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Abstract

The Human Protein Atlas contains immunofluorescence images showing subcellular locations for thousands of proteins.
These are currently annotated by visual inspection. In this paper, we describe automated approaches to analyze the images
and their use to improve annotation. We began by training classifiers to recognize the annotated patterns. By ranking
proteins according to the confidence of the classifier, we generated a list of proteins that were strong candidates for
reexamination. In parallel, we applied hierarchical clustering to group proteins and identified proteins whose annotations
were inconsistent with the remainder of the proteins in their cluster. These proteins were reexamined by the original
annotators, and a significant fraction had their annotations changed. The results demonstrate that automated approaches
can provide an important complement to visual annotation.
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Introduction

Knowledge of the subcellular locations of proteins provides

critical context necessary for understanding their functions

within the cell. Hence the field of location proteomics is

concerned with capturing informative and defining characteris-

tics of subcellular patterns on a proteome-wide basis [1,2].

Automated methods for systematic study of protein locations,

which combine fluorescence microscopy techniques with pattern

recognition and machine learning algorithms, have been

extensively described [1,3–6]. Most of these studies involve

extracting subcellular location features (SLFs) from images or

cells [5,7]. Automated analysis of subcellular patterns has been

described for a proteome-scale image collection for yeast [8]

and for a wide range of human tissues [9].

The latter study used images generated for thousands of

proteins by the Human Protein Atlas (HPA, http://proteinatlas.

org) using immunohistochemistry methods [10]. More recently,

the HPA has been expanded to include images of cultured cells

obtained by confocal immunofluorescence microscopy [11,12].

We have previously described preliminary results demonstrating

the feasibility of performing automated analysis of these confocal

images [5]. These images have been annotated by visual

inspection with specific terms describing subcellular location

patterns.

In this paper, we have extended this approach to include more

classes and more proteins using a supervised learning approach,

and added unsupervised learning to complement it. Based on these

approaches, we furthermore identified proteins whose annotations

appeared at odds with those of similar proteins. Re-examination of

the images of these proteins revealed that a considerable number

had been incorrectly annotated. Thus, our approaches can be used

not only for the purpose of annotations de novo, but also for

improving the accuracy of human annotations. An overview of the

whole framework is shown in Figure 1.

Results

In the following sub-sections, we present our results for two

rounds of analyses. The first round and second round are

consecutive with the same framework of analysis shown in

Figure 1. They only differ in that they deal with two different

but successive releases (4.0 and 5.0 respectively) of datasets from

HPA.

Automated Selection of Proteins for Reannotation
We began by segmenting confocal immunofluorescence images

from the A-431 cell line in release 4.0 of HPA. These images had

been previously annotated as being present in one or more

subcellular locations by visual examination. The dataset contained
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images for 1551 proteins, of which 878 were localized specifically

(solely) to one of eleven major subcellular location patterns

(classes): centrosome, cytoplasm, cytoskeleton, endoplasmic retic-

ulum, Golgi, lysosome/peroxisome/endosome, mitochondria,

nucleoli, nucleus, nucleus without nucleoli, and plasma mem-

brane. The number of proteins per class ranged from five to 326.

We termed these single pattern proteins, and others which

localized to more than one organelle as mixed pattern proteins.

The ability of a Support Vector Machine (SVM) to recognize the

eleven classes was estimated by nested five-fold cross-validation

using the single pattern proteins.

The confusion matrix is shown in Table 1, with an overall

accuracy of 82.4%. Despite the use of class-based weighting during

training, it is clear that classes with fewer proteins have lower

accuracies. It is also clear that plasma membrane and cytoplasmic

patterns are difficult to distinguish using our current feature set

(and that some cytoskeletal proteins are also misclassified as

cytoplasmic).

Using this classification approach, we can generate a list of

proteins whose assignment by the classifier does not match the

human annotation. There are many potential reasons for a protein

being misclassified. A protein’s pattern may be different from those

of most of the others in its class (e.g., a protein found only in the

rims of Golgi cisternae may be annotated as Golgi along with

many other proteins yet have a distinctly different pattern from the

perspective of image analysis). Misclassfication may also occur if

the features used to request the patterns do not capture subtle

differences. Of course, some misclassification may result from

incorrect annotation of the images. We therefore sought to identify

proteins that we estimated as having a high probability of being

incorrectly annotated. Using the approach described in Materials

and Methods, we generated a list of 99 proteins for reannotation.

Since this supervised learning procedure relies on the human

annotations to define classes, we also sought to use an

unsupervised approach to group proteins by their patterns. Thus

we implemented an alternative approach to identifying reannota-

tion candidates by hierarchical clustering of single pattern proteins

(see Materials and Methods). The optimal number of clusters

determined by the Akaike information criterion was 56, and when

proteins were assigned the dominant annotation of their cluster, an

accuracy of 67% was obtained. We considered proteins that were

included in a cluster containing mostly proteins from other classes

as good candidates for reannotation. Using the fairly tight criteria

described in the Methods, only 12 proteins were identified for

reannotation by this approach.

Reannotation and Retraining
We combined the lists of candidates obtained from the two

methods above resulting in 106 (99+12–5 duplicates) proteins and

provided them to the HPA team responsible for initial annotation

of confocal images from the project. To enable estimation of the

rate of annotation errors, we also included in the list 65 single class

proteins obtained from random sampling (see Materials and

Methods). Only the HPA index number was provided, so that the

annotation team could not be influenced by the results from either

the prior visual analysis or the automated analysis. After

annotation of the total of 149 (106+65–22 duplicates) proteins,

the labels were compared with those from the initial annotation

and from classification or clustering. The results are summarized

in Table 2. Of the proteins selected for reannotation by either

classification or clustering, 41 proteins had their labels changed

(the sum of the counts in the first and third columns for the first,

second, fifth rows, and sixth row, minus 2 proteins present on both

lists). These reannotated proteins are listed in Table S1. An image

of a top ranked example from the proteins identified by SVM

Figure 1. An overview of the framework introduced in this paper. We first collect immunofluorescence images from confocal microscopy
that are annotated visually by HPA. These image fields are then segmented into single cells and various features (SLFs) are calculated. We then do two
parallel analyses on the features. One is a supervised classification using a Support Vector Machine, and the other is an unsupervised hierarchical
clustering. This results in two lists of proteins which have high probabilities of needing reannotation. Combined with another list of proteins sampled
randomly, a final list which contains only the protein IDs are reexamined by the HPA annotation group. The annotations of some proteins may
change, and these modified annotations can be incorporated in another cycle of analysis.
doi:10.1371/journal.pone.0050514.g001

Automated Reannotation of Subcellular Locations
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classification is shown in Figure 2 (a). Figure 3 (a) shows the

image of a top ranked example identified by clustering. These

illustrate cases in which the automated approach resulted in

correction of prior annotations.

In addition to the possibility of single class proteins being

incorrectly annotated, it was also possible that a protein showing

more than one pattern might be incorrectly annotated as showing

only a single pattern. An example of such a protein (identified by

clustering) is shown in Figure 4. Furthermore, we can identify

proteins annotated to the same location but that are clustered into

different but nearly pure clusters, suggesting that they represent

sub-patterns (Figure 5).

Given the results of Table 2, it was of interest to evaluate the

yield of the two methods for finding proteins needing reannotation

compared to that expected for random choice. Those entries in the

first, second, fifth, and sixth rows of the table represent proteins

whose annotations changed upon reexamination. The reannota-

tion rate for proteins chosen at random was therefore 14/

65 = 22%, while the rates for proteins identified by SVM and

hierarchical clustering respectively were (21+7+11)/99 = 39% and

(2+2)/12 = 33% (the rate for the combination of the two was 41/

106 = 39%). Thus, we observed between 1.5-fold and 1.8-fold

enrichment in identifying incorrectly annotated proteins above

random.

Using the new annotations, we repeated the SVM classification.

The resulting confusion matrix is shown in Table S2. The overall

accuracy improved to 86.4% compared with 82.4% in Table 1.

This improvement is due directly to the changes in the annotations

of the re-examined proteins, and no improvement in classification

of other proteins is observed.

Second Round Reannotation
After incorporating the results from the first round analysis (i.e.

some proteins reannotated), the same framework was applied on a

new release (5.0) of HPA for a second round of analysis. The new

dataset for the A-431 cell line contained images for 2749 proteins

(extended and updated from release 4.0 used in the first round

analysis), of which 958 were localized to one of thirteen major

subcellular location patterns (classes): centrosome, cytoplasm,

endoplasmic reticulum, Golgi, mitochondria, nucleoli, nucleus,

nucleus without nucleoli, plasma membrane, vesicles, actin

filaments, intermediate filaments and microtubules (the last three

had previously been grouped under cytoskeleton). The number of

proteins per class ranged from ten to 255. Most images of single

class proteins in the first round were kept in the second round.

However, a number of new proteins were added, some were

removed, some proteins were reimaged and some proteins were

reannotated based on the results of the first round. Given the

updated dataset, we then repeated the approach used in the first

round analysis for this second round. When SVM classifiers were

trained and tested as before, we obtained the confusion matrix in

Table 3, with an overall accuracy of 77.9%. Using the SVM

Table 1. Classification results before first round of reannotation.

centro. cyto. cytosk. er golgi l/p/e mitoch. nucleoli nucleus w/o PM

Centrosome (12) 0.42 0.08 0 0 0.33 0 0.08 0 0 0.08 0

Cytoplasm (326) 0 0.97 0.01 0 0 0 0.02 0 0 0.01 0

Cytoskeleton (37) 0 0.51 0.46 0 0 0 0.03 0 0 0 0

ER (34) 0 0.18 0 0.76 0 0 0.06 0 0 0 0

Golgi (41) 0 0.02 0 0 0.9 0 0.05 0 0 0.02 0

lys/pero/endo (26) 0 0.15 0 0 0.04 0.62 0.15 0 0.04 0 0

Mitochondria (104) 0.01 0.13 0 0 0.01 0 0.86 0 0 0 0

Nucleoli (37) 0 0 0 0 0 0 0 0.92 0 0.08 0

Nucleus (87) 0 0 0 0 0 0.02 0 0.06 0.34 0.57 0

Nucleus w/o nucleoli (167) 0 0 0 0 0 0 0 0.01 0.08 0.92 0

Plasma membrane (7) 0 0.86 0 0 0 0 0.14 0 0 0 0

Cell level feature classification confusion matrix. Bold values indicate agreement between the classifier and the true class. Overall classification accuracy is 82.4%. The
number of proteins in each class is shown in parenthesis after the class name.
doi:10.1371/journal.pone.0050514.t001

Table 2. Summary of first round reannotation results.

svm
reannotation

random
svm

clt
reannotation

random
clt

AM right 21 4 2 4

partially right 7 5 0 1

both right 0 17 0 33

AM wrong 60 34 8 18

both wrong 9 4 1 8

Negative 2 1 1 1

Total 99 65 12 65

The column ‘svm reannotation’ includes the proteins identified by SVM
classification reannotation method; the column ‘random svm’ includes the
proteins randomly drawn; the column ‘clt reannotation’ includes the proteins
identified by hierarchical clustering for reannotation; the column ‘random clt’
includes the proteins randomly drawn. The row ‘AM right’ indicates the proteins
whose automated classified or clustered annotations were right, while the
previous human annotations were wrong; the row ‘partially right’ indicates the
proteins whose automated annotations were partially right, in that
reannotation added the predicted annotation to the previous one; the row
‘both right’ indicates the proteins whose automated annotations were the same
as previous human annotations, and where reannotation did not change it; the
row ‘AM wrong’ indicates the proteins whose automated annotations were
wrong, while the previous human annotations were right; the row ‘both wrong’
indicates the proteins whose automated annotations and previous human
annotations were wrong, and a new assignment was made during
reannotation. ‘Negative’ indicates those proteins that were reannotated as
‘non-specific location’ and designated for removal from the next release of the
dataset. They could correspond to bad antibodies.
doi:10.1371/journal.pone.0050514.t002

Automated Reannotation of Subcellular Locations
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classification method, a list of 156 proteins was generated as

potentially mis-annotated. To reduce the burden of annotation

work and make the whole process efficient, we selected a sub-list of

58 proteins of these using uniformly random selection. On the

other side, we hierarchically clustered single pattern proteins into

119 clusters, with an accuracy of 66% when comparing their

Figure 3. Examples of mis-annotated proteins identified by the hierarchical clustering reannotation method. (a) Protein ‘‘S100 calcium
binding protein A12’’ was identified in the first round analysis. The image of the protein was visually annotated as ‘‘nucleus’’ but was annotated as
‘‘nucleus without nucleoli’’ by clustering. (b) Protein ‘‘Rho/Rac guanine nucleotide exchange factor (GEF) 20 was identified in the second round
analysis. The image of the protein was visually annotated as ‘‘nucleus’’ but was annotated as ‘‘nucleus without nucleoli’’ by clustering. In both cases
the latter annotation was chosen upon re-examination.
doi:10.1371/journal.pone.0050514.g003

Figure 2. Examples of mis-annotated proteins identified by the SVM classification reannotation algorithm. (a) Protein ‘‘Thiosulfate
sulfurtransferase’’ was identified in the first round analysis. The protein was visually annotated as ‘‘cytoskeleton’’ but was classified as ‘‘mitochondria’’
by an SVM classifier. The latter annotation was found to be correct upon re-examination. (b) Protein ‘‘proline-rich transmembrane protein 20 was
identified in the second round analysis. The protein was visually annotated as ‘‘cytoplasm’’ but was classified as ‘‘Golgi’’ by an SVM classifier. The latter
annotation was found to be correct upon re-examination.
doi:10.1371/journal.pone.0050514.g002

Automated Reannotation of Subcellular Locations
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annotations with the dominant one of their cluster. Using a slightly

different criterion (see Materials and Methods), 63 proteins were

identified for re-examination. We combined the two lists into one

with 103 (58+63–18 duplicates) proteins and merged it with 80

proteins from random sampling (see Materials and Methods). As a

result, in total 162 (103+80–21 duplicates) proteins were again

subjected to reannotation. The validation results and statistics are

presented in Table 4. 31 proteins were reannotated (see Table
S3). Two images of top ranked representative examples from the

proteins generated both by SVM classification for reannotation

and by clustering for reannotation are shown in Figure 2 (b) and

Figure 3 (b) respectively.

The results of Table 4 indicate that the reannotation rate for

proteins chosen at random was 9/80 = 11% and the rates for SVM

and hierarchical clustering respectively were (14+3+2+2)/

58 = 36% and (14+5+1)/63 = 32%. Hence the enrichment of

automated methods was between 2.9-fold and 3.3-fold above

random. The subset of proteins chosen for reannotation by both

methods showed an enrichment 5-fold above random (10/

18 = 55%). Upon retraining the SVM classifier with the reannota-

tions and the resulting 950 single pattern proteins, the overall

accuracy increased to 82.3% (Table 5). Unlike the first round, this

improvement is attributed both to the changes in the annotations

of the re-examined proteins, and to correctly classifying a few

additional proteins with the improved classifier.

Identifying Single Pattern Proteins in Mixed Collections
The frequency of changes in annotations observed when re-

examining randomly selected proteins in the two rounds (11–22%)

indicates that the reproducibility, and likely the accuracy, of such

assignments is approximately 89–94% which was calculated from

1– (22%)/2 or 1– (11%)/2 (assuming that the probability of error

on reannotation is independent of whether an error had been

made originally). Given that the accuracy estimated for the SVM

classifier (77.9–86.4%) is similar to this when considering just

single class proteins (as we can do when using it for reannotation

Figure 5. Example of sub-patterns identified by clustering. Proteins ‘‘neuronal pentraxin receptor’’ and ‘‘eukaryotic translation initiation factor
50 were visually annotated as ‘‘cytoplasm,’’ but hierarchical clustering assigned them to separate clusters in the first round. The images indicate that
they indeed display two cytoplasmic sub-patterns.
doi:10.1371/journal.pone.0050514.g005

Figure 4. Example of detection of mixed patterns by clustering.
Protein ‘‘nerve growth factor receptor’’ was visually annotated as
‘‘cytoplasm’’, but was annotated as ‘‘nucleus without nucleoli’’ mixed
with ‘‘cytoplasm’’ by clustering in the first round. The latter annotation
was chosen after re-examination.
doi:10.1371/journal.pone.0050514.g004

Automated Reannotation of Subcellular Locations
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since initial labels are available), we sought to determine whether a

similar accuracy could be obtained when considering all proteins

(as would be required if doing initial annotations). We considered

two variations on this test. We used a dataset consisting of 2749

proteins (after some reannotations in the second round) in 77

classes of single and mixed patterns that contain at least 5 proteins

(a total of 46739 cells).

In the first variation, we applied the single pattern classifier to all

proteins (including mixed pattern proteins) and determined how

accurately it could assign at least one correct label and how

accurately it could recognize proteins with just a single class. We

split the 950 single pattern proteins into 5 folds (ensuring that all

images for a given protein were in the same fold) and also split the

mixed pattern proteins into 5 folds. Every four single pattern folds

were used to train a classifier (the training set was further divided

for tuning parameters as described in the Materials and Methods),

and it was used to assign labels to the remaining fold of single

pattern proteins and one of the multiple pattern folds. After

classification we performed precision-recall analysis, which deter-

mines accuracy of the classifier as a function of the confidence that

it estimates for each prediction. We assessed how we would

recognize at least one of the labels for multiple-class proteins. This

is demonstrated by the solid blue curve in Figure 6. The precision

was defined in this case as the number of proteins correctly or

partially correctly classified with probability above a varying

threshold divided by the number of proteins classified with

probability above that threshold, and the recall as the number of

proteins correctly or partially correctly classified with probability

above the threshold divided by total number of proteins. With a

zero threshold, we could correctly assign at least one annotation

for 73.7% of the proteins. As the threshold is increased (reducing

the recall), the accuracy rises almost linearly. We then considered

the effect of requiring that all labels be correctly assigned. In this

case, all multiple-class proteins are by definition incorrectly

classified, and we seek to determine whether single class proteins

can be recognized by the single-class classifier with higher

confidence than multiple-class proteins. As shown in Figure 6
(dashed black line), the system with zero threshold obtained an

overall precision of 28.5%. The precision in this case was defined

as the number of single pattern proteins correctly classified with

probability above the threshold divided by the number of all

proteins classified with probability above the threshold, and recall

was defined as the number of single pattern proteins correctly

classified with probability above threshold divided by the total

number of single pattern proteins. When the threshold was

increased to obtain a recall of 60%, the classification accuracies

increased to only 42.0%. Thus, we cannot use the single pattern

classifier to find single-class proteins in a set of proteins with no

annotations (e.g., a new batch of images). However, the previous

results show that we can still assign one label to both single-class

and multiple-class proteins with good precision.

In a second variation, we retrained the SVM classification

framework with classes consisting of all label combinations

observed for both single and mixed patterns (there were 77

unique classes), explicitly giving it the ability to recognize single

class proteins in the presence of multiple-class proteins. The

overall accuracy of the classifier for all patterns was only 45.4%,

illustrating the difficulty of assigning all labels correctly. We

therefore asked how well the single protein classes could be

recognized. The precision-recall curve for this task is shown as the

dotted red line in Figure 6. The precision was defined as the

number of single pattern proteins correctly classified with

Table 3. Classification results before second round of reannotation.

centro. cyto. actin inter. micro. er golgi mitoch. nucleoli nucleus w/o PM vesicle

Centrosome (16) 0.38 0.06 0 0 0 0 0.19 0 0 0.13 0 0 0.25

Cytoplasm (129) 0 0.9 0 0 0.01 0 0.01 0.03 0 0 0 0 0.05

Actin filaments (10) 0 0.6 0 0.1 0 0 0 0.1 0 0 0 0.1 0.1

Intermediate filaments (9) 0 0.33 0 0.33 0.11 0 0 0.22 0 0 0 0 0

Microtubules (21) 0 0.29 0 0 0.67 0.05 0 0 0 0 0 0 0

ER (41) 0 0.2 0 0 0 0.68 0 0.1 0 0.02 0 0 0

Golgi (64) 0 0.02 0 0 0 0 0.86 0.08 0 0 0 0 0.05

Mitochondria (148) 0 0 0 0.01 0 0 0.01 0.96 0 0 0 0 0.02

Nucleoli (67) 0 0 0 0 0 0 0 0 0.87 0.06 0.04 0 0.03

Nucleus (110) 0 0.01 0 0 0 0 0 0 0.05 0.36 0.58 0 0

Nucleus w/o nucleoli (255) 0 0 0 0 0 0 0 0 0.02 0.11 0.87 0 0

Plasma membrane (17) 0 0.59 0 0 0 0 0 0.06 0 0.06 0 0.18 0.12

Vesicles (71) 0.01 0.04 0 0 0 0.01 0.04 0.04 0 0.01 0 0 0.83

Cell level feature classification confusion matrix. Bold values indicate agreement between the classifier and the true class. Overall classification accuracy is 77.9%. The
number of proteins in each class is shown in parenthesis after the class name.
doi:10.1371/journal.pone.0050514.t003

Table 4. Summary of second round reannotation results.

svm
reannotation

random
svm

clt
reannotation

random
clt

AM right 14 2 14 2

partially right 3 6 0 3

both right 0 48 0 29

AM wrong 37 23 43 42

both wrong 2 1 5 4

Negative 2 0 1 0

Total 58 80 63 80

See legend to Table 2 for definitions of row and column headings.
doi:10.1371/journal.pone.0050514.t004
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probability above the threshold divided by the number of proteins

classified as single pattern with probability above the threshold,

and recall as the number of single pattern proteins correctly

classified with probability above the threshold divided by the total

number of single pattern proteins. At a zero threshold, the

accuracy for recognizing single class proteins was found to be

Table 5. Classification results after second round of reannotation.

centro. cyto. actin inter. micro. er golgi mitoch. nucleoli nucleus w/o PM vesicle

Centrosome (16) 0.31 0.06 0 0 0 0 0.19 0.13 0.06 0.06 0 0 0.19

Cytoplasm (126) 0 0.94 0 0 0 0 0 0.02 0 0 0 0 0.04

Actin filaments (10) 0 0.40 0.10 0.10 0 0 0 0.10 0 0 0 0.20 0.10

Intermediate filaments (12) 0 0.25 0 0.42 0 0.08 0 0.25 0 0 0 0 0

Microtubules (18) 0 0.17 0 0 0.78 0.06 0 0 0 0 0 0 0

ER (40) 0 0.13 0 0 0 0.78 0 0.10 0 0 0 0 0

Golgi (64) 0 0.02 0 0 0 0 0.97 0 0 0 0 0 0.02

Mitochondria (148) 0 0.01 0 0.01 0 0.01 0.01 0.95 0 0 0.01 0 0.01

Nucleoli (66) 0 0.02 0 0 0 0 0 0 0.88 0.05 0.03 0 0.03

Nucleus (91) 0 0 0 0 0 0 0 0 0.07 0.30 0.64 0 0

Nucleus w/o nucleoli (272) 0 0 0 0 0 0 0 0 0.01 0.04 0.94 0 0

Plasma membrane (14) 0 0.50 0 0 0 0 0 0.07 0 0.07 0 0.29 0.07

Vesicles (73) 0 0.05 0 0 0 0 0.01 0.07 0 0.03 0.01 0 0.82

Cell level feature classification confusion matrix with reannotated proteins. Bold values indicate agreement between the classifier and the true class. Overall
classification accuracy is increased to 82.3% compared with 77.9% in Table III. The number of proteins in each class is shown in parenthesis after the class name.
doi:10.1371/journal.pone.0050514.t005

Figure 6. Precision-recall curves for protein annotations for single and multi-class classifiers. For the solid blue and dashed black line, we
predicted the annotations of single pattern and mixed pattern proteins used a classifier trained with only single pattern proteins. For the solid blue
line, annotations were considered correct if one of the annotations of one protein was predicted. For the dashed black line, only recognition of single
pattern proteins was considered correct. For the dotted red line, a classifier trained on both single and mixed pattern proteins was used, but only the
accuracy of recognizing single pattern proteins was assessed.
doi:10.1371/journal.pone.0050514.g006

Automated Reannotation of Subcellular Locations
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64.0%. At a threshold corresponding to 17% recall, the precision

improved to 90.1%. Thus single class proteins can be correctly

recognized with reasonable accuracy by a classifier trained on

either single or multiple-class proteins.

Discussion

Microscopy images are rich sources of information about cell

structure and function for systems biology. We have presented a

framework to classify proteome-scale collections of proteins

containing complex subcellular location patterns, and our classifier

provides performance similar to human annotation on single-class

proteins.

The only prior work on the automated classification of proteins

using HPA confocal immunofluorescence images was described by

Newberg et al. [5]. In this paper, we obtain similar classification

accuracies on single-class proteins but analyze many more proteins

and patterns. The cytoplasm pattern, which has the second largest

number of proteins, was added and introduces some confusion

with other patterns because of non-specific staining over the cell.

The nucleus pattern was split into nucleus pattern and nucleus

without nucleoli pattern to provide more detailed annotations,

notwithstanding the two are highly blended in the staining and are

difficult to distinguish visually in many images. The small class of

cytoskeleton was also even split into three further patterns of actin,

intermediate filaments and microtubules which reduces the

number of training images available for each. Nonetheless, good

classification accuracies were maintained, which represents a

significant advance over our prior work. However, the accuracies

are not yet high enough to replace human annotators. In the

future, we plan to implement new features specific for the

centrosome pattern, and hope to add features for better

discriminating the cytoskeleton and plasma membrane patterns

from the cytoplasm pattern.

One of the main novelties we describe in this paper is the

introduction of approaches to identify possible mis-annotated

proteins, derived from SVM classification and hierarchical

clustering, and the demonstration that they could identify proteins

needing reannotation at a rate higher than random. Our results

show that selecting proteins using both schemes achieves higher

yield of reannotated proteins than either of them alone or in

combination. We plan to continue cycles of reannotation, and to

incorporate the automated system in the annotation pipeline. Note

that in this paper we only provide results for the A-431 cell line,

but the whole framework introduced here can be applied to other

cell lines, such as U-2OS and U-251MG. As a matter of fact, some

preliminary results have already been obtained (data not shown;

included in Reproducible Research Archive as described in

Materials and Methods). We hope thereby to maximize the

accuracy of reported annotations in the Human Protein Atlas. We

anticipate that a similar approach may be applied to other

proteome-scale image collections.

The dataset used in this paper contains 2D, static confocal

images of fixed cells from HPA. In the future, the temporal

dynamics of the variations of protein subcellular location patterns

and the evolution over the course of stem cell differentiation can

be explored by our framework as datasets become available.

Another novel aspect of this work is the results on full or partial

recognition of mixed pattern proteins. Our results highlight the

difficulty of handling these patterns. The main problem is that the

features are affected by the degree of mixture. This is unlike the

case for tasks like document classification, in which the addition of

a second topic associated with new words does not alter the

detection of words associated with the first topic. It is also unlike

the case in many natural scene images in which adding a dog to an

image of a cat does not change the local features associated with

the cat. In these cases, a number of multiclass learning strategies

have been successfully used. For protein patterns consisting of

vesicular objects, we have used similar methods to show that the

frequency of object types can be used to estimate mixing between

patterns (using both supervised [13] and unsupervised [14]

approaches). Unfortunately, this approach does not generalize to

mixtures involving non-vesicular proteins, and preliminary work

indicates that local features such as SIFT [15] also do not perform

well in that case.

Materials and Methods

Image Collection
Confocal images of A-431 cells from the HPA were used for

these studies. These images are stored as one 8-bit uncompressed

TIFF file for each of four fluorescence channels. One channel was

collected for immunofluorescence labeling with monospecific

antibodies, while the other channels were acquired using standard

stains for the nucleus, endoplasmic reticulum and microtubule

cytoskeleton [11]. After images were acquired, they were visually

annotated. One or more location labels were assigned to each

protein (i.e., a protein could be viewed as consisting of a

centrosome pattern mixed with cytoplasm pattern). Up to two

image fields were taken for each protein.

Cell Segmentation and Feature Calculation
We used the same cell segmentation and feature calculation

strategies as in our previous work [5]. The result was a total of 714

features for each cell, for an average of 9 cells per image. The

much larger number of features compared to cells in each class

suggested the need for some feature reduction or selection method,

and we chose Stepwise Discriminant Analysis as it has worked well

in this field of application [16]. After selection there were around

100 features left.

Support Vector Machine Classification
We trained SVM to classify cells by their subcellular location

patterns in two rounds. We utilized two levels of nested 5-fold

cross-validation so that training parameters could be optimized

without using the final testing data. The fraction of representatives

of each class within each fold was kept as close to the original

fractions as possible, and all cells for a given protein were included

in the same fold to give the most conservative estimate of

classification performance. The inner level of cross validation

involved using 3 folds for training and one fold for selecting the

optimal values of the radial basis function (RBF) kernel parameter

g and the slack parameter C; the outer level used the remaining

fold to get the final generalization accuracies. Additionally, class

weights were used during training in order to account for the

different number of cells in representing each class. Classification

was implemented using the LIBSVM toolbox [17] (http://www.

csie.ntu.edu.tw/̃cjlin/libsvm) with one-against-one multi-class

SVM (unless otherwise indicated). Since the classifiers output

probabilities that each cell belongs to the classes, we boosted the

classification accuracy of single cells by summing class probabilities

for all cells for the same protein, and then assigning all of these

cells the class with the maximum value.

For identifying potential proteins that may need to be

reannotated, we designed an algorithm on the basis of the output

probabilities estimated by SVM classifiers. From the output

probabilities, we find a set of samples (we call set R) that are

incorrectly classified but have low predicted probabilites. These
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samples are near to the decision boundaries. On the other hand,

there is another set of samples (set F) that are also incorrectly

classified but with higher predicted probabilities, which are farther

away from decision boundaries. The fundamental idea of the

algorithm is that R has little impact on F. Even if we flip the labels

of samples in R from their previous class labels to the classified

labels and train the classifiers again, at least a subset of samples in

F will still be stable and stay in the status of incorrectly classified.

Therefore F are identified as potentially being incorrectly

annotated. This algorithm is nonparametric and robust, and

bears an analogy to the distillation process. The detailed

procedure follows: (1) find the proteins whose automated and

human classes disagree and sort them in ascending order of

classifier-assigned probability; (2) change the annotations for the

top N (we used N = 5) proteins in this ranked list to match the

automated assignment (so that all combinations of changes of these

labels are considered), and (3) retrain the classifiers and repeat

steps 1 and 2 for M (we used M = 20) levels of recursion. At the

end of this process, the proteins that appeared in all ranked lists

were considered for reannotation.

In addition to using the classifier for reannotation, we sought to

determine how well it could be used for initial annotation of

proteins. In this case, we do not know a priori which proteins show

single patterns and which show mixed ones. We applied the

classifier (trained on only the single pattern proteins) to images for

2749 proteins after the second round of reannotation with single or

mixed patterns which have at least 5 proteins, and sorted the

proteins by the magnitude of the maximum output probability

value for each protein. An increasing threshold on this probability

was used to generate precision-recall curves using two approaches

for defining precision and recall. In the first case of variation, we

defined correct classifications as assigning at least one of a protein’s

labels correctly with probability above the threshold. In the second

case, we defined only assignments (with probability above the

threshold) to single class proteins as correct (and thus all assignments

above the threshold made to proteins with two or more labels were

considered incorrect).

In our preliminary work on classification of subcellular location

patterns using HPA images [5], a subset of images of single pattern

proteins were evaluated by both SVM and Random Forest [18]

methods. The results indicated slightly better performance for the

latter approach, and we therefore also evaluated Random Forest

classifiers for the tasks on the larger datasets used in this paper.

Since the performance was lower than for SVM (as shown in

Table S4), we used SVMs throughout this paper.

Hierarchical Clustering for Reannotation
As an alternative to classification (which requires labels for

training), we used an unsupervised machine learning method,

hierarchical clustering, to identify candidate proteins for reannota-

tion in two rounds. For this we used the same features and a

normalized Euclidean distance metric with Stepwise Discriminant

Analysis feature selection. Since there was more than one cell for

each protein (and some of these might be atypical), we chose the

cell closest to the multivariate median normalized feature value for

a given protein to represent that protein in the clustering. The

resulting tree can be cut at various values of the distance measure

to give different numbers of clusters. We defined the cluster

annotation for each protein as the dominant human annotation in

the cluster in which the protein is found.

To choose the optimal number of clusters, Akaike information

criterion was used. It balances the log-likelihood of the data given

the clustering against the number of clusters. After we decided the

clustering of proteins, the clusters were ordered by optimal leaf

ordering [19] using the associated annotations.

Once we obtained the clustering of proteins, we computed two

scores for each protein to measure and identify the proteins whose

annotations might be not correct. The first score is the ratio of the

number of proteins of that protein’s class in its cluster to the

number of proteins in the dominant (plurality) class of that cluster;

the smaller the ratio is, the higher confidence the protein is

wrongly annotated. The second score is the normalized feature

distance of each protein to the ‘‘median feature vector’’ of proteins

in that protein’s cluster which have the dominant annotation; a

small distance means that the protein is likely to be correctly

clustered. In the first round, we found a subset of all proteins with

the below one value of the first score (in total 285 lowest scores by

the first definition) and another subset of proteins with the 300

lowest scores by the second definition (which were from the range

between zero and the value around the peak of the histogram of

the second score, data not shown), and then selected proteins in

the intersection of the two subsets as candidates for reannotation.

However, we restricted the final list by requiring that each cluster

could only have one protein in this list to minimize the effect that

the presence of more than one mis-annotated protein might have

on the quality of a cluster. In the second round, we released these

restrictions. Proteins were sorted with the first score and with the

second score respectively in ascending order; then they were sorted

with the sum of the two ranks ascendingly. As a result, we had all

proteins sorted in one list, and the more confidence we had on one

protein for its being incorrectly annotated, the higher it would be

in the sorting. The final subset of proteins that would be

reexamined by annotators was thus generated from the top until

we thought that the number of proteins in the subset would not be

an inappropriate burden of work for the annotators.

Random Sampling for Reannotation
To serve as a baseline for evaluating the reannotation

enrichments we would obtain from automated methods (SVM

and hierarchical clustering), we created another list of proteins to

be reexamined. Due to the highly imbalanced dataset, we made a

compromise schema for the random sampling. For each class, we

uniformly randomly sampled a small number (r) of proteins with

replacement. Thus we were easily able to ensure that we sampled

proteins from all classes especially those with small size and

meanwhile to control the number of proteins in this list to reduce

the burden of reannotation work. On the other hand, we could

reduce the chances of selecting the majority (or even all) proteins

from some small classes with replacement sampling. Then the

unique set of proteins (without the duplicates) was merged with

those identified from the automated methods and subjected to

reexamination. In both rounds of analyses, we used r = 7 proteins

for each class for a reasonable and acceptable number of proteins.

Reproducible Research Archive
All code and intermediate results for the work described here

will be available as an open source reproducible research archive

from http://murphylab.web.cmu.edu/software upon publication.

Supporting Information

Table S1 List of proteins reannotated after first round.

(DOC)

Table S2 Classification results after first round of
reannotation.

(DOC)
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Table S3. List of proteins reannotated after second
round.

(DOC)

Table S4 Classification results using Random Forest
classifier after second round of reannotation.

(DOC)
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