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Abstract

Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different
spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy
in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different
temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the
combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal
weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were
measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise
bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises
randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds
had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest
noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ
between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions
with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-
temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying
sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not
change across frequency. The results are discussed in the context of current loudness models.
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Introduction

Loudness is the sensation which is most closely related to the

intensity of a sound. However, loudness also depends on other

characteristics of the sound such as its duration or its spectral

content. Several studies demonstrated that at equal sound pressure

level a broadband signal is usually louder than a narrow-band

signal (e.g., [1,2,3,4,5,6,7,8,9]). This effect is commonly referred to

as spectral loudness summation. It can be accounted for by assuming

that the auditory system analyzes the incoming sound with a bank

of overlapping band-pass filters (critical bands) followed by

a compressive nonlinearity and a summation across critical bands

[10,11,12].

Apart from the integration across frequency, the auditory

system also seems to integrate over time: The level of a short signal

is usually higher than the level of an equally loud long signal with

the same spectrum [13,14,15,16,17]. This temporal integration is

usually accounted for by assuming a leaky integrator as a temporal

integration stage and a decision device that uses the maximum or

a percentile of the output of this stage. Current elaborate loudness

models include both a spectral and a temporal stage of the kind

described above to account for loudness of time-varying sounds

like speech or the noise of a vehicle passing by (e.g., [18,19]).

The traditional technical measures for the loudness of time-

varying sounds, for example LAeq (the A-weighted energy-

equivalent sound pressure level) or N5 (the 95th percentile of the

loudness distribution) (cf. [20,21]) which are used in standards on

noise assessment (e.g., [22]), are based on the assumption that all

temporal portions of the sound contribute in the same way to

overall loudness. More precisely, two temporal portions with

identical spectrum and level have the same impact on LAeq and

similar measures, regardless of their temporal position within the

sound (e.g., beginning versus end). However, this assumption was

recently challenged by studies of temporal weights in loudness

judgments. These studies investigated the importance of different

temporal segments for global loudness judgments based on stimuli

with only small, random level fluctuations (e.g., [23,24,25,26]).

Using methods from so-called molecular psychophysics [27,28,29],

perceptual temporal weights were obtained at high temporal

resolution. The term molecular psychophysics [27] refers to trial-by-

trial analyses that provide information about the relation between

a stimulus feature (e.g., the level of one component of a multitone

stimulus) and the response of the listener (e.g., ‘‘signal present’’

versus ‘‘signal absent’’). These methods, for which the alternative

terms perceptual weight analysis or behavioral reverse correlation have been

used, typically impose random trial-by-trial variation on the

stimulus components. For example, in a study measuring temporal
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weights (e.g., [30,31]), the stimulus might consist of 10 temporal

segments. All segments are presented with a mean level of 60 dB

SPL, but the levels are randomly and independently varied from

trial to trial. Correlational or regression analyses are then used to

estimate the impact of the variation of each individual stimulus

feature on a behavioral or neural response (for a detailed

explanation see [25,30]). These weights represent the influence

of the level of individual temporal portions of a sound on the

loudness of the sound as a whole (global loudness). More specifically,

the weights show how strongly the global loudness changes when

the level of a temporal portion of the sound is changed. Studies on

the temporal weighting of loudness consistently showed that the

first 100–300 ms receive a higher weight than later portions of the

stimulus [24,25,30,31]. This means that, for example, a 1 dB

increase in the level of the first 100 ms of the sound causes

a stronger increase in global loudness than a 1 dB increase in the

level of the final 100 ms. This primacy effect (highest weight assigned

to the beginning of a sound) only occurs for signals with a similar

level across the complete duration of the signal (i.e., when the level

does not change over time). A delayed primacy effect is observed when

the level of the first part of the signal is reduced compared to the

rest of the stimulus [25,30]. In this case, the first temporal segment

presented at the full level receives the highest weight. Results of

Oberfeld and Plank [30] suggest that this effect can be explained

by attention to the loudest elements, which was proposed as an

explanation for higher weights observed for loud elements, even if

these elements provided less reliable information than softer

elements [32,33,34]. Some studies also showed a recency effect,

i.e., higher weights on the last 100–200 ms of the signal [23,24].

However, this effect appears to be considerably smaller than the

primacy effect and was non-significant in most studies (e.g.,

[26,31]). In any case, the data show that not all temporal portions

contribute to loudness to the same extent, contrary to what is

assumed by technical measures of loudness such as LAeq or N5

[35,36,37], which are used in standards on noise assessment like

ISO 1996 [22]. It is interesting to note that, according to

simulation results by Pedersen [38] and unpublished simulations

by one author (DO), recent models for the loudness of time-

varying sounds [18,19] (one of them is used in a German standard,

[21]) cannot account for the observed primacy effect, even though

they include a temporal integration stage and some effects of

temporal masking.

Apart from temporal weights in the processing of the level of the

sound, spectral weights have been investigated for sounds without

temporal variability. As for the temporal weights, these studies

generally reported a non-uniform spectral weighting of auditory

intensity [39,40,41,42,43,44], for example higher weights on the

lowest and/or highest frequency component than on the middle

components.

Previous studies either considered the temporal weighting of

loudness but did not look at spectral weights, or measured spectral

weights but did not consider temporal aspects of loudness.

Therefore, in previous experiments, the stimuli were constructed

so that there was either only a variation in intensity across time

(both within a trial and between trials), or only a variation across

frequency (between trials).

Outside the laboratory, however, as real-world sounds like

speech or traffic noise unfold in time, the energy in different

spectral regions typically evolves differently. In the present study,

we therefore estimated spectro-temporal weights for global loudness

judgments by introducing independent temporal variations in level

in different spectral regions within each stimulus. These spectro-

temporal weights were compared to temporal weights and spectral

weights measured for the same listeners.

Materials and Methods

Ethics Statement
The experiments were conducted according to the principles

expressed in the Declaration of Helsinki. All listeners participated

voluntarily after providing informed written consent. They

received partial course credit or were paid for their participation.

The study was approved by the ethical committee of the

University of Oldenburg.

Participants
Due to the considerable experimentation time required for each

participant (15 sessions, see below), data were collected at two

laboratories (Mainz and Oldenburg). In both laboratories, the

same software code (MATLAB) was used for stimulus generation

and for the control of the experiment. The apparatus was also

virtually identical (for details see section Apparatus). In each

laboratory, five listeners participated (Mainz: 1 male, 4 female, age

19–29 years. Oldenburg: 2 male, 3 female, 24–31 years). All

reported normal hearing and no history of hearing disorders.

Apparatus
The stimuli were generated digitally. In Mainz, they were

played back via two channels of a RME ADI/S D/A converter

(fs = 44.1 kHz, 16-bit resolution), attenuated by TDT PA5

attenuators, and buffered by a TDT HB7 headphone buffer. In

Oldenburg, they were played back via two channels of a RME

ADI-8 PRO D/A converter and amplified by a TDT HB7. In

both labs, the sounds were presented diotically via Sennheiser

HDA 200 circumaural headphones calibrated according to IEC

318 [45] and free-field equalized according to IEC 389-5 and 389-

8 [46]. The experiment was conducted in double-walled sound-

insulated chambers. Listeners were tested individually.

Stimuli and Conditions
In the spectro-temporal condition, the stimuli consisted of 10

temporally overlapping noise segments with a total duration of

120 ms including 20 ms cos2-ramps at onset and offset (see

Figure 1, Panel A). Figure 1, Panel B shows the temporal

structure for a single frequency band. The effective duration of

each segment was 100 ms. The segments had an overlap of 20 ms

resulting in an overall stimulus duration of 1020 ms (effective

duration was 1000 ms). Each temporal segment contained energy

in three different frequency bands (see Figure 1, Panel C). The
three frequency bands were 3.0 Bark wide to prevent strong level

fluctuations that would be audible with smaller bandwidths. In the

same vein, we presented Gaussian low-noise noises generated by

means of two iterations [47], although this may not have further

reduced audible fluctuations because the bandwidth of the stimuli

exceeded the auditory filter bandwidth. The noise bands were

separated by 4.0 Bark. The noise band with the low center

frequency (CF) had cut-off frequencies of 200 Hz and 510 Hz (2.0

to 5.0 Bark) resulting in an arithmetic CF of 355 Hz. The cut-off

frequencies for the other two noise bands were 1080 and 1720 Hz

(9.0 to 12.0 Bark) for the middle and 3150 and 5300 Hz (16.0 to

19.0 Bark) for the high frequency band, corresponding to CFs of

1400 and 4225 Hz, respectively. The total bandwidth of signals

containing all of the three noise bands was 17.0 Bark (23.67 CAM;

[48]).

The middle frequency band was presented at a mean sound

pressure level of mM=55 dB SPL. The mean level of the high (mH)
and the low frequency band (mL) was selected individually on the

basis of loudness matches (see Methods, subsection Loudness matches),

so that all noise bands were equally loud. This is an important
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aspect of the design because there is evidence that louder elements

receive higher weights [32,33,34,49].

On each trial, the sound pressure level of each noise band was

randomly selected for each temporal segment by drawing in-

dependently from a normal distribution with mean mL, mM, or mH

and standard deviation 2.5 dB. Thus, in the spectro-temporal

condition the sound contained 30 components (noise band 6
segment) with levels independently and randomly selected. On

each trial, 0.75 dB was added to or subtracted from the level of all

components (with equal probability) in order to make it either

Figure 1. Stimulus with spectro-temporal variation. Panel A: In the spectro-temporal condition the stimulus consisted of three narrowband
noises. For each noise band, ten temporal segments were presented. Independent and random level perturbations were imposed on the 3 (noise
band) 6 10 (segment) component levels. Panel B: temporal configuration for the mid-CF noise band. The 10 segment levels were drawn
independently from a normal distribution with mean mM= 55 dB SPL and a standard deviation of 2.5 dB. With identical probability, either 0.75 dB was
subtracted from or added to each segment level, in order to create ‘‘soft’’ and ‘‘loud’’ trials (see text). For the low and high noise band the same
temporal configuration was used. Panel C: Spectral configuration.
doi:10.1371/journal.pone.0050184.g001
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a ‘‘loud’’ or a ‘‘soft’’ trial, respectively [25]. With a 1.5 dB

difference between the level distributions of ‘‘loud’’ and ‘‘soft’’

trials we expected the sensitivity in the intensity identification task

in terms of the area under the ROC curve (AUC; e.g., [50]) to be

in the vicinity of 0.7, based on previous experience with this kind

of task [30].

The stimuli in the spectral-weights condition, the broadband-noise

condition, and the single-noise-band conditions were constructed in the

same way as for the spectro-temporal condition, but contained less

components. The selection of the mean levels for the three noise

bands, the random level perturbations, and the addition or

subtraction of 0.75 dB were done exactly as for the spectro-

temporal condition. In the spectral-weights condition (see Figure 2),
there was spectral variation from trial to trial, but no temporal

variation within a sound. In this condition, ten overlapping

segments each with a duration of 120 ms were presented for each

noise band, just as in the spectro-temporal condition. However,

within each noise band the levels of the ten segments were

identical.

In the broadband-noise condition (see Figure 3, Panel A), each
segment also comprised the three noise bands, but the levels of the

three noise bands were perfectly correlated (r=1.0) in each

temporal segment. Thus, effectively a broadband noise varying in

level across time was presented, and there was only temporal but

no spectral variation (i.e., the spectral composition was identical

for all temporal segments, and only the level of the segments

varied). Finally, in the three single-noise-band conditions (see Figure 3,
Panels B to D), each sound consisted of 10 temporal segments

containing only the low-CF, middle-CF, or high-CF noise band.

Again, there was only temporal but no spectral variation.

Procedures
Loudness matches. Prior to the actual experiment, the three

different band-pass noises were equalized in loudness for each

listener. For that purpose, the loudness of each noise was matched

to the loudness of the other two separately. Within each of the

three pairs (low-mid, low-high, and mid-high), both of the noises

once served as the reference stimulus (fixed level) and once as the

test stimulus (level varied by the adaptive procedure, see below).

Additionally, the test stimulus had an initial level of either +10 or

210 dB relative to the level of the reference stimulus, resulting in

a total of twelve different adaptive tracks (noise pair 6 reference

stimulus6initial level). To further reduce bias effects, the resulting

twelve tracks were randomly interleaved (cf. [51,52]). Three blocks

were presented, each containing the twelve interleaved tracks. For

each track, the loudness of the test stimulus was matched to that of

the reference stimulus using an adaptive two-interval, two-

alternative forced-choice procedure with a one-up, one-down rule

[53], tracking the 50%-point of the psychometric function. On

each trial, the listeners heard two sounds and indicated which one

was louder by pressing the corresponding button on a computer

keyboard. The test stimulus was presented either in interval 1 or in

interval 2 with equal a priori probability. The presentation

intervals were 1000 ms long and separated by 500 ms of silence.

The reference stimulus had a fixed level of 55 dB SPL for the

middle-CF noise. For the low-CF and the high-CF reference

stimuli, the fixed levels were selected to give the same loudness as

the middle-CF reference stimulus according to the loudness model

of Chalupper and Fastl [19]. The corresponding levels were

calculated as 57.0 dB SPL for the low-CF and 52.0 dB SPL for the

high-CF reference stimulus. The level of the test stimulus was

decreased if the listener indicated it to be louder than the

reference. Otherwise it was increased. The initial increment or

decrement in level was 8 dB, and this was halved after each upper

reversal until a step size of 2 dB was reached. With this step size,

the procedure was continued until another six reversals occurred.

The mean of the levels at these final six reversals was used to

calculate the level difference between the reference and the equally

loud test stimulus. To adjust the noise bands to equal loudness in

the main experiment, for each reference noise band the mean level

difference between the reference and each test noise band across

the two starting levels and the three measurement blocks was

computed. Finally, the average of the matches across the three

reference noise bands relative to the mid-CF noise band provided

the level differences for equal loudness of the three noise bands.

Loudness identification task used for the estimation of

weights. A one-interval absolute intensity identification task was

used for estimation of the spectro-temporal weights [54]. On

a four-point ordered rating scale, listeners indicated whether a loud

or a soft sound had been presented, and at the same time

expressed their confidence when making the decision. The scale

comprised the response categories ‘‘Soft – rather sure’’, ‘‘Soft –

rather unsure’’, ‘‘Loud – rather unsure’’, and ‘‘Loud – rather sure’’

(in German: ‘‘Leise - eher sicher’’, ‘‘Leise - eher unsicher’’, ‘‘Laut -

Figure 2. Stimulus presented in the spectral-weights condition.
doi:10.1371/journal.pone.0050184.g002
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eher unsicher’’, and ‘‘Laut - eher sicher’’). Listeners responded by

pressing the corresponding buttons on a keyboard. This rating

scale including information about confidence was used in order to

be able to construct ROC curves for estimating sensitivity. In this

way, we avoided the necessity to make potentially unjustified

assumptions about the form of the ROC curve, which would be

necessary for using d based on binary responses as a measure of

sensitivity [50,55]. Because the average overall loudness varied

from block to block and was for example higher for the spectro-

temporal condition than for the single noise-band conditions,

listeners were instructed not to consider the loudness of sounds

presented in previous blocks when classifying the sounds in the

current block as either soft or loud. Note that the task of deciding

whether a soft or a loud trial was presented can be described as

a sample discrimination task [56,57,58]. No trial-by-trial feedback

was provided.

Each experimental block contained only one of the six

conditions (spectro-temporal condition, spectral weights condition,

broadband noise condition, and the three single noise band

conditions). 91 trials were presented per block. In the main part of

the experiment (sessions 5 to 15, see below), each session

comprised three blocks of the spectro-temporal condition, and

one block of each of the remaining conditions (spectral weights

condition, broadband noise condition, and the three single noise

band conditions). The order of blocks was randomized, except that

the spectro-temporal condition was not presented in consecutive

blocks. Across the 11 sessions presenting the intensity identification

task, 3003 trials were collected for each listener in the spectro-

temporal condition, and 1001 trials in each of the remaining

conditions. A higher number of trials was collected for the spectro-

temporal condition because of the necessity to estimate a higher

number of weights (30) than in the remaining conditions, where

only 3–10 weights had to be estimated.

Sessions
In session 1, practice blocks for all experimental tasks and

conditions were run. In session 2, loudness matches were obtained

for the three noise bands. Additionally, listeners received practice

blocks in the identification task. In following sessions only the

identification task was presented. Each session lasted about 50

minutes. Listeners participated in one or two sessions per day,

separated by a pause of at least 30 minutes.

Weight estimation. The decision weights representing the

importance of the 30 spectro-temporal components for the

decision in the intensity identification task were estimated from

the trial-by-trial data via multiple logistic regression [24,25,59,60].

For the spectro-temporal condition containing three noise bands

with 10 temporal segments each, the decision variable underlying

the analysis is given by

D Lð Þ~
X10
i~1

wnbL,iLnbL,i

 !
z

X10
i~1

wnbM,iLnbM,i

 !

z
X10
i~1

wnbH,iLnbH,i

 !
{cj

ð1Þ

where L is a vector of component levels, LnbL,i denotes the level of

the noise band with the low CF in segment i (i=1, …, 10), wnbL,i is

the decision weight assigned to the level of this component, the

indices nbM and nbH denote the noise band with the intermediate

and the high CF, respectively, and cj is a constant representing the

decision criterion for the jth of the four ordered response categories

[24,29,61]. In other words, D(L) is a weighted average of the 30

(noise band 6 segment) independent component levels.

The decision model (Eq. (1)) assumes that, on a given trial,

a listener responds that a loud rather than a soft sound was

presented if D(L) .0. More precisely, as we have a four-category

Figure 3. Stimuli with purely temporal variation. Panel A: broadband noise. Panel B: low-CF noise band. Panel C: mid-CF noise band. Panel D:
high-CF noise band.
doi:10.1371/journal.pone.0050184.g003
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response variable Y we assumed a proportional-odds model [62]

according to which

P Yƒjð Þ~ eD Lð Þ

1zeD Lð Þ ,j~1,:::,J{1 ð2Þ

where J is the number of ordered response categories. This model

applies simultaneously to all J 2 1 cumulative probabilities, and it

assumes an identical effect of the predictors for each cumulative

probability [61].

For the remaining conditions, the decision variable was

constructed analogously to Eq. (1), but contained fewer compo-

nents. For example, for the spectral weights condition there were

only three component levels and three corresponding weights.

In the data analysis, the ordered categorical responses (‘‘Soft –

rather sure’’, ‘‘Soft – rather unsure’’, ‘‘Loud – rather unsure’’, and

‘‘Loud – rather sure’’) served as the dependent variable. The

predictors (i.e., component levels) were entered simultaneously.

The regression coefficients were taken as the decision weight

estimates. For a given component (e.g., the level of the first

segment of the low-CF noise), a regression coefficient equal to zero

means that the component had no influence at all on the decision

to judge the sound as being soft or loud. A regression coefficient

greater than zero means that the probability of responding that the

loud sound was presented increased with the sound pressure level of

the given component. A regression coefficient smaller than zero

indicates the opposite relation.

Due to the difference in mean level between ‘‘loud’’ and ‘‘soft’’

trials, the component levels were correlated. Therefore, separate

logistic regression analyses were conducted for the ‘‘loud’’ trials

where 0.75 dB had been added to all component levels, and for the

‘‘soft’’ trials where 0.75 dB had been subtracted (cf. [29]). This

avoids potential problems with multicollinearity, although the

multiple logistic regression procedure corrects for correlations

between the covariates.

A separate logistic regression model was fitted for each

combination of listener, condition, and trial type (‘‘soft’’ versus

‘‘loud’’ trials). As we were interested in the relative contributions of

the different components to the decision rather than in the

absolute magnitude of the regression coefficients, the decision

weights wi were normalized for each fitted model such that the

mean of their absolute values was 1.0 (see [40]), resulting in a set of

relative decision weights for each listener, condition, and trial type

(‘‘soft’’ or ‘‘loud’’).

A summary measure of the predictive power of a logistic

regression model is the area under the receiver operating

characteristic (ROC) curve [50,63]. This measure provides

information about the degree to which the predicted probabilities

are concordant with the observed outcome (see [26] for details).

Areas of 0.5 and 1.0 correspond to chance performance and

perfect performance of the model, respectively. Across the 120

fitted logistic regression models, AUC ranged between 0.57 and

0.88 (M=0.72, SD=0.08), indicating reasonably good predictive

power [64].

Results

Sensitivity
For each listener and experimental block in the intensity

identification task, a ROC curve was constructed from the

observed rating response frequencies (for details see [65] Chapter

3). ‘‘Loud’’ trials on which 0.75 dB had been added to all

component levels were defined as ‘‘signal’’, and ‘‘soft’’ trials on

which 0.75 dB had been subtracted were defined as ‘‘noise’’. The

first five trials per block were excluded from the analysis. The

AUC was used as an index of sensitivity. AUC does not require

strong assumptions about the internal distributions of ‘‘signal’’ and

‘‘noise’’ [50,55]. It corresponds to the proportion of correct

responses obtained with the same stimuli in a forced-choice task

[66,67] if bias-free responding can be assumed in the forced-choice

task [68,69]. To compute AUC, a maximum-likelihood procedure

[70] was used for fitting a binormal model [71]. For each block,

AUC and its variance were computed from the maximum-

likelihood (ML) estimates of slope and intercept of the ROC curve,

using the delta method [72].

Table 1 shows the average sensitivity (in terms of AUC) for each

condition. As expected, the grand mean of AUC was close to 0.70

(M=0.68, SD=0.07). A repeated-measures ANOVA using

a univariate approach and Huynh-Feldt correction for the degrees

of freedom was conducted (cf. [73]), with the within-subjects

variable condition (spectro-temporal condition, spectral weights

condition, broadband noise condition, and the three single noise

band conditions). The df-correction factor ~ee is reported. Partial g2

is reported as a measure of effects size. The ANOVA showed

a significant effect of condition, F(5, 45) = 19.56, p,0.001,
~ee=0.52, g2p=0.69. The highest sensitivity was observed for the

spectro-temporal condition. This is compatible with the theory of

multiple observations [74], because in the spectro-temporal

condition 30 independent components were available, while the

remaining conditions contained smaller numbers of components.

Post-hoc pairwise comparisons were conducted using non-pooled

error terms [75] and Hochberg’s sequentially acceptive step-up

Bonferroni procedure [76]. All except six tests were significant at

an a-level of 0.05. The non-significant tests occurred for the three

single-noise-band conditions versus the spectral-weights condition,

the mid noise band vs. the high noise band, the low noise band vs.

the broadband noise, and the spectral-weights condition versus the

broadband noise.

Spectro-temporal Weights
The normalized decision weights were analyzed via repeated-

measures ANOVAs. The results are presented in the following

order: 1) the results of the spectral-weights condition where the

stimuli varied only spectrally, 2) the results of the conditions

showing only temporal variation, and 3) the spectro-temporal

weights, and, finally, 4) the weights are compared between some of

these conditions.
Spectral weights condition. A repeated-measures ANOVA

with the within-subjects factors noise band CF (low, middle, high)

and trial type (soft or loud) was conducted to test if the listeners

assigned different weights to the three spectral components (noise

Table 1. Mean sensitivity (and its standard deviation) in the
intensity identification task, in terms of the area under the
ROC curve (AUC), for each condition.

Condition AUC SD

Spectral weights 0.68* 0.04

Temporal weights Low-CF noise band 0.67* 0.07

Medium-CF noise band 0.64* 0.07

High-CF noise band 0.64* 0.07

Broadband noise 0.69* 0.06

Spectro-temporal 0.74* 0.07

Note. * Estimated AUC significantly different from 0.5, p,0.05, two-tailed.
doi:10.1371/journal.pone.0050184.t001
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bands) in the spectral-weights condition where there was no

temporal variation. As shown by the filled squares in Figure 4,
the low-CF noise band received a higher weight than the two other

noise bands, F(2, 18) = 31.41, p,0.001, ~ee=0.68, g2p=0.78. Owing

to the normalization of the weights, the effect of trial type was not

significant. All interactions were also non-significant (all p-values

.0.5).

Temporal weights: single-noise-band and broadband-

noise conditions. Rennies and Verhey [31] found a significant-

ly larger primacy effect for a broadband stimulus than for

a narrowband stimulus. To test if such an effect of bandwidth was

also observed in the present study an analysis was conducted of the

data obtained in the broadband-noise and in the three single-

noise-band conditions for which there was only temporal

variation. At the same time, the question was addressed if the

temporal weights differed between the low, middle and high noise

bands. As seen in Figure 5, the weights for all of these four

conditions show a clear primacy effect, because the highest weights

were observed for segments 1 to 3 (i.e., the first 300 ms of the

sound). There was no evidence for a recency effect. The effect of

segment was significant, F(9, 81) = 68.71, p,0.001, ~ee=0.23,

g2p=0.88. The segment 6 condition interaction was not

significant, however, F(27, 243) = 1.14, p=0.33. Thus, the

temporal weights did not differ between the three narrowband

noises with different center frequencies, and the primacy effect was

not significantly stronger for the broadband noise than for the

narrowband noises. This effect is in contrast to Rennies and

Verhey [31] who found a significantly larger primacy effect for

broadband than for narrowband noise.

There was also a significant effect of condition, and a significant

condition6trial type interaction. Despite the normalization of the

weights, these effects appear because some weights with small

absolute value were negative. Inspection of the individual data

showed that across all listeners and conditions only three of the

negative regression coefficients were significantly different from

zero. Because in the normalization the mean of the absolute values of

the weights was set to 1.0, the means were slightly lower for

conditions in which negative weights occurred than for conditions

where only positive weights occurred. These effects, however, have

no relevance for the interpretation of the data.

Spectro-temporal weights condition. To our knowledge,

the spectro-temporal condition including both temporal and

spectral variation represents the first report of spectro-temporal

weights in a loudness judgment task. Did listeners again apply non-

uniform temporal or spectral weights, as in the conditions with

only spectral or only temporal variation?

A repeated-measures ANOVA with within-subjects factors

segment, noise band, and trial type showed a significant effect of

segment, F(9, 81) = 76.74, p,0.001, ~ee=0.41, g2p=0.90. As seen in

Figure 6, the temporal weights for all of the three noise bands

showed a clear primacy effect. The effect of noise band was also

significant, F(2, 18) = 35.20, p,0.001, ~ee=0.64, g2p=0.80. As

Figure 6 shows, the low-CF noise band received on average

higher weights than the other two noise bands, consistent with the

spectral weights observed in the condition showing only spectral

variation. The segment 6 noise band interaction was significant,

F(18, 162) = 9.36, p,0.001, ~ee=0.58, g2p=0.51. No other effects

were significant (all p-values .0.19).

Spectral weights: spectro-temporal condition versus

spectral-weights condition. The above analysis showed that

the spectral weights for the spectro-temporal condition followed

a similar pattern as for the spectral weights condition. The low-CF

noise band had a stronger influence on the loudness judgments

than the two noise bands with higher CF. As stated in the

introduction, an interesting question is whether the listeners

applied the same spectral weights in the spectro-temporal

condition as in the spectral-weights conditions. In other words,

did the presence of temporal variation result in a change in the

spectral weights compared to the condition without temporal

variation? To answer this question, the means of the absolute

values of the weights assigned to the 10 temporal segments for the

low, middle, and high noise band in the spectro-temporal

condition were computed for each listener and trial type. The

resulting three spectral weights were then normalized so that the

mean of their absolute values was 1.0. Subsequently, these spectral

weights for the spectro-temporal condition were compared to the

spectral weights observed for the condition where there was only

spectral variation. The average spectral weights estimated for the

spectro-temporal condition are shown as open symbols in

Figure 4. A repeated-measures ANOVA with within-subjects

factors condition, noise band and trial showed a significant effect

of noise band, F(2, 18) = 37.8, p,0.001, ~ee=0.73, g2p=0.81. The

noise band 6 condition interaction was not significant, F(2,

18) = 0.56, p=0.56. Thus, the spectral weights estimated in the

spectro-temporal condition did not differ from the weights

estimated in the spectral-weights condition. The remaining effects

in the ANOVA were not significant (all p-values .0.57).

Temporal weights for the three noise bands: comparison

between the spectro-temporal and the single-noise-band

conditions. Concerning the pattern of (relative) temporal

weights, two questions arise. First, did the temporal weighting

patterns differ between the three noise bands in the spectro-

temporal condition? Note that the ANOVA presented in the

section on temporal weights does not answer this question, because

the weights entering this ANOVA represented the effects of both

segment and noise band. The second question is: Did the temporal

weights for a given noise band estimated in the spectro-temporal

conditions show a different pattern than in the corresponding

single-noise-band condition?

To answer these two questions, the weights in the spectro-

temporal condition were normalized so that the mean of the

Figure 4. Spectral weights. Average normalized relative decision
weights as a function of noise band. Normalization: mean of the
absolute values of the three weights equals 1.0. Filled symbols: spectral
weights condition. Open symbols: spectro-temporal condition, spectral
weights averaged across segments (see text). Error bars show 95%
confidence intervals.
doi:10.1371/journal.pone.0050184.g004
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absolute values of the 10 temporal weights was 1.0 for each

listener, noise band, and trial type. The average normalized

temporal weights are shown in Figure 7 which compares the

weights for the spectro-temporal condition (open symbols) to the

weights for the single-noise-band conditions (filled symbols).

A repeated-measures ANOVA with within-subjects factors

segment, noise band, condition, and trial type showed the

expected significant effect of segment, F(9, 81) = 84.5, p,0.001,

~ee=0.26, g2p=0.90. The interactions of segment with noise band,

condition, or both were not significant (all p-values .0.44). Thus,

the pattern of temporal weights did not differ between the single-

noise-band conditions and the spectro-temporal condition. There

was a significant main effect of noise band, which can again be

attributed to spurious negative weights.

A post-hoc ANOVA analyzing only the spectro-temporal

condition also showed no significant interaction between segment

and noise band, F(18, 162) = 0.68, p=0.81. Thus, the temporal

weights did not differ between frequency bands for this condition,

compatible with the comparison between the temporal weights for

the single-noise-band and the broadband-noise conditions pre-

sented in the section on temporal weights above.

Discussion

Using stimuli with spectro-temporal variation in level and

methods of molecular psychophysics, spectro-temporal weights

in a loudness judgment task were obtained. Previous studies

estimated either only temporal weights, or only spectral weights.

To our knowledge, the only exception is an experiment by Dai

and Berg [77]. However, they used a profile listening task

where listeners detected a level increment on a single compo-

nent, rather than performing a global loudness judgment task.

The results of the present study demonstrate non-uniform

temporal and spectral weights in the spectro-temporal condition.

Comparison to Previous Studies on Temporal Weights for
Broadband Stimuli
Several previous studies consistently showed higher weights

for the first few segments of a stimulus (primacy effect). In the

Figure 5. Temporal weights. Average normalized relative decision weights for the four conditions showing only temporal variation, as a function
of segment number. Normalization: mean of the absolute values of the ten temporal weights equals 1.0. Blue squares: low-CF noise band. Green
circles: mid-CF noise band. Red triangles: high-CF noise band. Black diamonds: broadband noise. Error bars show 95% confidence intervals.
doi:10.1371/journal.pone.0050184.g005
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present experiment higher weights were found for the first three

100-ms segments. This is in the range of two to four segments

found in previous studies [23,24,30]. As reported by Rennies

and Verhey [31] and Dittrich and Oberfeld [26], the weights

for the last three segments were very similar to each other. A

recency effect, as found by Ellermeier and Schrödl [23] and

Pedersen and Ellermeier [24], was not observed in the present

study. This corroborates the conclusion that the recency effect is

considerably weaker than the primacy effect [30].

It is unlikely that the primacy effect can be attributed to

peripheral mechanisms like the initial peak in the firing rate of

auditory nerve neurons (cf. [78]) because it is also observed for

a sequence of noise bursts separated by pauses of 5, 40 or 100 ms

(for a detailed discussion see [30]). With pauses of 40 or 100 ms

between the sounds each noise burst should have elicited a similar

neuronal response, due to the fast recovery of the majority of

auditory nerve neurons [79,80]. Data of Oberfeld and Plank [30]

also argue against a capture of attention due to the abrupt onset of

a sound [81,82,83] as an explanation. They attenuated the

abruptness of the onset by imposing a gradual increase in level

(‘‘fade in’’) across the first 300 to 700 ms of a sound with 1 s

duration. This did not result in uniform temporal weights,

however, but in a delayed primacy effect, with very small weights

assigned to the attenuated segments constituting the fade in, and

the highest weight assigned to the first unattenuated segment.

Dittrich and Oberfeld [26] proposed that the primacy effect might

be caused by a memory process, assuming that the levels of the

different temporal portions of a sound are processed as serially

sorted information, thus linking the results to experiments on

working memory (e.g., [84]) and auditory sensory memory [85],

where the characteristic serial position curve also showing

a primacy effect is observed (for a detailed discussion see [30]).

Although it may seem debatable at first sight that the individual

segment levels are represented in memory, the assumption that the

primacy effect can be attributed to a memory operation rather

than to a mechanism specific to auditory intensity processing

would be compatible with four observations. First, the primacy

effect is observed for a wider range of sensory attributes like

intensity (our study), frequency [29], or sound localization cues

[86,87]. This finding could be explained by a higher order

Figure 6. Spectro-temporal weights. Average normalized relative
decision weights for the spectro-temporal condition, as a function of
segment number and noise band. Normalization: mean of the absolute
values of the 30 (noise band 6 segment) weights equals 1.0. Blue
squares: low-CF noise band. Green circles: mid-CF noise band. Red
triangles: high-CF noise band. Error bars show 95% confidence intervals.
doi:10.1371/journal.pone.0050184.g006

Figure 7. Temporal weights compared between the spectro-
temporal condition and the single-noise-band conditions.
Average normalized relative decision weights, as a function of segment
number, condition, and noise band. Normalization: mean of the
absolute values of the ten temporal weights equals 1.0 per noise band.
Filled symbols: single-noise-band conditions (replotted from Figure 5).
Open symbols: spectro-temporal condition (same data as in Figure 6,
but different normalization). Error bars show 95% confidence intervals.
doi:10.1371/journal.pone.0050184.g007
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mechanism like memory, although it does of course not rule out

the possibility that specific mechanisms exist for intensity,

frequency, localization etc. which all result in similar temporal

weighting patterns. Second, the temporal weights observed for

contiguous sounds as used in the present study are very similar to

the weights found when the sounds are separated by pauses of

100 ms [88]. In the latter case, the stimulus is definitely broken up

into perceptually distinct segments. From our own experience as

listeners in the task we studied, you can clearly perceive the level

changes as a sequence of events, even though the temporal

segments are not separated by pauses. Thus, phenomenologically

it is conceivable that the temporal portions are processed as

separate events. Third, it is important to note that serial position

effects like primacy2/recency-effects were not only reported for

classical short term memory tasks like remembering a sequence of

spoken digits, but also in sensory memory [85,89]. Thus, a ‘‘symbolic’’

representation of the items (in the present example: segment levels)

is not a prerequisite for serial position effects. Last but not least,

experiments on auditory profile listening where the task was for

example to detect a level increment on the temporally central

sound in a sound sequence [25,90] showed that listeners are able

to selectively respond to for example a 20 ms segment embedded

in a sequence of 10 contiguous segments. This result would be

difficult to explain when assuming that listeners have access only to

a ‘‘unitary’’ representation of the stimulus, and not to the separate

temporal elements.

Bandwidth Effects in Temporal Weights
Rennies and Verhey [31] argued that the higher weight

assigned to the first segment may be due to spectro-temporal

effects in loudness. Most studies of temporal weights used

broadband stimuli [23,24,25,30]. Rennies and Verhey [31]

investigated how bandwidth affects the temporal weights. They

found that the primacy effect is still present but is significantly

reduced when a narrowband signal is used instead of a broadband

signal. They argued that this effect of bandwidth may be related to

the duration effect in spectral loudness summation. Several studies

have indicated that the magnitude of spectral loudness summation

is larger for short signals than for long signals. The stronger

spectral loudness summation for short signals was attributed to

slightly different auditory processing at stimulus onset compared to

later portions in time [8,9,91,92], resulting in a greater influence of

bandwidth on loudness for short than for long signals. According

to this hypothesis, the higher weight assigned to the first temporal

segment of the broadband signal found by Rennies and Verhey

[31] is due to increased spectral loudness summation at the

beginning of the stimulus. Although a duration effect in spectral

loudness summation may contribute to the primacy effect, it is

unlikely that the primacy effect is solely due to this duration effect,

since higher weights are also assigned to segments 2 and 3 (see

Figure 5).

The results of the present study do not show a significantly

higher weight for the first segment in the broadband condition

than for the first segment in the three narrowband conditions. This

difference is presumably due to differences in the stimulus

parameters. Rennies and Verhey [31] used a bandpass-filtered

noise with a flat spectrum geometrically centered at 2 kHz with

a bandwidth of either 400 Hz (from 1810 to 2210 Hz) or 6400 Hz

(from 574 to 6974 Hz). The ratio of 16:1 was larger than the

bandwidth ratio of the broadband condition and the middle-band-

only condition (about 8:1). It is unlikely that the loudness

equalization of the bands or the spectral notch between adjacent

bands caused the difference in the results between the present

study and that of Rennies and Verhey [31]. Heeren et al. [93]

found larger spectral loudness summation for a sequence of short

complex tones than for long complex tones with the same

spectrum, similar to the duration effect of spectral loudness for

noise bursts [8,9,91]. Thus, the effect of duration on spectral

loudness summation does not require a continuous spectrum

between the lowest and highest frequency components of the

stimulus.

Comparison to Previous Studies on Spectral Weights
The results of the present study showed a higher weight on

the lowest frequency band than on the higher bands (see

Figure 4). Such a pattern was not observed in previous studies

[39,40,41,42,43], with one exception [44]. The reason for the

different pattern of weights observed in our study may be that

the three noise bands were presented at equal loudness. In

general, previous studies used the same sound pressure level for

all bands. As a consequence, the bands very likely differed in

loudness because absolute threshold and loudness are generally

frequency dependent [94]. Below about 4000 Hz, the equal-

loudness contours increase towards lower frequencies, i.e., in

this frequency range, components with lower frequencies are

generally softer than equal-level components at higher frequen-

cies. If one assumes that the loudest components dominate the

overall loudness, then the usage of the same SPL may have

biased the weights towards the high frequencies. In line with

this hypothesis Kortekaas et al. [40] found the highest weight for

their highest frequency band, which in their study was often the

loudest band (the exceptions are their complex tones with 24

components). The hypothesis is further supported by recent data

from Jesteadt et al. [44], who found the highest weight on the

lowest frequency component when each component had the

same sensation level. In this case, the loudness of the lowest

component would have been higher than that of the other

components, because the slope of the loudness function is

steeper at low than at high frequencies [94]. It should be noted

that Jesteadt et al. [44] also found a slightly higher weight on

the lowest band for equal-SPL (rather than equal-SL) bands.

This result is difficult to reconcile with the assumption of

different weights due to different component loudness. The

question of whether the higher weight on the lowest band in the

equal-loudness condition can be attributed to the frequency-

dependent slope of the loudness function is discussed below

(section Spectro-temporal weights within loudness models).

Prediction of Spectro-temporal Weights from Temporal
and Spectral Weights
The analyses presented above show a strong similarity between

the average spectral and temporal weights obtained, one the one

hand, with the less complex stimuli (i.e., with either only spectral

or only temporal variability) and, on the other hand, with the

stimuli in the spectro-temporal condition. A simple but strong

hypothesis concerning the spectro-temporal weighting of loudness

compatible with these results is that the spectral weights do not

change as a function of time (i.e., the same spectral weights apply

for each temporal segment), and that the temporal weights do not

change across frequency (i.e., for each frequency band the same

temporal weights apply). If this hypothesis were correct, it would

be possible to predict the spectro-temporal weights for each

listener by multiplying the spectral weights (estimated in the

spectral-weight condition) with the temporal weight for each temporal

segment (estimated in the broadband-noise condition). In more formal

terms, the component weights in Eq. (1) (e.g., wnbL,i) should be

given by
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wnbL,i~wnbL
:wi

:m,

wnbM,i~wnbM
:wi

:m,

wnbH,i~wnbH
:wi

:m,

ð3Þ

where wnbL, wnbM, and wnbH are the spectral weights for the low-

CF, middle-CF, and high-CF noise bands, respectively, as

estimated in the spectral weight condition, and wi is the temporal

weight for segment i estimated in the broadband noise condition.

The constant m was included because the spectral and temporal

weights entering Eq. (1) are relative weights and therefore specify

the component weights (i.e., regression coefficients) only up to

a multiplicative constant.

To test this hypothesis, the individual spectral and temporal

weights (as estimated in the spectral weight condition and the

broadband noise condition, respectively) were entered into

a logistic regression model analyzing the responses from the

spectro-temporal condition. As the trial type (‘‘soft’’ or ‘‘loud’’) had

no effect on the weights in the above analyses, the arithmetic mean

across the two trial types was used. Thus, for each listener, there

were three spectral weights (wnbL, wnbM, and wnbH) and ten

temporal weights (w1 to w10). For a given trial from the spectro-

temporal condition, a weighted average Dpred of the 30 component

levels presented in this trial was computed, combining Eq. (1) and

Eq. (3). Subsequently, a logistic regression model was fitted

relating the response to Dpred. This model had four free parameters:

one regression coefficient corresponding to m in Eq. (3), and three

intercepts corresponding to the cj in Eq. (1). For each listener and

trial type, the global goodness-of-fit (log likelihood) of this

restricted model was compared to the goodness-of-fit of the full

model in which the 30 component weights were estimated from

the data obtained in the spectro-temporal condition. The full

model had 33 free parameters (30 component weights plus 3

intercepts). A likelihood-ratio test was used for model comparison.

As the full model has 29 more free parameters than the restricted

model, the test statistic is distributed as x2(29). For 10 of the 20

(subject 6 trial type) conditions, the fit of the full model was not

significantly better than the fit of the restricted model (p.0.05).

The average predictive power as indexed by AUC was 0.68

(SD= 0.05) for the model based on Dpred, which still represents an

acceptable quality of the predictions but was significantly smaller

than the AUC for the full model (M=0.72, SD=0.08), F(1,

9) = 75.9, p,0.001. Thus, the 30 component weights for the

spectro-temporal condition estimated from the trial-by-trial data

for each trial type provided a better fit than the component

weights predicted from the spectral and temporal weights (Eq. (3)).

The latter model, however, still provided a surprisingly good fit if

one considers that it has 29 fewer free parameters than the full

model. It can therefore be concluded that the spectral weights

remain constant across time, and the temporal weights do not

change across frequency. This pattern of result suggests that the

temporal and the spectral weighting of the loudness of a time-

varying sound are independent processes. One should note that

this may not be true for all stimuli. The bandwidth-dependent

weights found by Rennies and Verhey [31] are not consistent with

independent processes. Further studies are needed to investigate

for what type of stimuli this assumption is valid.

Spectro-temporal Weights within Loudness Models
As mentioned above, the slope of the loudness function is

generally steeper at low than at intermediate and higher

frequencies. Suzuki and Takeshima [94] estimated the slope of

the loudness function, i.e. the compressive exponent in the power

law relating loudness and intensity to be about 0.3 at 1 kHz and

4 kHz, but about 0.4 at 125 Hz (see their Fig. 7). The relation

between the frequency-dependent slope of the loudness function

and the spectral weights is consistent with the measured sensitivity

for the three single-noise-band conditions. As discussed in section

Sensitivity, in those conditions AUC was significantly higher for the

noise band with low CF than for the two other noise bands (see

Table 1).

The optimal decision rule would be to apply spectral weights

proportional to sensitivity for the three bands, as indexed by

d (integration model; [95]). If one follows this rationale, do the

observed differences in sensitivity between the three noise bands

account for the observed differences in the spectral weights? To

answer this question, d observed in the three single-noise-band

conditions (Table 1) was individually normalized to an arithmetic

mean of 1.0 across the three noise bands. These normalized

d values represent the weights predicted by the integration model.

Figure 8 plots the observed and predicted spectral weights for

each listener. While the observed and predicted weights show

rather good agreement for some listeners, there are considerable

deviations for other listeners, and in most cases the predicted

weights show smaller variability than the observed weights. To

quantify the relation between the observed and predicted weights,

the correlation coefficient within listeners was computed [96]. This

correlation coefficient provides information about whether an

increase in one variable (predicted weight) within the individual is

associated with an increase in the other variable (observed weight).

The data showed a significant but weak correlation between the

observed and predicted weights, r=0.44, p=0.039. Thus, the

differences in sensitivity to changes in the level of the three noise

bands can partially, but not completely, account for the spectral

weights applied by the listeners.

A second interesting question concerning the influence of the

slope of the loudness functions on the present data is whether the

observed spectral weights can be derived directly from the

frequency-dependent exponents. If one assumes that the global

loudness is the sum of the component loudnesses (i.e., the

component levels in Eq. (1) are replaced by component

loudnesses), then a level change by for example 1 dB would result

in a stronger change in overall loudness when imposed on

a stimulus component with a steeper loudness function. As

a consequence, the analysis we used would show a higher

regression coefficient for a component with a steep slope of the

loudness function, that is, a higher relative weight. To answer the

question of whether the spectral weights can be explained by the

slopes of the loudness function, a power law according to Stevens

[97,98] was used, representing the most basic loudness model:

S~ap2a, ð4Þ

where S denotes the perceived loudness, p is sound pressure, a is

a dimensional constant, and a is the compressive exponent, i.e. the

slope of the loudness function. To focus this analysis purely on the

role of the exponent a, any influence of bandwidth was neglected,

i.e., the values of a and a as derived for pure tones by Suzuki and

Takeshima were used [94].

The values of a for the low, middle, and high center

frequencies of the stimuli used in the present study were taken

directly from Fig. 7 of [94] and were 0.335, 0.293, and 0.289,

respectively. The equal-loudness contours shown in Fig. 11 of

[94] were used to equalize the loudness of the three frequency

components, when the mid-CF component had a level of 55 dB

SPL as in the experiment. The corresponding levels of the low-

Spectro-Temporal Weighting of Loudness

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e50184



and high-CF components were 57.0 and 51.8 dB SPL. These

levels were then used to calculate the dimensional constant a for

each CF, such that finally one equation of the form of Eq. (4)

was available for each frequency component. Subsequently,

5000 random levels were generated for each frequency

component using mean values of 57.0, 55.0, and 51.8 dB

SPL, a standard deviation of 2.5 dB, and random level

increments of +0.75 or 20.75 dB. In other words, the levels

were generated exactly as in the experiment except that the

frequency components were equalized in loudness based on the

equal-loudness contours given in [94]. For each component, the

loudness was calculated using the power law described above,

and the overall loudness was calculated as the sum of the three

component loudnesses. This simplifying assumption concerning

loudness summation seemed justified because of the relatively

wide spacing of the three components [12]. The overall

loudness was then used to estimate spectral weights using the

same logistic regression procedure as for the data analysis, with

a simulated decision criterion corresponding to the arithmetic

mean of overall loudness across the 5000 simulated trials. After

normalizing to a mean weight of 1.0, this resulted in estimated

spectral weights of 1.10, 0.96, and 0.94 for the low-CF, mid-CF,

and high-CF components, respectively. In agreement with the

data, the weight assigned to the lowest frequency component

was higher than for the other frequencies, while the weights on

the mid- and high-CF components were similar. However, the

difference between the three weights was much smaller than

observed in the data (see Figure 4). Thus, the frequency-

dependence of slopes of the loudness functions can only partially

predict the observed spectral weights. This conclusion is

consistent with data of Leibold et al. [42] who measured

spectral weights for five-tone complexes with different band-

widths. For bandwidths smaller than 500 Hz, the bowl-shaped

spectral weights were rather accurately predicted by the

loudness model of Moore et al. [10]. However, for a bandwidth

of 2119 Hz (which is smaller than the 5100 Hz bandwidth we

used), the model predicted almost uniform spectral weights,

while the observed weights showed a much higher weight on

the highest component than on the other components. Leibold

and co-authors suggested that at smaller bandwidths the

components mask each other, and that this peripheral in-

teraction between adjacent components is well represented in

the loudness model which is based on excitation patterns. In

contrast, at the highest bandwidth peripheral interactions should

be negligible, so that the non-uniform spectral weights observed

for the 2119 Hz bandwidth can be attributed to a more central

effect. Similar results were reported by Leibold et al. [41] for

a broadband tone complex.

Additional simulations showed that when the three components

were identical in level (55 dB SPL) instead of being identical in

loudness, the estimated normalized weights were 0.87, 0.91, and

1.22. Thus, at equal SPL the highest weight is predicted for the

high-CF component. As discussed above, this is consistent with the

results of several studies which presented the different frequency

components at equal SPL [39,40,41].

An interesting extension of the present work would be to

measure individual loudness functions for single components and

spectral weights in the same listeners and to directly analyze the

predictability of spectral weights from the measured exponents.

Such an analysis could provide a closer view on the contribution of

differences in slope to the spectral weights and how individual

differences in the slope are reflected in individual differences in the

weights. However, the analysis presented above showed that, on

average, the higher weight observed for the low-CF component

can only partially be attributed to the frequency-dependent slope

of the loudness function. Thus, it remains for future research to

fully understand the reason for this non-uniform spectral weighting

pattern.

At this point, it is important to recall that the weights

represent the influence of changes in the level of a specific

component on the global loudness of the multi-component

stimulus. These weights will not necessarily be identical to the

slope of the loudness function for a component presented in

isolation. As an example, consider one of the single-noise-band

stimuli (Figures 3 and 5). For example, the slopes of the

‘‘isolated’’ loudness functions are identical for segments 2 and 9,

because these components are identical in spectrum, duration,

and average level. However, the weights assigned to the two

components differ considerably. In other words, the loudness

function for a component presented in isolation is not identical to

the slope of the function relating the component level and the

global loudness of the multi-component stimulus. The same

conclusion can be drawn from the above simulation which

demonstrated that the spectral weights cannot be explained by

Figure 8. Individual spectral weights: observed versus predicted. Average normalized relative decision weights, as a function of noise band.
Black circles: weights estimated from the spectro-temporal condition. Gray squares: weights predicted from the sensitivity in the single-noise- band
conditions (see text).
doi:10.1371/journal.pone.0050184.g008
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the slope of the loudness function for the three frequency bands

presented in isolation.

Summary and Conclusions
A limitation of previous studies concerned with the decision

weights listeners apply when judging the loudness of complex

sounds is that they either considered the temporal weighting of

loudness but did not look at spectral weights, or measured spectral

weights but did not consider temporal aspects of loudness. The

present study took the investigation of the loudness of complex,

dynamic stimuli one step further and estimated spectro-temporal

weights for global loudness judgments by introducing independent

temporal variations in level in different spectral regions within

each stimulus. The analyses, based on methods of molecular

psychophysics, showed that for stimuli which change in spectral

composition across time listeners place a higher weight on the

lowest frequency component. The temporal weights showed a clear

primacy effect, that is, a stronger influence of the sound energy at

the beginning of the sound than of the level of later temporal

portions. Comparisons of these spectral and temporal weights to

weights obtained in control conditions with only temporal or only

spectral variation were used to answer the question whether the

spectro-temporal weights can be individually predicted from

spectral and temporal weights. These analyses showed that this

is possible at a rather high precision, indicating that the temporal

and the spectral weighting of the loudness of a time-varying sound

are independent processes. The spectral weights remain constant

across time, and the temporal weights do not change across

frequency. The observed non-uniform spectral weights cannot

fully be accounted for by loudness models based on the frequency-

dependent slope of the loudness function. This observation is

compatible with previous suggestions that central rather than

peripheral processes are responsible for the observed spectral and

temporal weights. These are not yet implemented in current

loudness models. Additional research is necessary here.

Acknowledgments

We are grateful to Marieke Hölle for her assistance in preparing the
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Gesellschaft für Akustik, editors. Proceedings of the Joint Congress CFA/DAGA

0̀4. Strasbourg. 397–398.

91. Anweiler AK, Verhey JL (2006) Spectral loudness summation for short and long

signals as a function of level. J Acoust Soc Am 119: 2919–2928.

92. Rennies J, Verhey JL, Chalupper J, Fastl H (2009) Modeling temporal effects of

spectral loudness summation. Acta Acust United Acust 95: 1112–1122.

93. Heeren W, Rennies J, Verhey JL (2011) Spectral loudness summation of

nonsimultaneous tone pulses. J Acoust Soc Am 130: 3905–3915.

94. Suzuki Y, Takeshima H (2004) Equal-loudness-level contours for pure tones.

J Acoust Soc Am 116: 918–933.

95. Green DM (1958) Detection of multiple component signals in noise. J Acoust

Soc Am 30: 904–911.

96. Bland JM, Altman DG (1995) Statistics notes: 12. Calculating correlation

coefficients with repeated observations: Part 1– correlation within subjects. Br

Med J 310: 446–446.

97. Stevens SS (1956) The direct estimation of sensory magnitudes - Loudness.

Am J Psychol 69: 1–25.

98. Stevens SS (1957) On the psychophysical law. Psychol Rev 64: 153–181.

Spectro-Temporal Weighting of Loudness

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e50184


