HapMap populations. African Amer-

ican study subjects from iControlDB (in red) were genotyped on

the Illumina HumanHap550 BeadChip version 3. Ancestral

proportion estimates were based on 10,000 randomly selected

HapMap SNPs in linkage equilibrium. The triangle’s vertices

represent West Africans (YRI subjects in blue), European

Americans (CEU subjects in yellow), and East Asians (CHB

subjects in green), and the triangle’s edges indicate the ancestral

proportions. African Americans from HapMap (ASW subjects in

black) were also included for admixture comparison. African

American study subjects with an African ancestry ,60% were

excluded from further analysis.

(DOC)

Figure S3 Concordance resulting from four different
imputation programs and three different reference
panels from either HapMap phase III or 1000 Genomes
(August 2010 release). Concordance rates were based on

masking 2% of the genotyped SNPs on chromosome 22 and

comparing imputed and true genotypes. The number of subjects

corresponding to each reference panel is shown in parentheses.

(DOC)

Figure S4 Imputation quality score (IQS) resulting from
four different imputation programs and three different
reference panels from either HapMap phase III or 1000
Genomes (August 2010 release). IQS results were based on

masking 2% of the genotyped SNPs and adjusting the concor-

dance rate chance agreement between imputed and true

genotypes. The number of subjects corresponding to each

reference panel is shown in parentheses.

(DOC)

Figure S5 Average r2hat values resulting from four
different imputation programs and three different
reference panels from either HapMap phase III or
1000 Genomes (August 2010 release). r2hat values were

averaged across all imputed SNPs on chromosome 22. The

number of subjects corresponding to each reference panel is shown

in parentheses.

(DOC)

Figure S6 Average r2hat, based on imputation using
MaCH, across the minor allele frequency (MAF) spec-
trum. Imputation was conducted for all SNPs available on the

YRI+CEU+ASW (N=234, in red), AFR+EUR (N=625, in

green), or ALL (N= 1,092, in blue) reference panels from 1000

Genomes. Imputed polymorphic SNPs were divided into MAF

intervals of 1%, and their average r2hat values were calculated

within each interval.

(DOC)

Figure S7 Average r2hat, based on imputation using
MaCH-Admix, across the minor allele frequency (MAF)
spectrum. Imputation was conducted for all SNPs available on

the YRI+CEU+ASW (N=234, in red), AFR+EUR (N=625, in

green), or ALL (N= 1,092, in blue) reference panels from 1000

Genomes. Imputed polymorphic SNPs were divided into MAF

intervals of 1%, and their average r2hat values were calculated

within each interval.

(DOC)

Figure S8 Average r2hat, based on imputation using
BEAGLE, across the minor allele frequency (MAF)
spectrum. Imputation was conducted for all SNPs available on

the YRI+CEU+ASW (N=234, in red), AFR+EUR (N=625, in

green), or ALL (N= 1,092, in blue) reference panels from 1000

Genomes. Imputed polymorphic SNPs were divided into MAF
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intervals of 1%, and their average r2hat values were calculated

within each interval.

(DOC)

Figure S9 Average r2hat values resulting from four
different imputation programs and three different 1000
Genomes (February 2012) reference panels, considering
only imputed SNPs that were polymorphic on the
YRI+CEU+ASW panel. r2hat values were averaged across the

312,474 relevant imputed SNPs out of 475,371 imputed SNPs on

chromosome 22. The number of subjects corresponding to each

reference panel is shown in parentheses.

(DOC)

Figure S10 Average r2hat, based on imputation using
IMPUTE2, across the minor allele frequency (MAF)
spectrum. Imputation was conducted for all SNPs available on

the YRI+CEU+ASW (N=234, in red), AFR+EUR (N=625, in

green), or ALL (N= 1,092, in blue) reference panels from 1000

Genomes, but only SNPs present across all reference panels (i.e.,

YRI+CEU+ASW) are shown. Imputed polymorphic SNPs were

divided into MAF intervals of 1%, and their average r2hat values

were calculated within each interval.

(DOC)

Table S1 iControlDB subjects genotyped on the Illu-
mina HumanHap550v3 BeadChip, who were identified
as African American but their genetic data indicated less
than 60% African ancestry. These 179 subjects were excluded

due to ancestral misclassification.

(DOC)
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