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Abstract

Probing molecular brain mechanisms related to increased suicide risk is an important issue in biological psychiatry research.
Gene expression studies on post mortem brains indicate extensive changes prior to a successful suicide attempt; however,
proteomic studies are scarce. Thus, we performed a DIGE proteomic analysis of post mortem tissue samples from the
prefrontal cortex and amygdala of suicide victims to identify protein changes and biomarker candidates of suicide. Among
our matched spots we found 46 and 16 significant differences in the prefrontal cortex and amygdala, respectively; by using
the industry standard t test and 1.3 fold change as cut off for significance. Because of the risk of false discoveries (FDR) in
these data, we also made FDR adjustment by calculating the q-values for all the t tests performed and by using 0.06 and 0.4
as alpha thresholds we reduced the number of significant spots to 27 and 9 respectively. From these we identified 59
proteins in the cortex and 11 proteins in the amygdala. These proteins are related to biological functions and structures
such as metabolism, the redox system, the cytoskeleton, synaptic function, and proteolysis. Thirteen of these proteins
(CBR1, DPYSL2, EFHD2, FKBP4, GFAP, GLUL, HSPA8, NEFL, NEFM, PGAM1, PRDX6, SELENBP1 and VIM,) have already been
suggested to be biomarkers of psychiatric disorders at protein or genome level. We also pointed out 9 proteins that
changed in both the amygdala and the cortex, and from these, GFAP, INA, NEFL, NEFM and TUBA1 are interacting
cytoskeletal proteins that have a functional connection to glutamate, GABA, and serotonin receptors. Moreover, ACTB, CTSD
and GFAP displayed opposite changes in the two examined brain structures that might be a suitable characteristic for brain
imaging studies. The opposite changes of ACTB, CTSD and GFAP in the two brain structures were validated by western blot
analysis.
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Introduction

Suicide is a human attribute without a proper equivalent in

animals; however, some behavioural traits, such as aggression,

hopelessness, and impulsivity, are correlated with suicide and can

be reproduced in animals [1]. Suicidal behaviour often occurs in

conjunction with different psychiatric diseases, such as major

depression or schizophrenia [2]. Major depression and bipolar

disorder generally increase the incidence of suicide [3].

Although suicide is a complex behaviour that is often preceded

by suicidal thoughts, it can occur as the outcome of an impulsive

action [4]. The altered serotonergic transmission theory is the

most widely emphasised cellular mechanism of suicide [4,5].

Suicide is linked with the downregulation of serotonin (5HT)

release and/or uptake [6] together with 5-HT1A receptor

dysfunction. These dysfunctions are thought to be major factors

in several mental disorders, including major depression [7];

however, the current gene expression data suggest that suicide is

possibly correlated with extensive changes in the brain and is not

restricted to only one neurotransmitter system [8,9,10]. In addition

to changes that have been observed in the serotonergic system,

studies on brain samples of people who have committed suicide

suggest that GABAergic and glutamatergic transmissions are also

involved [11,12]. Furthermore, changes in the expression of glia-

derived genes and glial fibrillary acidic protein (GFAP) in

depression and other psychiatric illnesses indicate that suicide-

related molecular alterations may not be restricted to neurons

[13]. Most likely, molecular mechanisms in the brain that lead to

suicide coexist with pathological changes along several functional

protein networks. Suicide-brain studies that show that hyper-
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methylation of the ribosomal-RNA gene promoter could cause

aberrant changes in protein synthesis [14] support this idea.

Psychoactive drugs can change the risk of suicide, and there are

ongoing efforts to find potential biomarkers to predict suicidal

behaviours [15,16,17,18,19,20]. Thus, understanding the molec-

ular brain mechanisms involved in suicide is important for the

development of both psychoactive drugs and predictive diagnostic

tools.

Screening technology progress in the past two decades (e.g., the

gene chip and the 2D gel-based and liquid-based proteomic

techniques) have provided new insights into the molecular

processes of the brain [21]. Because suicide cannot be observed

in animals, investigating post mortem human brains with a relatively

short post mortem delay is a good alternative. Particularly, the post

mortem human brain proteome reflects the complex pathological

changes of protein expression in the human brain while alive [21].

A homogeneous sample is usually unlikely in such studies because

suicide and its associated psychiatric disorders and medications

differentially influence various underlying molecular mechanisms.

Therefore, in the present study we used brain samples from people

who had hanged themselves and from individuals who died due to

acute cardiac arrest to decrease the heterogeneity of data. We

examined prefrontal cortex and amygdala samples because mood

disorders invoke several neuronal mechanisms in these brain areas

and are correlated with suicide [1,7].

Our aim was to find changes in the proteome of the prefrontal

cortex and amygdala that correlated with suicide. Changes in

protein expression patterns may reflect molecular changes of

psychopathological states and could provide biomarkers for suicide

risk.

Methods

Ethics Statement
The human brains were obtained from the Lenhossek Human

Brain Program, Human Brain Tissue Bank, Budapest. Brains were

taken from persons who had died without any known neurode-

generative diseases. The collection of brains and the microdissec-

tion of the brain samples for research have been performed by the

approval of the Regional Committee of Science and Research

Ethics of the Semmelweis University, Budapest (TUKEB: 32/92)

and the Ethics Committee of the Ministry of Health, Hungary,

2002 according to the principles expressed in the Declaration of

Helsinki. Tissues were collected only after a family member gave

informed (written) consent.

Sample Collection and Preparation for Proteomics
We used brain samples from male subjects. The age distribu-

tions of suicide (6 brains; age range: 41–79 years; mean age: 52.7;

SD: 14.2) and control (6 brains; age range: 47–85 years; mean age

average: 64.8; SD: 17.2) groups did not differ significantly

(p = 0.1481, Wilcoxon test; Table 1). Suicide group brain samples

came from subjects who had hanged themselves, control group

brain samples came from victims of cardiac arrest. No information

was available whether the cardiac arrest in control subjects

happened during sleep or not. The post mortem interval (PMI) did

not differ significantly between groups (p = 0.0683, Wilcoxon test;

Table 1). We used two brain areas - the prefrontal cortex and the

amygdala – to conduct proteomic analyses. We treated and

handled brain samples as described in a previous publication [22];

briefly, brains were removed from the skull 2–6 hours after death,

frozen, and sliced into 1– to 1.5 cm-thick coronal sections. We

used the punch technique to micro-dissect the brain areas. Tissue

samples were stored at –80uC until used. In this study, we

Table 1. Description of participants in the present study.

Brain No. Gender Age
Post mortem
interval (PMI) Cause of death Neuropathological diagnosis

#138 S male 52 3 h suicide (hanging) lack of specific neuropathological alteration

#139 S male 79 4 h suicide (hanging) lack of specific neuropathological alteration

#143 S male 43 3 h suicide (hanging) lack of specific neuropathological alteration

#144 S male 42 4 h suicide (hanging) lack of specific neuropathological alteration

#173S male 43 6 h suicide (hanging) NA

#174S male 57 6 h suicide (hanging) NA

#11 C male 47 2 h acute cardiac insufficiency,
chronic myocardial infarction,
chronic heart failure,
coronary sclerosis

NA

#12 C male 80 2 h acute cardiac insufficiency,
acute heart failure, coronary
sclerosis, senile, hypertensive
arteriosclerosis

NA

#111 C male 55 3 h cardiac insufficiency,
coronary stenosis

NA

#151 C male 47 2 h acute myocardial infarction encephalopathia alcoholica

#164 C male 85 3 h cardiorespiratory insufficiency lacunar encephalopathy

#213 C male 75 5 h cardiac insufficiency vascular leucoencephalopathy
small vessels disease
lacunar stroke

NA: not available; S: suicide; C: control.
doi:10.1371/journal.pone.0050532.t001
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processed one cortex and one amygdala samples from 6 suicide

and 6 control subjects, meaning a total of 24 human post mortem

brain tissue samples.

The brain sample preparation protocol was similar to previous

studies [23,24]; briefly, we mechanically homogenised tissue

samples in a cooled lysis buffer (7 M urea; 2 M thiourea;

20 mM Tris; 5 mM magnesium acetate, 4% CHAPS; Protease

Inhibitor Mix (1:1000), GE Healthcare, Uppsala, Sweden).

Samples were then sonicated and centrifuged (1 h, 14000 g,

4uC). The pH of the supernatant was adjusted to 8.0 and protein

concentrations of the samples were measured by PlusOne Quant

Kit (GE Healthcare). We labelled 5 mg of each protein sample with

CyDyeTM DIGE Fluor Labelling kit for Scarce Samples (GE

Healthcare) at a concentration of 4 nmol/5 mg proteins according

to instructions.

We labelled the experimental samples (control and suicide

samples) as Cy5 and the pooled internal standard samples

(reference or standard sample, is a pool comprising equal amounts

(2.5 mg) of each of the experimental samples being compared) as

Cy3. The pooled standard represents the average of all the

samples being analyzed and ensures all proteins present in the

experimental samples are represented. The pooled standard is

used to normalize protein abundance measurements across

multiple gels in an experiment. As a consequence each gel will

contain an image with a highly similar spot pattern, simplifying

and improving the confidence of inter-gel spot matching and

quantification [25].

We multiplexed the differently labelled samples in the same gel.

Sample multiplexing in DIGE greatly refines the detection of

changes at the protein level between samples [26], as variation in

spot intensities due to experimental factors, for example protein

loss during sample entry into the strip, will be the same for both

samples within a single DIGE gel [25].

The multiplexed, differently labelled samples (5 mg protein of

Cy5-labelled and 5 mg protein of Cy3-labelled reference) were

dissolved in isoelectric focusing (IEF) buffer containing ampholytes

(0.5 v/v %), DTT (0.5 m/v %), 8 M urea, 30% glycerine, 2%

CHAPS, and rehydrated passively onto 24 cm nonlinear IPG

strips (pH 3–10 NL, GE Healthcare) overnight at room temper-

ature. After rehydration, the strips were placed to first dimension

isoelectric focusing (IPGPhore, GE Healthcare) for 24 h to attain a

total of 80 kVh. The applied currents were: 30 V for 3.5 h step,

500 V for 5 h gradient, 1000 V for 6 h gradient, 8000 V for 3 h

gradient, and 8000 V for 6.5 h step mode. Focused proteins were

reduced by equilibrating with buffer containing 1% (w/v)

mercaptoethanol for 20 min. After reduction the IPG strips were

loaded onto 10% polyacrylamide gels (24620 cm), and SDS-

PAGE was conducted at 2 W/gel for 1 h and at 10 W/gel in the

second dimension.

We prepared 12 gels from both areas because one experimental

sample and one pooled standard reference sample can be loaded

into one gel with the Labelling kit for Scarce Samples (GE

Healthcare). Following electrophoresis, gels were scanned by a

Typhoon TRIO+ Variable Mode Imager (GE Healthcare) using

appropriate lasers and filters with the photomultiplier tube (PMT)

biased at 600 V. Cy3 images were scanned using a 532 nm laser

and an emission filter of 580 nm BP (band pass) 30. Cy5 images

were scanned using a 633 nm laser and a 670 nm BP30 emission

filter. All gels were scanned at 100 mm resolution. Images in

different channels were overlaid using selected colours, and

differences were visualised using Image Quant software (GE

Healthcare). We used the DeCyder 6.5 2D gel evaluation software

(GE Healthcare); the Differential In-gel Analysis (DIA) module to

perform differential protein analyses and the Biological Variance

Analysis (BVA) module to gel-to-gel matching and statistical

analysis of protein-abundance change between samples.

In the DIA module the scanned images of the sample and the

internal standard were overlaid and the algorithms within the

software co-detected the spots in the gel. The estimated number of

spots for each co-detection procedure was set to 2500. When

calculating the abundance ratios for spot pairs in co-detected

sample images, the spot volumes of the component spot maps

needed to be normalized and the log standardized abundances

were calculated.

The statistical analysis of protein-abundance change between

samples was made by the BVA module. The BVA matched the

quantified spots of all gels to a chosen master gel. According to the

standard proteomic protocol [25], the threshold for the differential

expression was set at a minimum fold change of 1.3 as we used

human samples and the quality of the gels were adequate. We

determined the p-values (Student’s t-test) for each protein spot

(p,0.05).

To identify proteins in the spots of interest, we performed

preparative 2D electrophoresis using 800 mg of proteins per gel.

We made four preparative gels and picked the relevant spots for

protein identification.

Protein Identification
We extracted peptides from gel spots after in-gel digestion by

Trypsin Gold (for a detailed protocol, see http://ms-facility.ucsf.

edu/ingel.html). Peptide separation before MS analysis was done

by HPLC started by inline trapping on to a nanoACQUITY

UPLC trapping column (Symmetry, C18 5 mm, 180 mm 6
20 mm; 15 ml/min with 3% solvent B) followed by a linear

gradient elution (solvent B: 10% to 50% in 40 min, flow rate:

250 nl/min; nanoACQUITY UPLC BEH C18 Column, 1.7 mm,

75 mm 6200 mm). Solvent A was composed of 0.1% formic acid

in water; solvent B was composed of 0.1% formic acid in

acetonitrile. MS measurements started by using information-

dependent acquisition mode, using a Waters nanoAcquity

nanoUPLC system coupled to a Micromass qTOF tandem mass

spectrometer (Waters, USA). Next, 3 s collision-induced dissoci-

ation (CID) analyses on multiple computer-selected ions were

performed for amino acid sequence determination.

Database Search
We converted raw MS data into a Mascot generic file using the

Mascot Distiller software (version 2.1.1.0). We used the Mascot

search engine (version 2.2.2) to search the resulting peak lists

against the NCBI non-redundant database without species

restriction (6,833,826 sequences), to eliminate false positive hits.

We submitted monoisotopic masses with a peptide mass tolerance

of at least 50 ppm and a fragment mass tolerance of at least 0.1

Da. We set the carbamidomethylation of Cys as a fixed

modification, and we permitted acetylation of the protein N-

termini, methionine oxidation and pyroglutamic acid formation

from N-terminal Gln residues as variable modifications. The

acceptance criterion was the identification of at least two

significant peptides per protein (i.e., peptide score .52, p,0.05).

Correction for False Discovery Rate (FDR)
When applying statistical tests to 2-D gel data, one is faced with

the so-called multiple hypothesis testing problem: for each

matched and quantified spot series, a separate test is done. Each

test has a certain probability of giving a false positive result, and

the large number of tests can produce a high number of false

positives [27]. This has led to the application of methodologies to

control the false discovery rate (FDR) where FDR is the rate of
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false positive results among all profiles that were tested positive

(type I errors).

The original FDR methodology was considered to be too

conservative for discovery experiments consequently, an extension

to the FDR was developed by Storey that calculates a q-value [28].

The q-values were calculated from the p-values obtained for all

features within the study with the statistics software, R (R

Development Core Team (2011)). R: A language and environment

for statistical computing (R Foundation for Statistical Computing,

Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-

project.org/) [29] by using an easy to use tool (QVALUE software

ver. 1.0) developed by Storey and Tibshirani [28]. The frequency

distributions of P-values were used to estimate the proportion of

features that are unchanging; this is then used to estimate the false

discovery rate (Fig. S1).

Careful observation of the P-values histograms suggested that

the shape of the histograms were not the most desirable shape,

although they were acceptable. Note, that the Student’s t test we

used is a simple test that assumes the data are randomly sampled

from normal distributions and shows homogeneity of variance. In

DIGE with the traditional three-dye approach, Karp et al.

demonstrated that the final standardized abundance data for the

spots are not truly independent [30]. However, we used the two-

dye design in this study where the Student’s t test was adequate

[30,31].

The histograms of P-values of the prefrontal cortex and

amygdala were dense near zero and became less dense as the P-

values increased. The amygdala P-histogram contained a wider

peak indicating that less spots were detected as significantly

changing. By observing their q-value cut-off histograms (Fig. S1)

we used 0.06 and 0.4 as q-values alpha thresholds for FDR

adjustment of significant spots of the prefrontal cortex and

amygdala, respectively.

Functional Clustering of Identified Proteins
Following an extensive literature search, we formed the

functional protein clusters using PDB (http://www.pdb.org, La

Jolla, CA, USA), ExPASy and UniProt databases (http://www.

expasy.org and http://www.uniprot.org, respectively; Swiss Insti-

tute of Bioinformatics, Switzerland). From our data pool we

selected 11 proteins that changed in both the amygdala and the

cortex for detailed protein interaction modelling analyses using

PathwayStudioH 6.2 software (Ariadne Genomics, Inc., Rockville,

MD, USA). The protein network model created was manually

verified using the PubMed database (http://www.ncbi.nlm.nih.

gov, MD, USA).

Western Blot
Frozen brain samples were homogenized as described earlier

[24]. Protein lysates (20 mg) were resolved on a 10% polyacryl-

amide gel. Proteins were transferred onto a nitrocellulose

membrane (Bio-Rad, USA). Membranes were blocked in 5%

BSA in TRIS-Tween buffer (500 mM TRIS, 150 mM sodium

chloride, pH 7.4, and 0.05% Tween 20 (Sigma)) for 1 h,

incubated with polyclonal anti-cathepsin 1B (1:1000, Santa Cruz

Biotechnology, CA, USA), anti-GFAP (1:1000, DAKO, Denmark)

or anti-actin (1:5000, Sigma, Hungary) antibodies in TRIS-Tween

buffer for 24 h at 4uC. After incubation with ECL-HRP-

conjugated secondary antibody (1:5000, GE Healthcare, Ger-

many), bands were visualized using a Chemiluminescence kit

(BioRad, CA, USA). Ponceau staining was used as control for

equal protein load and transfer.

Results

We used DIGE proteomics technology to investigate the

differences in the protein expression pattern of suicide compared

to control brain samples. We detected a total of 2,465 spots (after

exclusion of false spots) from the prefrontal cortex and 2,115 from

the amygdala on the master gels, defined to be the gel containing

the most spots. Representative gel is shown in Figure 1. We

performed the spot gel-to-gel matching with the DeCyder 6.5

software (GE Healthcare) BVA module and after careful and

rigours manual validation we matched 681 spots in the prefrontal

cortex samples and 696 in the amygdala samples. From these

matched spots with the t test and 1.3 fold change as cut off we

found 46 significant differences between the control and suicide

prefrontal cortex samples from which we could identify 84 proteins

(see Table S1). Regarding the amygdala, 16 matched spots showed

significant differences, and 20 proteins were identified from them

(see Table S2). After FDR adjustment we had 27 significant spots

in the prefrontal cortex and 9 significant spots in the amygdala.

This way the number of protein ‘‘hits’’ in the proposed profile

reduced to 59 proteins in the prefrontal cortex and 11 proteins in

the amygdala (see bold-italic gene names in Tables 2 and 3).

Clustering of proteins in the prefrontal cortex revealed the

following categories: cytoskeleton, signalling, metabolism, protein

processing, development, synapse and neuron, proteolysis, RNA/

DNA metabolism, redox system, and glia cell marker (see Table 2).

Changes in the protein expression pattern of the amygdala were

smaller, but they formed almost the same clusters as the cortical

protein changes (see Table 3). The direction of change in the two

brain structures was the opposite for several proteins. We

identified several proteins in more than one spot of the 2D gel,

most likely due to posttranslational or post mortem processing. Thus,

whenever more than one arrow is included, they represent the

number of spots in which the protein was identified; the direction

of each arrow shows the direction of change in a certain spot (see

Tables 2 and 3). The numerical values of changes and p-values of

significance are shown in the Supplementary material (see Table

S1 and S2).

Functional protein clusters of the amygdala and prefrontal

cortex demonstrated both similarities and differences in the brains

of suicide victims compared to controls. Of the nine proteins

whose levels were altered in both the brain structures (Table 4),

three (actin (ACTB), glial fibrillary acidic protein (GFAP) and

cathepsin D (CTSD)) showed altered levels in opposing directions;

elevated in the amygdala and lower in the cortex.

In an attempt to validate our proteomic results, western blot

analysis was carried out on the proteins that showed opposing

directions of change in the two brain structures as these proteins

are the most promising biomarker protein candidates, e.g. for

brain imaging PET probe targets. Expressions of cathepsin

(p = 0.0321) and GFAP (p = 0.0192) were significantly decreased

in the suicide prefrontal cortex samples compared to the control

samples, while in the amygdala, the expression of cathepsin

(p = 0.0164) and GFAP (p = 0.0383) significantly increased in

suicide samples (Figure 2). In case of the actin we also observed

decreased level in the cortex and increased level in the amygdala

of suicide samples although these changes were not significant

because of high SD and low n (Figure 2).

Another set of proteins displayed parallel changes in both brain

structures: creatin kinase B-type (CKB), alpha-internexin (INA),

neurofilament light polypeptide (NEFL), neurofilament medium

polypeptide (NEFM), tubulin alpha-1B chain (TUBA1A) and heat

shock cognate 71 kDa protein (HSPA8). We did not find proteins
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change simultaneously in the prefrontal cortex and amygdala in

functional categories: signalling, redox system and development.

Interestingly, nearly half of the altered proteins in the wider data

pool had already been identified as indicative factors of suicide risk

(see Table 2 and 3). In our study, we identified 35 proteins from

the cortex and 16 proteins from the amygdala that had been

previously linked to schizophrenia. We also identified 21 protein

changes from the cortex and 9 from the amygdala that are related

to depression as well as 5 proteins from the cortex and 2 proteins

from the amygdala mentioned in the suicide literature (see Table 2

and 3). In this study, we identified 43 proteins from the cortex and

2 proteins from the amygdala that have never been connected to

schizophrenia or depression.

Discussion

In this study, we found changes in the expression of several

proteins in the amygdala and the prefrontal cortex of suicide

victims using proteomics technology. Our data reflect the widely

accepted idea that suicide is the result of complex interactions of

psychopathology-related molecular events [32,33,34,35,36] be-

cause several of the altered proteins have already been linked to

psychiatric disorders such as schizophrenia or depression (see

Table 2 and 3). Thus, our results are in agreement with the clinical

observations that report coexisting psychopathological symptoms

that can lead to suicide [37,38,39]. The proteomic changes

detected in our study and the results of gene chip studies [9,11,40]

show little overlap, which is in agreement with the fact that only a

fraction of transcribed genes result in protein expression. In

addition, differences in sample preparation, differences in sensi-

tivity of protein or DNA/RNA detection and differences in the

brain structures sampled may explain these differences. Similarly,

the hyper-methylation of ribosomal-RNA gene promoter observed

in suicide victims [14] might explain the widespread protein

changes observed. Therefore, our data complement gene-chip and

target-oriented mRNA studies [11,12].

Methodological Considerations
The applied proteomics methodology provides information on

only a fraction of the proteome at one time; thus, although our

results indicate certain functional processes, they do not reveal the

complete functioning protein network [41]. The number of

different proteins in a cell is estimated to be around 30,000, and

the DIGE technology can detect only 2,000–4,000 (detecting

2,000 proteins is routine) [42,43]. Nevertheless, the number of

detected proteins is large enough to treat as a multi-spot index of

change in the cellular protein network and suggests possible

biomarker proteins of suicide. Additional information can be

Figure 1. Representative gel image. The first dimension was carried out in pH 3–10 NL IPG strip and the second dimension was 24620 cm 10%
SDS PAGE. Part A shows the overlaid image, part B shows the standardized log abundance of a representative spot (2406, prefrontal cortex) on the
different gels, part C shows 3D views of the individual spots (C1–C6: control brains; S1–S6: suicide brains).
doi:10.1371/journal.pone.0050532.g001
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Table 2. Functionally clustered protein changes in the prefrontal cortex.

CYTOSKELETON

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

*+ACTB
[82]

Actin, cytoplasmic 1 Q P60709 Cytoplasm, cytoskeleton Structural constituent of cytoskeleton, cell motion

*INA
[83], [84],
[85], [86]

Alpha-internexin q Q16352 Neurofilament Cell differentation, nervous system development, structural
constituent of cytoskeleton

*+NEFL
[87], [66],
[88], [89]

Neurofilament, light
polypeptide 68kDa

qqQ P07196 Axon, neurofilament Maintenance of neuronal caliber, axon cargo transport

*NEFM
[69]

Neurofilament, medium
polypeptide

qqqq Q4QRK6 Axon, intermediate
filament, neurofilament,
neuromuscular junction

Axon cargo transport, microtubule/neurofilament
cytoskeleton organization, regulation of axon diameter

SERPINB3 Serpin B3 Q P29508 Cytoplasm Protein binding, serine-type endopeptidase inhibitor activity

*TUBA1A
[90]

Tubulin alpha-1B chain qqQ P68363 Microtubule Microtubule-based movement, protein polymerization

*TUBA1B
[90]

Tubulin alpha-1C chain q Q9BQE3 Microtubule Major constituent of microtubules, microtubule-based
movement, protein polymerization

*TUBA1C
[90]

Tubulin alpha-4A chain qqQ P68366 Cytoplasm, microtubule Microtubule-based movement, protein polymerization,
major constituent of microtubules

TUBB4 Tubulin beta-4 chain Q P04350 Cytoplasm, microtubule Major constituent of microtubules, microtubule-based
movement, protein polymerization

SIGNALING

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

*CALB2
[91], [92], [93]

Calbindin 2 Q P22676 N.D. Calcium ion binding

CAP2 Adenylyl cyclase-associated
protein 2

q P40123 Cell membrane Signal transduction, establisment/maintenance of cell
polarity, cytoskeleton organization, activation of adenylate
cyclase activity

CRKL Crk-like protein q P46109 Cytoplasm JNK cascade, Ras protein signal transduction, protein
tyrosine kinase activity

*EFHD2
[69]

EF-hand domain family,
member D2

QQ Q96C19 Membrane raft Calcium ion binding, regulator of the NF-kappa-B-activating
branch, apoptosis

+GRB2
[94]

Growth factor receptor-
bound protein 2

Q P62993 Golgi apparatus, cytosol Ras protein signal transduction, cell-cell signaling,
interspecies interaction between organisms, insulin receptor
signaling pathway, EGFR signaling pathway

S *+ MAPK3
[95], [96], [97]

Mitogen-activated protein
kinase 3 (ERK1)

q P27361 Cytoplasm, cytoskeleton,
nucleoplasm

Cell cycle, Ras protein signal transduction, protein amino
acid phosphorilation, interspecies interaction between
organisms

PARK7 Protein DJ-1 Q Q99497 Cytoplasm, nucleus Chaperone, Ras protein signal transduction

PGK1 Phosphoglycerate kinase 1
Serine/threonine-protein
phosphatase 2B catalytic
subunit alpha isoform

qqqq Q08209 Cytosol, nucleus Calcium ion binding, calmodulin binding, iron ion binding,
zinc ion binding

YWHAB Tyrosine 3-monooxygenase/
tryptophan 5-
monooxygenase activation
protein, beta polypeptide
14-3-3 protein beta/alpha

q P31946 Cytoplasm, melanosome Signal transduction, regulation of amino acid
dephosphorilation, apoptosis

YWHAG 14-3-3 protein gamma Q P61981 Cytoplasm Signal transduction, synaptic plasticity, neuron
differentation, regulation of protein kinase activity

S *YWHAE
[74], [98]

14-3-3 protein epsilon q P62258 Cytosol, melanosome Apoptosis, intracellular signaling cascade, interspecies
interaction betweenorganisms

*+YWHAH
[72], [99]

14-3-3 protein eta q Q04917 Cytoplasm Glucocorticoid catabolism/signaling, synaptic plasticity,
dendrite morphogenesis, regulation of transcription, protein
transport
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Table 2. Cont.

SIGNALING

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

*YWHAZ
[88], [89],
[69],[73]

14-3-3 protein zeta/delta q P63104 Cytoplasm, melanosome Anti-apoptosis, signal transduction

METABOLISM

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

ABHD14B Abhydrolase domain-
containing protein 14B

Q Q96IU4 Cytoplasm, nucleus Hydrolase activity

*ALDOC
[85], [90],
[68], [100],
[101], [102]

Fructose-bisphosphate
aldolase C

q P09972 Cytoskeleton Glycolysis, fructose 1,6-bisphosphate catabolism

*APOA1
[103]

Apolipoprotein A-I q P02647 Endocytic vesicle,
ER lumen, plasma
membrane, secretory
granule

Cholesterol metabolism, lipid metabolism/transport, sterod
metabolism, transport

*ATP5B
[104]

ATP synthase subunit beta,
mitochondrial

Q Q13510 Membrane, mitochondria ATP synthesis, hydrogen ion transport, ion transport,
transport, angiogenesis, regulation of intracellular pH

ATP5C1 ATP synthase, H+
transporting, mitochondrial
F1 complex, gamma
polypeptide 1

Q P06576 Mitochondria ATP synthesis, hydrogen ion transport, ion transport,
transport

ATP5H ATP synthase, H+
transporting, mitochondrial
Fo complex, subunit d

Q O75947 Mitochondria Mitochondrial ATP synthesis coupled proton transport,
hydrogen ion transport,

ATP6V1D ATPase, H+ transporting,
lysosomal 34kDa, V1
subunit D

q P21281 N.D. ATP synthesis, hydrogen ion transport, ion transport,
transport

C5orf33 Chromosome 5 open
reading frame 33

q Q4G0N4 N.D. Metabolic process, NAD+ kinase activity

*CBR1
[69]

Carbonyl reductase
[NADPH] 1

qqQ P16152 Cytoplasm Drug metabolism, vitamin K metabolism

*+CKB
[85], [88],
[90], [105],
[100], [106]

Creatine kinase B-type qQQ P12277 Cytoplasm Creatine metabolism

*+CS
[104], [107],
[108]

Citrate synthase,
mitochondrial

qqq O75390 Mitochondria Cellular carbohydrate metabolism, tricarboxylic acid cycle

ECHS1 Enoyl-CoA hydratase,
mitochondrial

QQ P30084 Mitochondria Fatty acid metabolism, lipid metabolism

FH Fumarate hydratase,
mitochondria

q P07954 Mitochondria Fumarate metabolism, tricarboxylic acid cycle

GLOD4 Glyoxalase domain-
containing protein 4

q Q9HC38 Mitochondria N.D.

*+GLUL
[69], [90],
[102], [109],
[110],

Glutamate-ammonia
ligase, glutamine
synthetase

qq P15104 Cytoplasm, Golgi
apparatus

Cell proliferation, glutamine biosynthesis

GOT1 Glutamic-oxaloacetic
transaminase 1, soluble
(aspartate
aminotransferase 1)

qq P17174 Cytoplasm Aspartate catabolism, cellular response to insulin stimulus,
response to glucocorticoid stimulus

GUK1 Guanylate kinase Q Q16774 Cytosol Purine nucleotid metabolism

HADH Hydroxyacyl-CoA
dehydrogenase,
mitochondrial

q Q16836 Mitochondria Fatty acid metabolism, lipid metabolism

IDH2 Isocitrate dehydrogenase
2 [NADP+], mitochondrial

qq P48735 Mitochondria Isocytrate metabolism, tricarboxylic acid metabolism,
glyoxylate cycle
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Table 2. Cont.

METABOLISM

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

IDH3A Isocitrate dehydrogenase
3 [NAD+] subunit alpha,
mitochondrial

q P50213 Mitochondria Carbohydrate metabolism, tricarboxylic acid cycle

*+IMPA1
[111], [112]

Inositol(myo)-1(or 4)-
monophosphatase 1

Q P29218 Cytoplasm Phosphate metabolism, phosphatidylinositol biosynthesis,
signal transduction

*NDUFS1
[113]

NADH dehydrogenase
(ubiquinone) Fe-S
protein 1, 75kDa (NADH-
coenzyme Q reductase)

Q P28331 Mitochondrial inner
membrane space,
respiratory chain
complex I

ATP metabolism, transport, electron transport, ROS
metabolism, apoptosis

NDUFV2 NADH dehydrogenase
FeS protein

Q Q6IPW4 Mitochondria NAD binding

+PDHA1
[114]

Pyruvate dehydrogenase
(lipoamide) alpha 1

qqq O00330 Mitochondria Pyruvate metabolism

PDIA3 Protein disulfide isomerase
family A, member 3
Phosphoglycerate kinase 1

qq P00558 Cytoplasm Glycolysis, phosphorilation

*PGAM1
[69], [90], [102]

Phosphoglycerate mutase 1 QQ P18669 Cytosol Respiratory burst, glycolysis, pentose-phosphate shunt

PGLS 6-Phosphogluconolactonase QQ O95336 Cytoplasm Pentose-phosphate shunt

PKM2 Pyruvate kinase isozymes
M1/M2

qq P14618 Cytoplasm, nucleus Glycolysis, programmed cell death

TALDO1 Transaldolase 1 q P37837 Cytoplasm Pentose shunt

UCHL1 Ubiquitin carboxyl-terminal
esterase L1 (ubiquitin
thiolesterase)
Pyruvate dehydrogenase E1
component subunit alpha,
somatic form, mitochondrial

qq P08559 Mitochondria Glycolysis, pyruvate metabolism

UQCRC2 Ubiquinol-cytochrome c
reductase core protein II
Cytochrome b-c1 complex
subunit 2, mitochondrial

qqqq P22695 Mitochondria Electron transport, respiratory chain, proteolysis, transport,
oxidative phosphorylation

PROTEIN PROCESSING

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

BRCC3 BRCA1/BRCA2-containing
complex, subunit 3
Lys-63-specific
deubiquitinase BRCC36

q P46736 Nucleus DNA repair, modification-dependent protein catabolism, Ubl
conjugation pathway

CAPZA2 Capping protein (actin
filament) muscle Z-line,
alpha 2

q Cytoplasm Chaperon protein folding

+FKBP4
[115], [71]

FK506-binding protein 4,
59kDa

q Q02790 Cytoplasm, nucleus Protein binding, HSP binding, FK506 binding, peptidyl-prolyl
cis-trans isomerase activity

*+HSPA8
[69], [116]

Heat shock cognate 71
kDa protein

qQ P11142 Cytoplasm Chaperone, response to unfolded proteins, membrane
organization, interspecies interaction between organisms,
post-Golgi vesicle-mediated transport

*HSPB1
[117]

Heat shock 27kDa
protein 1 (beta-1)

Q P04792 Cytoplasm, nucleus,
cytoskeleton

Anti-apoptosis, cell death, cell motion, response to heat,
response to unfolded proteins, regulation of translational
initiation

VTA1 Vps20-associated 1
homolog

q Q9NP79 Cytoplasm, endosome,
cell membrane

Protein transport

DEVELOPMENT

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

*+DPYSL2
[88], [100],
[101], [70],
[118], [119]

Dihydropyrimidinase-like 2 qqq Q16555 Cytolplasm Cell differentation, nervous system development, nucleotide
and nucleic acid metabolism, intracellular trafficking of
heterooligomeric forms of steroid hormone receptors
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Table 2. Cont.

DEVELOPMENT

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

*+SELENBP1
[120], [67],
[121]

Selenium binding protein 1 qq Q13228 Cytoplasm, membrane,
nucleus

Protein transport, transport, selenium binding

SEPT2 Septin-2 q Q15019 Cytoplasm, cytoskeleton,
nucleus

Cell division, mitosis, cell cycle

*SEPT3
[86], [90]

Neuronal-specific septin-3 qq Q9UH03 Synapse, nucleus, cell
junction

Cell cycle, cytokinesis

*+SEPT5
[119], [122]

Septin 5 qq Q99648 Plasma membrane, septin
complex, synaptic vesicle

Cell cycle, regulation of exocytosis

SIRT2 NAD-dependent
deacetylase sirtuin-2

q Q8IXJ6 Cytoplasm, microtubule Regulation of mitosis, regulation of phosphorilation,
chromatin silencing, cell division

TPD52 Tumor protein D52 Q P55327 Endoplasmic reticulum,
cytosol

B cell differentation, secretion, anatomical structure
morphogenesis

TPD52L2 Tumor protein D52-like 2 Q O43399 Cytoplasm Regulation of cell proliferation

SYNAPSE, NEURON

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

APOA1BP Apolipoprotein A-I-binding
protein

q Q6PGN4 N.D.

*APOL2
[123]

Apolipoprotein L2 q Q9BQE5 Cytoplasm Lipid transport, lipoprotein metabolism, acut-phase response,
multicellular orgaismal development

*+ATP6V1B2
[104], [124]

V-type proton ATPase
subunit B, brain isoform

qqqQ P36542 Plasma membrane,
Golgi apparatus,
cytosol, melanosome

Hydrogen ion transport, ion transport, transport

SYN1 Synapsin-1 q P17600 Synaptic vesicles Neuronal phosphoprotein that coats synaptic vesicles,
neurotransmitter release regulatiom

VDAC1 Voltage-dependent anion
channel 1

qqQQ P21796 Mitochondria outer
membrane, cell
membrane

Apoptosis, host-virus interaction, ion transport, transport

VDAC2 Voltage-dependent anion
channel 2

qq P45880 Mitochondria outer
membrane

Ion transport, transport

PROTEOLYSIS

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

S CAPNS1
[125]

Calpain small subunit 1 Q P04632 Cytoplasm, cell
membrane, nucleus

Regulation of cell proliferation

S *CTSD
[125], [126],

Cathepsin D QQQ P07339 Lysosome, melanosome,
extracellular region

Cell death, proteolysis

+PSMB4
[127]

Proteasome subunit
beta type-4

Q P28070 Centrosome, nucleus,
proteasome core complex

Regulation of ubiquitin-protein ligase activity during mitotic
cell cycle, ubiquitin-dependent protein catabolism

RNA/DNA METABOLISM

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

HNRPDL Heterogeneous nuclear
ribonucleoprotein D-like

q O14979 Cytoplasm, heterogenous
nuclear ribonuclear
complex

Regulation of transcription, RNA processing, transcription

PHB Prohibitin Q P35232 Mitochondria,
nucleoplasm

DNA replication, cell proliferation, transcription, apoptosis,
signal transduction

+PURA
[128]

Transcriptional activator
protein Pur-alpha

q Q00577 Nucleus DNA replication initiation, transcription

REDOX SYSTEM

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function
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gained regarding the molecular mechanisms by linking identified

proteins to known functional protein pathways of psychiatric

diseases.

Limitation of the Post Mortem Study
The proteomic analysis of post mortem human brain samples has

some inherent limitations. The post mortem human brain proteome

reflects the changes of protein expression in the human brain while

alive, including the changes resulted from the complex psycho-

pathological processes leading to suicide. However, both pre- and

post mortem factors can affect tissue quality that will influence the

quantitative proteomics data [44]. These factors include prolonged

agonal state, metabolic state, the use of drugs, infections, hypoxia

and the post mortem interval (PMI), that is the period from death to

freezing of the brain for long-term storage [45,46].

In our present study to decrease the effect of these factors, we

used brain samples from people who had died from hanging

(suicide) and from individuals who died due to acute cardiac arrest.

We have to be aware that the differentially altered proteins in our

study may reflect the cause of death and not solely the intended

vulnerability of suicide, but this relatively homogeneous experi-

mental sample group design is a plus in our human post mortem

study. Moreover, the pH of each sample was measured and they

had fallen in a narrow range (7.1–7.3 in lysis buffer). This could be

important because the post mortem brain pH is informative about

certain types of ante mortem factors [45,47]. Furthermore, PMI was

relatively short in our study (suicide group 3–6 h; control group 2–

5 h) that is an advantage, although it was repeatedly demonstrated

that most human brain proteins are quite stable with respect to post

mortem factors, such as PMI [44]. Even so, we have to be aware

that certain protein abundance changes are dependant on the PMI

duration [44] and these proteins include e.g. GFAP and INA that

also changed in this study. However, the PMI duration was short

and overlapping in our study, and the spot positions in the gel and

the peptide coverage of the identified protein (see Fig. S2 and

Table S3, S4), as well as the opposite change of some proteins in

the two brain structures, do not suggest simple protein degrada-

tion. We think, that at least some of these cytoskeleton related

protein abundance changes observed in our study could be in vivo

existing protein isoforms reflecting the pathophysiological process-

es of psychiatric illnesses rather than protein degradation.

However, one question is open, whether the changes in protein

expression present before the suicide or the result of the trauma

from the suicide. Post mortem brain tissue studies on suicide brains

can not elucidate this question. Protein expression changes

presented here can be the result of pre-suicide psychotic state, or

a longer major depressive agitated state because of the long turn-

over time of proteins. The hypoxia caused by hanging might not

have changed the brain proteome directly because hypoxia

activated proteins were not found in great number. Since we are

searching for biomarkers of suicide, it would be very important to

know which biomarker protein candidates are correlating with the

pre-suicide psychosis however we must leave the question open.

Extensive Protein Changes in the Brains of Suicide
Victims Reflect an Altered State of Cellular Functions

Different psychiatric diseases, such as major depression [48,49]

and schizophrenia [50], may increase the risk of suicide; in turn,

protein expression changes in the brains of suicide victims reflect

several overlapping molecular mechanisms of different psychiatric

illnesses. They may also reflect preceding psychiatric abnormal-

Table 2. Cont.

REDOX SYSTEM

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

GSTM3 Glutathione S-transferase
Mu 3 (brain)

qq P21266 Plasma membrane Oxidative stress, prevention of cellular degeneration

*+GPX1
[129], [130]

Glutathione peroxidase Q P07203 Cytosol, mitochondrion UV-protection, anti-apoptosis, cell redox homeostasis,
glutathione metabolism, oxidation reduction, hydrogen
peroxide catabolism, regulation of caspase activity

PDHX Pyruvate dehydrogenase
complex, component X
Protein disulfide-isomerase
A3

q P30101 Endoplasmatic reticulum
lumen, melanosome

Cell redox homeostasis, protein import into nucleus, signal
transduction, protein retention into ER lumen

*+PRDX6
[68], [131]

Peroxiredoxin 6 Q P30041 Cytoplasm, lysosome,
cytoplasmic vesicle,
nucleus

Cell redox homeostasis, oxidation reduction,
phospholipid catabolism

GLIA CELLS

Gene Protein name
Up/down
regulation

Accession
number Cellular localization Molecular function

S *+GFAP
[86], [88],
[69], [101],
[119], [13],
[132], [133],
[134],

Glial fibrillary acidic
protein isoform 1

qQQQQ
QQQQQ

P14136 Cytoplasm, intermedier
filament

Central nervous
system development, structural constituent
of cytoskeleton

*: proteins involved in schizophrenia; +: proteins involved in depression; S: proteins involved in suicide.
*: proteins involved in schizophrenia; +: proteins involved in depression; S: proteins involved in suicide. Bold-italic gene names highlighting those proteins that were
found in those differently expressed protein spots that proved significant with both statistical tests.
q or Q: the direction of the spot intensity change of a given spot compared to control.
doi:10.1371/journal.pone.0050532.t001
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re-suicide stress and/or psychopathology. Thus, we did not expect

to find a pathway or protein network directly responsible for

suicide; rather, we expected that molecular markers for predicting

the risk for committing suicide can be uncovered. As expected, we

identified several proteins already reported in the suicide and

psychiatric disorder literature (see Tables 2 and 3).

Some of our results may probably indicate an altered

monoaminergic neurotransmission [51] while mitochondrial

enzymes, such as different ATP synthase subunits (ATP5B,

Table 4. Altered proteins in the prefrontal cortex and amygdala.

Gene name Protein name
Up/down regulation in
the cortex

Up/down regulation in the
amygdala

Cytoskeleton

ACTB* Actin, cytoplasmic 1 Q* q*

INA Alpha-internexin qq q

NEFL Neurofilament, light polypeptide 68 kDa qqQ qqqQ

NEFM Neurofilament, medium polypeptide, qqqqQ qq

TUBA1A Tubulin alpha-1B chain qqQ qq

Glia cell marker

GFAP* Glial fibrillary acidic protein q#QQQQQQQQ* qqqqqq*

Metabolism

CKB Creatine kinase B-type qQQ q

Protein processing

HSPA8 Heat shock cognate 71 kDa protein qQ qqQ

Proteolysis

CTSD* Cathepsin D QQQ* q*

Proteins labelled by * were changed in both the cortex and the amygdala, but the directions of the changes were in reverse directions. Bold-italic gene name as in
previous tables. q or Q: the direction of the spot intensity change of a given spot compared to control, for details see the Suppl. Materials Table 3 and 4, Suppl.
doi:10.1371/journal.pone.0050532.t004

Figure 2. Western blot validation of GFAP, cathepsin and actin expressions in the cortex and amygdala of suicide and control
subjects. The expressions of GFAP and cathepsin were significantly decreased in the suicide prefrontal cortex compared to the control samples
while in the amygdala their expressions were significantly increased. In case of the actin similar but non-significant changes were found. The loading
control was Ponceau, mean 6 SEM.
doi:10.1371/journal.pone.0050532.g002
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ATP5C1, etc.), citrate synthase (CS), enoyl-CoA hydratase

(ECHS1), and fumarate hydratase (FH) may reflect the glucose

metabolism down-regulation theory of suicide [52]. On the other

hand, lower amounts of peroxiredoxin 6 (PRDX6) and glutathione

peroxidase (GPX1), in the brains of suicide victims support the

relevance of the redox imbalance hypothesis in psychiatric patients

[53]. We found changes in the expression of cytoskeleton proteins

(see Tables 2 and 3), which probably reflects altered receptor

trafficking and signalling [54]. Unbalanced glutamatergic and

GABAergic neurotransmission are also important risk factors in

developing suicide behaviour [11,55]. Furthermore, changes in

GABAA receptor subunits accompanied by alterations in NMDA

and AMPA receptor signalling have been found in psychopath-

ological states related to suicide [8,56]. Contrary to our finding in

the cortices of suicide victims, decreased glutamine synthetase

(GLUL) levels have been detected in schizophrenia and depression

models [57], and down-regulated GLUL gene has been found

among depressed suicide victims [9,11]. This discrepancy might

indicate that a suicide by hanging and its associated stress elevates

excitatory events, whereas depression decreases excitatory events.

Increased GLUL levels may not only indicate increased glutamate-

to-glutamine conversion, but also increased glutamatergic trans-

mission [58]. We found other proteins that indicate that elevated

excitatory events may play a role in suicide; e.g. decreased cortical

levels of calbindin (CALB2) suggest - as a consequence of

decreased Ca2+ binding capacity - an elevated concentration of

free Ca2+ that can be excitatory above a certain level [59].

Glutamine synthetase is mainly located in astrocytes, and its

changes in relative level were investigated after deprivation of

paradoxical sleep in rats [60]. A significant increase in GLUL level

Figure 3. The protein network of altered cytoskeleton proteins in the brains of suicide victims (green) is connected to the receptor-
interaction network of glutamate and serotonin (red) via NEFL and GFAP. Abbreviations: GRIA1– Glutamate receptor, ionotropic, AMPA1,
GRIA3 - glutamate receptor, ionotrophic, AMPA 3, GRIK1– Glutamate receptor, ionotropic, kainate 1, GRIN1– Glutamate receptor, ionotropic, N-
methyl-D-aspartate, HTR1A –5-Hydroxytryptamin (serotonin) receptor 1A, HTR2A (5-hydroxytryptamine (serotonin) receptor 2A, HTR1B (5-
hydroxytryptamine (serotonin) receptor 1B, CKB - Creatine kinase B-type, ACTB - Actin, cytoplasmic 1, TUBA1A – Tubulin alpha-1B chain, NEFL –
Neurofilament, light polypeptide 68 kDa, NEFM – Neurofilament, medium polypeptide, INA – Alpha-internexin, GFAP – Glial fibrillary acidic protein,
CTSD - Cathepsin D, HSPA8 - Heat shock 70 kDa protein 8.
doi:10.1371/journal.pone.0050532.g003
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was observed e.g. in the frontoparietal cortex after paradoxical

sleep deprivation that rises the issue that stress and prolonged

waking could affect the physiological regulation of GLUL. In our

study, it can not be excluded that the cardiac arrest in control

subjects would had happened during sleep (see methods section)

and the difference between those who died asleep opposed to those

who died awake could influence our result. The heterogeneity of

data from this regard also could increase the data dispersion.

Nevertheless, we think that that the stress and the prolonged

waking in case of the suicide victims could be an important issue.

In accordance with previously published changes in the GFAP

of suicide victims and patients with psychotic disorders [61], we

also found an increased level of GFAP in the amygdala but

decreased expression in the cortex. GFAP concentration is

generally believed to be an index of the number of glia cells

[13]; however, astrocyte dysfunction, without a reduction in cell

number, may be a factor in suicide [52]. We identified GFAP from

several different gel areas (see Table 2 and 3 and Table S1, S2, S3,

S4 Fig. S2), which indicates that GFAP is probably highly

processed. Furthermore, a lower level of PRDX6 is known to be

present in astrocytes [62]. Therefore, our data suggest that focused

studies on changes in glial morphology and glial protein functions

in the brains of suicide victims could be beneficial in understand-

ing the role of glia cells in suicide.

The extensive changes detected in the proteome of suicide brain

are not surprising because the ribosomal RNA level is likely

decreased in the brains of suicide victims due to hyper-methylation

in the RNA-promoter region [14]. Epigenetic factors, such as

DNA methylation, are known to exist in different psychiatric

disorders related to high suicide risk [63,64,65].

Can Some Proteins be Used as Biomarker Molecules of
Suicide?

Our proteomic study revealed that protein changes might be

considered as a potential starting point for identifying biomarker

candidates of suicide. Fifteen of the proteins we detected (carbonyl

reductase [CBR1], dihydropyrimidinase-like 2 [DPYSL2], EF-

hand domain family, member D2 [EFHD2], FK506-binding

protein 4 [FKBP4], GFAP, GLUL, HSPA8, NEFL, NEFM,

phosphoglycerate mutase 1 [PGAM1], PRDX6, SELENBP1,

VIM, 14-3-3 protein eta [YWHAH] and 14-3-3 protein zeta/delta

[YWHAZ]) have already been suggested as potential biomarker

candidates for depression or schizophrenia

[66,67,68,69,70,71,72,73]. Additionally, 14-3-3 protein epsilon

[YWHAE] was found to be a potential suicide susceptibility gene

[74]. There were 9 protein expression changes in both the cortex

and the amygdala in the brains of suicide victims compared to

controls (Table 4), and four of these (GFAP, HSPA8, NEFL and

NEFM) were overlapped with the previous fifteen. These 9

proteins indicate that at least some of the protein changes are

global in the brains of suicide victims. Three of these proteins

(ACTB, CTSD and GFAP) had opposite changes in the cortex

compared to the amygdala and these opposite changes were

validated by western blot analysis.

These proteins with opposite changes in the amygdala and

prefrontal cortex could be particularly interesting in the scope of

the functional neuroimaging studies of suicide. Greater fMRI

activity of the amygdale were demonstrated on threatening stimuli

in association with serotonin transporter gene promoter polymor-

phism [75,76] that is known to be associated with suicidal

behaviors in psychiatric patients, especially with violent suicides

[77,78]. In the prefrontal cortical regions however, lower

metabolism (measured by PET) was found in association with

greater suicidal ideation and greater lethality in suicide attempts in

depressive patients [78,79].

The protein interaction networks of the 9 proteins that changed

both in the cortex and the amygdala (see Figure 3) contained a

direct interaction sub-network of cytoskeletal proteins (INA,

NEFL, NEFM and GFAP) which interact with binding or

expression regulation. This direct interaction network of the

cytoskeletal proteins is connected to the network of glutamate and

serotonin receptors involved in psychotic illnesses through GRIN1

(Glutamate receptor, ionotropic, N-methyl-D-aspartate; NMDA

receptor, e,g, [80]). CTSD connected to HSPA8, ACTB, CKB

and TUBA1A were not directly linked to the other selected

proteins. ACTB, CKB, NEFL, INA and GFAP had link to both

schizophrenia and depression, while CTSD, HSPA8, NEFM and

TUBA1A had link to schizophrenia.

We regard these 9 proteins as biomarker candidates of suicide

risk. Furthermore, the development of quantitative brain imaging

probes based on selected proteins shows promise. Prior to

developing these, however, several additional studies must be

performed to confirm the identity of candidate biomarkers (e.g., in

other forms of suicide and in suicide trait behaviour in animals).

Conclusion
In this study, the proteome of the prefrontal cortex changed

more extensively than the amygdala of suicide victims. This result

is in accordance with the fact that the prefrontal cortex is highly

involved in mental disorders and suicide [81]. Because the direct

interaction network of cytoskeletal proteins is changed in the

brains of suicide victims, new perspectives for studying suicide-

related mechanisms in receptor anchoring and ultra-structural

plasticity including glia cell function have been introduced.

Supporting Information

Figure S1 The q-values were calculated from the p-
values with the statistics software R (www.r-project.org;
see text). The frequency distributions of P-values were used to

estimate the proportion of features that are unchanging; this is

then used to estimate the false discovery rate. The q-values were

graphed twice for both p-value range 0.0–1.0 and 0.0–0.15.

(DOC)

Figure S2 Gel image from the prefrontal cortex, GFAP
containing spots are highlighted with grey colour, the
spot marked with orange is GFAP isoform containing
spot. See. Table S3.

(TIF)

Table S1 The full list of the identified proteins by MS
analysis according to spot numbers from the prefrontal
cortex. Bold gene names highlighting those proteins that were

found in those differently expressed protein spots that proved

significant with both statistical tests.

(DOC)

Table S2 The full list of the identified proteins by MS
analysis according to spot numbers from the amygdala.
Bold gene names highlighting those proteins that were found in

those differently expressed protein spots that proved significant

with both statistical tests.

(DOC)

Table S3 The list of the identified triptic peptides of
GFAP by MS analysis detected in different spots from
the prefrontal cortex.

(DOC)
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Table S4 The list of the identified triptic peptides of
GFAP by MS analysis detected in different spots from
the amygdala.
(DOC)
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