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Abstract

Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis,
attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in
critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local
inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the
percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the
disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.2% kcal) alone or an isocaloric
HF diet supplemented with fish oil (HF-FO) for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS)
enema. The HF-FO diet improved the obese phenotype by reducing i) serum hormone concentrations (leptin and resistin),
ii) adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNc, IL-6, IL17F and IL-21) and iii) total (F4/80+

CD11b+) and inflammatory adipose tissue M1 (F4/80+ CD11c+) macrophage content compared to HF (P,0.05). In addition,
the HF-FO diet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master
transcription factor (RORct) and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNc) versus HF (P,0.05). Compared to
HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P,0.05). Under ex vivo polarizing
conditions, the percentage of HF-FO derived CD4+ T cells that reached Th17 cell effector status was suppressed (P = 0.05).
Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and
reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.
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Introduction

In the United States the prevalence of obesity is reported to be

approximately 35% among adults [1]. Obesity is associated with

low-grade chronic inflammation occurring within the adipose

tissue and changes in immune cell populations give rise to altered

inflammatory adipokine and cytokine profiles which, in part,

induce skeletal muscle and hepatic insulin resistance, thereby

causally linking obesity and type-2 diabetes [2,3]. Interestingly, fish

oil (FO) derived long chain n-3 polyunsaturated fatty acids

(PUFA), specifically eicosapentaenoic acid (EPA) and docosahex-

aenoic acid (DHA), have been shown to favorably impact obesity-

associated pathologies, including adipose tissue inflammation,

insulin resistance, lipid metabolism and hepatic steatosis

[4,5,6,7,8,9,10,11,12]. Additionally, supplementation of n-3 PUFA

in models of high fat diet-induced obesity results in reduced insulin

[4,6] and leptin [6] levels, and increased adiponectin levels

[5,6,12].

It is estimated that 50% of inflammatory bowel disease (IBD)

subjects utilize self-prescribed complementary alternative medi-

cines/diets, such as FO [13], whose anti-inflammatory effects have

been shown to enhance remission of chronic intestinal inflamma-

tion [14]. In IBD, activation of two inflammatory mucosal CD4+

T cell subsets, Th1 and Th17 cells, plays a central role in the

induction and persistence of chronic inflammation

[15,16,17,18,19,20], and antagonism of the Th17 cell pathway is

associated with reduced disease severity [21,22]. n-3 PUFA have

been shown to antagonize the Th1 subset [23,24] and reduce

disease severity in dextran sodium sulfate (DSS)-induced colitis,

while concomitantly suppressing systemic (splenic) and local (colon

lamina propria) Th17 cell accumulation, in part, by decreasing

mucosal expression of critical Th17 cell-related cytokines [25].
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In obesity, mesenteric adipose tissue-derived inflammatory

mediators contribute to ongoing intestinal inflammation [26,27].

In Crohn’s disease (CD), mesenteric obesity is implicated in the

disease pathogenesis, wherein fat wrapping and mesenteric

adipose tissue hyperplasia are long established and consistent

features in surgical specimens [27,28,29,30]. There is significant

intra-abdominal fat accumulation (i.e., creeping fat) in CD patients

[31], and histological analysis has revealed abnormalities in the

mesenteric adipose tissue, including pronounced immune cell

infiltration, fibrosis, perivascular inflammation and vessel thicken-

ing [28,29,30]. Ultimately, the hypertrophied mesenteric adipose

that surrounds the intestine [29] contributes actively to disease

severity by increasing the inflammatory milieu comprised of

cytokines (i.e., IL-6), chemokines (MCP-1) and immunomodula-

tory hormones (i.e., leptin and resistin) which may sustain or

perpetuate inflammatory responses in CD patients [26,32,33].

Moreover, the increased visceral adipose mass in obese CD

patients may predispose them to a more aggressive clinical course

[31,34]. For example, disease severity was increased in obese CD

patients, making them more prone to develop active disease (e.g.,

anorectal complications such as anoperineal abscesses or fistulas)

and require hospitalization as compared to non-obese CD patients

[27,31,35]. In animal models, co-morbid diet-induced obesity and

trinitrobenzene sulfonic acid (TNBS)-induced colitis has been

associated with activation of the inflammatory Th17 cell subset,

resulting in more severe colonic histological damage and increased

in vitro production of IL-17 [36]. Since n-3 PUFA antagonize

Th17 cells during DSS-induced colitis [25], we hypothesized that

in a combinatory model of diet-induced obesity and TNBS-

induced colitis, dietary FO would have a beneficial impact on the

overall disease phenotype, in part, by suppressing (local) colonic

Th17 cell polarizing cytokines and by reducing inflammatory T

cell subsets systemically. Therefore, in this study, we monitored

changes in critical immune cell subsets and inflammatory

biomarker (cytokine/adipokine) expression in three key tissues:

visceral adipose tissue, which increases in mass during obesity and

surrounds the inflamed gastrointestinal tract [26,37], the colon

(local site of colitis-induced inflammation) and the spleen (systemic

site of inflammation). Overall, supplementation of n-3 PUFA

during concurrent obesity and TNBS-induced colitis improved

disease outcomes and suppressed both inflammatory immune cell

populations locally and systemically while concomitantly recon-

figuring the inflammatory gene expression profile in multiple tissue

sites.

Materials and Methods

Ethics Statement
All procedures adhered to U.S. Public Health Service Policy

and were approved by the Institutional Animal Care and Use

Committee at Texas A&M University.

Animals and Diet
Specific pathogen-free male C57BL/6 mice were maintained

under barrier conditions for 12 weeks and fed one of two isocaloric

high fat diets (59.2% kcal) which contained an equal amount of

lard (39% kcal) but differing levels of n-3 and n-6 PUFA from

vacuum-deodorized menhaden fish oil (FO) and corn oil (CO),

respectively [high fat (HF): 20.2% kcal corn oil (CO) or high

fat+fish oil (HF-FO): 14.2% kcal FO+6% kcal CO]. Control mice

consumed a low fat (LF) diet (10.4% kcal) [LF: 4.6% kcal

lard+5.8% kcal CO]. The content of bioactive n-3 PUFA in the

HF-FO supplemented diet was 3.6% kcal as DHA and EPA

combined, which is consistent with the level consumed by the

Greenland Inuit [38]. The diets were modeled after the

commercially available high fat and low fat formulations that

have been used elsewhere to produce diet-induced obesity [39,40].

The diet composition is described in Table S1. Diets were

replaced daily to prevent oxidation.

Colitis Induction and Histological Scoring
Colon inflammation was induced by exposure to 2,4,6-trinitro

benzene sulfonic acid (TNBS; Sigma Aldrich) as described

previously [41]. In brief, mice were individually housed and

100 ml of a 1% (w/v) pre-sensitizing dosage of TNBS in the vehicle

[4:1 volume ratio of acetone and olive oil (Azienda)] was applied

topically onto a shaved 1.5 61.5 cm field between the shoulders.

The site was selected to prevent the animals from ingesting the

TNBS which could induce oral tolerance [41]. After 7 d, mice

were anesthetized with isoflurane to effect and were under

anesthesia for #5 min during which time a 100 ml enema

containing 2.5% (w/v) TNBS in a 1:1 volume ratio of water and

absolute ethanol was administered. To minimize excretion of the

TNBS solution, animals were inverted for 1 min following

completion of the enema and placed head down at a 60u incline

for approximately 5 min. Vehicle control mice were exposed to

the presensitization vehicle topically, followed by an enema

consisting of 1:1 volume ratio of water and absolute ethanol. All

mice were sacrificed 3 d post-enema. Body weights and food

intakes were monitored throughout the study. Mice were sacrificed

by CO2 asphyxiation and colons were excised (distal to the cecum

and proximal to the anus), flushed with sterile PBS and the mucosa

was scraped from one longitudinal half. The other half of the colon

was fixed in 4% paraformaldehyde, swiss-rolled, paraffin embed-

ded and stained with hematoxylin and eosin. The degree of colon

inflammation (score 0–3) and injury (score 0–3) were graded and

combined for a total score in a blinded manner by a board-

certified pathologist (B. Weeks) in accordance with the criteria

outlined previously [25,42].

Serum Hormone Profiles
Orbital plexus blood was collected prior to sacrifice, allowed to

clot at room temperature for 30–45 min, then centrifuged at

140006g for 4 min and the resulting serum was stored at 280uC.

Serum levels of insulin, leptin, resistin and adiponectin were

measured using the Milliplex MAP mouse metabolic hormone

magnetic bead panel (EMD Millipore) and samples were run on

the Bio-Plex 200 System using Bio-Plex Manager 6.0 software

(BioRad).

Isolation of Adipose Tissue and Stromal Vascular Cells
Adipose tissue was isolated and weighed from three individual

fat pads (mesenteric, epididymal and perinephric), which com-

bined represent total visceral adipose. Stromal vascular cells (SVC)

were isolated by collagenase digestion as described previously [43].

Antibodies used in the subsequent SVC flow cytometry analysis

were APC-F4/80 (clone: Bm8, eBioscience), PE-CD11b and APC-

CD11b (clone: M1/70, eBioscience), PE-CD11c (clone: HL3, BD

Biosciences), APC-CD206 (clone: C068C2, BioLegend). M1 and

M2 macrophages were defined as F4/80+ CD11c+ and F4/80+

CD206+, respectively [44,45].

Flow Cytometry Analysis of Treg, Th1 and Th17 Cells
Splenic mononuclear cells were isolated as described [46] and

surface and intracellular staining performed as reported previously

[25]. Cells were preincubated with a FccR blocking monoclonal

mAb (1 mg/mL) (2.4G2, BD Pharmingen) for 10 min on ice,
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followed by surface (CD4) and intracellular (FOXP3, IL-17A or

IFNc) staining. Antibodies used were APC-anti-CD4 (L3T4), PE-

anti-FOXP3 (FJK-16s) (eBioscience), PE-anti-IL-17A (TC11-

18H10) and PE-anti-IFNc (XMG1.2) (BD Pharmingen). Flow

cytometric analysis was conducted using an Accuri C6 flow

cytometer (Accuri Cytometers).

Splenic T Cell in vitro Polarization Conditions
Spleens were removed aseptically and CD4+ T cells were

isolated by positive selection using magnetic CD4 (L3T4)

microbeads according to the manufacturer’s instructions (Miltenyi

Biotec). Cell purity exceeded 90% as described previously [47].

26105 viable CD4+ T cells (assessed via trypan blue exclusion)

were added to each well of a round bottom 96-well plate (BD

Bioscience) in a final volume of 200 ml of complete RPMI [RPMI

1640 medium with 25 mmol/L HEPES (Irvine Scientific), 50 mM

2-mercaptoethanol (Sigma Aldrich), 5% fetal bovine serum (Irvine

Scientific), 2 mM GlutaMAX (Gibco), penicillin 100 U/mL and

streptomycin 0.1 mg/mL (Gibco), henceforth ‘‘complete medi-

um’’]. All cultures were stimulated with 5 mg/ml of plate-bound

anti-CD3 (145-2C11, BD Bioscience) plus 5 mg/ml of soluble anti-

CD28 (37.51, eBioscience). For Treg polarizing conditions,

cultures were supplemented with 2 ng/ml TGF- b1 (BioLegend).

For Th17 cell polarizing conditions, cultures were supplemented

with 2 ng/ml TGF-b1, 10 ng/ml IL-6, 20 ng/ml IL-23 (BioLe-

gend), 10 mg/ml anti-IFNc (AN-18, eBioscience) and 10 mg/ml

anti-IL-4 (11B11, eBioscience). Cells were incubated at 37uC for

72 h and subsequently stimulated with 1X brefeldin A (diluted

from a 10X stock, eBioscience), 1 mM ionomycin (EMD Chem-

icals) and 50 ng/ml PMA (Sigma Aldrich) for an additional 5

hours prior to intracellular staining with PE-anti-FOXP3 (FJK-

16s) (eBioscience) or PE-anti-IL-17A (TC11-18H10) (BD Phar-

mingen) antibodies.

RNA Isolation and Measurement of mRNA Expression
RNA was isolated from vehicle control and TNBS-treated mice

using the RNA 4-PCR kit (Ambion) for colon mucosa scrapings

and the ToTALLY RNA kit (Ambion) for adipose tissue. Real-

time RT-PCR was used to quantify mRNA expression and

amplification was performed using the Taqman Universal PCR

master mix (Applied Biosystems). Taqman gene expression kits

(Applied Biosystems) were used for amplification, namely IL-1b
(Mm00434228_m1), IL-6 (Mm00446190_m1), IL-17A

(Mm00439618_m1), IL-17F (Mm00521423_m1), IL-21

(Mm00517640_m1), IL-23 (Mm00518984_m1), IFNc
(Mm01168134_m1), IL-27 (Mm00461162_m1), TNFa
(Mm00443260_g1), CCL2 (MCP-1, Mm00441242_m1), IL-10

(Mm00439614_m1), TGFb1 (Mm01178820_m1), Rorc (RORct,
Mm01261022_m1), Tbx21 (T-bet, Mm00450960_m1), FOXP3

(Mm00475162_m1). Amplification of mRNA (fluorescence) was

recorded over 40 cycles and the corresponding cycle numbers (Ct)

were used to calculate mRNA expression according to the

calculation: 2(402Ct). Target gene expression was normalized to

ribosomal 18S expression (Mm03928990_g1).

Statistics
The predetermined upper limit of probability for statistical

significance throughout this investigation was P,0.05, and

analyses were conducted using the SAS system (SAS Institute)

for Windows (version 9.0). Data were subjected to two-way

ANOVA (main effects: diet and treatment) followed, if justified, by

testing using Least Squares Means. Data sets not exhibiting a

normal distribution were subjected to the Kruskal-Wallis test (x2

approximation) followed, if justified, by the statistical probability

outcome (P,0.05) using Wilcoxon two-sample testing.

Results

HF Diet Induces an Obese Phenotype which is
Ameliorated by n-3 PUFA Supplementation

Body weights were monitored throughout the study and did not

differ between mice consuming the HF and HF-FO diets

(P.0.05); however, during weeks 6–12 of dietary intervention,

both HF and HF-FO-fed mice gained more weight compared to

LF-fed animals (P,0.05) (Figure 1A). Food intake did not differ

between the HF and HF-FO groups at any point throughout the

duration of the study (P.0.05). During the TNBS pre-sensitization

period (week 11) and following TNBS enemas (week 12), all

dietary groups experienced a modest degree of weight loss that is

typically associated with TNBS treatment [48]. Analysis of visceral

adipose tissue weights (Figure 1B) revealed that compared to HF-

FO mice, the HF diet group exhibited higher perinephric and

mesenteric adipose tissue weights. As expected, adipose tissue

weights in both high fat diets (HF and HF-FO) were elevated

relative to LF (P,0.05). Conversely, there was no difference in

epididymal adipose weights between HF and HF-FO-fed mice

(P = 0.25). Interestingly, LF-fed animals had a modestly higher

epididymal fat content (P,0.05); however, elevated or unchanged

epididymal fat weights have been reported previously in low fat

diet fed rodents [9,11]. Overall, combined visceral adipose tissue

mass (mesenteric, perinephric and epididymal) was increased in

both the HF and HF-FO groups relative to the LF group

(P,0.05), and the HF-FO group exhibited a lower total visceral

adipose tissue mass compared to the HF diet. Biochemical

evidence of an obese phenotype was assessed by monitoring

changes in systemic hormone concentrations (Figure 1C–F).

Compared to LF, the HF group exhibited higher insulin, leptin

and resistin (P,0.05) concentrations whereas adiponectin levels

did not differ (P.0.05). These outcomes are consistent with

previous reports in both rodent HF-diet induced obesity [5,6,12]

and in obese humans [49,50]. Interestingly, the HF-FO group

exhibited an intermediate hormonal phenotype, in which circu-

lating levels of leptin and resistin were significantly reduced

relative to HF (P,0.05) and did not differ from levels observed in

the LF group (P.0.05). HF-FO insulin levels did not differ from

those in the HF or LF groups (P.0.05). Interestingly, serum

adiponectin, an anti-inflammatory hormone typically reduced

during obesity, exhibited a modest but significantly higher

concentration in the HF-FO group relative to both the HF and

LF diets (P.0.05), which is consistent with previous reports with n-

3 PUFA supplementation [5,6,12]. Collectively, these data

confirm the ability of the semi-purified HF diet to recapitulate

critical aspects of the obese phenotype relative to LF. In addition,

n-3 PUFA supplementation to the HF diet mitigated the severity of

the obesity induced changes in the circulating hormone profile and

the accumulation of visceral adipose tissue.

n-3 PUFA Reduce Adipose Tissue Macrophage Infiltration
by Decreasing Both the M1 and M2 Subsets

A hallmark of obesity is the increased infiltration of macro-

phages into the inflamed adipose tissue [51,52,53]. The SVC

population is comprised of multiple cell types including pre-

adipocytes, mesenchymal stem cells, endothelial precursor cells

and immune cells [54], therefore, we initially characterized the

total adipose tissue macrophage population [52]. Representative

dot plots of total, M1 and M2 macrophage subsets are presented in

Figure S1. Consistent with previous reports [51,52,53], there was

Effect of n-3 PUFA on Obesity-Associated Colitis
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an obesity-associated increase in adipose tissue macrophage

content, i.e., the percentage of F4/80+ CD11b+ cells, which was

increased in the HF group relative to LF (P,0.05, Figure 2A).

Interestingly, compared to HF, the HF-FO diet prevented the

obesity-associated increase in adipose macrophage content,

reducing the percentage of total adipose F4/80+ CD11b+

macrophages by 52% (P,0.05). Further analysis of specific

macrophage subsets (classically activated, M1, and alternatively

activated, M2 subsets, Figures 2B & C, respectively) revealed

that obese mice (HF diet) exhibited a higher percentage of

inflammatory M1 macrophages (F4/80+ CD11c+) compared to

the LF diet (P,0.05). In contrast, the obesity-associated pertur-

bation was prevented by n-3 PUFA supplementation which

reduced the percentage of adipose M1 macrophages compared to

HF by 72% but did not differ from the LF group (P.0.05).

Interestingly, there was no obesity-associated increase in the

percentage of M2 macrophages (F4/80+ CD206+), as the HF and

LF diets did not differ (P.0.05). In the HF-FO group, however,

the percentage of M2 macrophages was also significantly reduced

by 55% in comparison to the HF group. Total macrophage

content in the adipose tissue, therefore, was reduced by n-3 PUFA

without a preference for a particular macrophage subset.

n-3 PUFA Suppress the Obesity-associated Adipose
Tissue Inflammatory Gene Expression Profile

Within the adipose tissue, changes in the local inflammatory

cytokine milieu were assessed at the mRNA level. For all genes

examined, colitis status had no independent effect on adipose

tissue gene expression in any dietary group (i.e., vehicle control

versus TNBS, P.0.05); therefore, the effect of diet alone on

adipose tissue gene expression is presented in Table 1. Consistent

with the ability of n-3 PUFA to reduce the percentage of adipose

tissue infiltrating macrophages during obesity (Figure 2), adipose

mRNA expression of MCP-1, a macrophage chemotactic signal,

was reduced by 44% in the HF-FO group relative to HF alone

(P = 0.001). Additionally, compared to HF, n-3 PUFA supple-

mentation reduced the expression of a key inflammatory cytokine,

IL-6 (P = 0.008) by 29%. However, gene expression of TNFa and

IL-1b did not differ between dietary groups (P.0.05). Expression

of the classic inflammatory Th1 cytokine, IFNc was down

regulated by 83% in the HF-FO group compared to HF

(P = 0.02). Consistent with this finding, expression of the master

transcription factor associated with Th1 cells, Tbet, was also

reduced by n-3 PUFA (P = 0.03). Cytokines related to Th17

polarization and maintenance were similarly affected, with mRNA

levels of IL-17F and IL-21 reduced by 65% (P = 0.004) and 57%

(P = 0.03), respectively, in the HF-FO group compared to HF

Figure 1. Characterization of the diet-induced obese phenotype. C57BL/6 mice were fed a high diet (HF), high fat diet supplemented with
FO (HF-FO) or a low fat (LF) control diet for 12 weeks (n = 12217 TNBS-treated and 4–6 vehicle controls/diet). Mice were presensitized with 1% TNBS
or vehicle control (week 11), followed by a 2.5% TNBS enema or vehicle control (week 12) and sacrificed 3 d post-TNBS. A) Changes in body weight
over time. B) Visceral adipose tissue weight from individual visceral depots (perinephric, mesenteric and epididymal) or combined (total visceral
adipose). Serum concentrations of C) insulin, D) leptin, E) resistin and F) adiponectin. All data were analyzed by two-way ANOVA (main effects: diet
and treatment) and P-values are shown. Bars represent means 6 SEM and statistical significance was (P#0.05). Panel A) asterisk (*) indicates
statistically significant time points where the HF and HF-FO groups differed from LF (P#0.05). Panels B-F) bars not sharing a common letter differ
(P#0.05).
doi:10.1371/journal.pone.0049739.g001
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alone. IL-17A mRNA was undetectable, and there was no

difference between dietary groups in adipose mRNA expression

of IL-23 (P = 0.42) and IL-27 (P = 0.76). Expression of the

transcription factor that drives the polarization of Th17 cells,

RORct, exhibited a non-significant trend towards suppression by

n-3 PUFA during obesity (HF-FO versus HF, P = 0.08). Adipose

expression of the Treg specific transcription factor Foxp3 was

unaffected by diet (P = 0.81). Consistent with reduced inflamma-

tory potential, adipose mRNA expression of the anti-inflammatory

cytokine IL-10 was upregulated in the HF-FO group relative to

HF by 42% (P = 0.05) whereas expression of TGF-b1 mRNA was

unaffected by diet (P = 0.93). Collectively, these data demonstrate

that n-3 PUFA suppress the transcription of inflammatory

cytokines which drive and sustain the local inflammatory

microenvironment within adipose tissue.

HF-FO-fed Mice are more Resistant to TNBS-induced
Colonic Inflammation

The degree of colon inflammation and injury following

exposure to TNBS was assessed based on gross changes observed

within the colon histological architecture in a blinded manner by a

board-certified pathologist (B. Weeks). There was no effect of diet

on vehicle control treated colon histological scores (P = 0.11), and

as expected, TNBS treatment increased both colon inflammation

and injury scores, independently of diet (P.0.05) relative to

vehicle controls (data not shown). Representative colon images

from TNBS-treated mice from each dietary group (Figure 3A–C)

and from a representative vehicle control-treated mouse

(Figure 3D) are shown. Within the distal colon of TNBS-treated

mice, there was a significant effect of diet (P = 0.05) on the

histological disease score, which was significantly elevated in the

HF group relative to LF (Figure 3E). This outcome is consistent

with previous findings demonstrating that obesity is associated

with a more severe response to TNBS-induced colitis [36].

Interestingly, the HF-FO group exhibited a lower histological

disease score compared to the HF group (P = 0.05) but did not

differ from the LF group (P = 0.85), indicating that n-3 PUFA

supplementation prevented the obesity-associated enhanced in-

flammatory response to TNBS-induced colitis. These outcomes

are consistent with the ability of dietary n-3 PUFA to enhance the

resolution of inflammatory processes in other colitis models

[25,42].

n-3 PUFA Modulate the Colonic Mucosal Cytokine
Microenvironment in a Manner Consistent with Reduced
Th17 Cell Activation

To gain insight into how effector T cell populations are

changing in the context of concurrent obesity and colitis, the

expression of critical transcription factors associated with specific

T cell subsets in the colonic scraped mucosa, i.e., FOXP3 (Tregs),

Tbet (Th1 cells) and RORct (Th17 cells) and critical cytokines

that influence T cell polarization and function were assessed. For

each gene, colonic mucosal basal (i.e., vehicle control) mRNA

expression did not differ between dietary groups (P.0.05, Table
S2). As expected, exposure to TNBS upregulated mucosal gene

expression relative to vehicle controls (P,0.05) in all dietary

groups; therefore, the outcomes between dietary groups among

TNBS-treated mice only are shown in Table 2. During TNBS-

induced colitis, there was an obesity-associated 43% increase in

Figure 2. Visceral adipose tissue macrophage infiltration. Stromal vascular cells (SVC) were isolated and quantified from total visceral adipose
tissue (HF and HF-FO groups, n = 3 vehicle controls and 6–8 TNBS-treated mice, LF n = 4 pooled samples comprised of 3–4 mice/treatment). A)
percentage of F4/80+ CD11b+ cells (total macrophages), B) percentage of F4/80+ CD11c+ cells (M1 macrophages), C) percentage of F4/80+ CD206+

cells (M2 macrophages). Data were analyzed by two-way ANOVA (main effects: diet and treatment) and bars represent mean values 6 SEM. Bars not
sharing a common letter are significantly different (P#0.05).
doi:10.1371/journal.pone.0049739.g002

Table 1. Visceral adipose tissue mRNA expression1.

Gene HF HF-FO LF Diet: P-value

MCP-1 5.0160.49a 2.8260.3b 1.9160.61b 0.001

TNFa 11.0061.28 7.8160.63 8.8664.01 0.10

IFNc 11.9764.23a 2.0960.74b 4.8162.78ab 0.02

IL-1b 2.0260.51 2.2260.46 1.3960.38 0.91

IL-6 1.3360.41a 0.9460.33b 2.2960.38b 0.008

IL-10 4.1760.35a 7.1461.55b 5.3463.03a 0.05

IL-17F 1.0360.32a 0.3660.15b 1.7261.21ab 0.004

IL-21 11.4262.95a 4.9561.31b 0.9560.12b 0.03

IL-23 10.1361.48 7.6061.3 9.7561.51 0.42

IL-27 8.3561.02 9.5361.15 9.0962.47 0.76

TGF-b1 8.8160.85 8.2960.93 8.6261.73 0.93

RORct 9.0863.21 3.7560.54 3.2960.94 0.08

T-bet 6.5861.06a 3.9360.53b 3.9260.50b 0.03

Foxp3 1.6260.41 1.0660.22 1.2660.54 0.81

1Values are means 6 SEM (n = 5210/dietary group). Data were analyzed by
two-way ANOVA (main effects: diet and treatment). For all genes, there was no
effect of treatment (i.e., TNBS versus vehicle, P.0.05), therefore, only the main
effect of diet is shown. Within individual genes, values not sharing a lower case
letter denote significant differences (P#0.05). Data were normalized to
ribosomal 18S.
doi:10.1371/journal.pone.0049739.t001
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mucosal expression of RORct mRNA (LF versus HF, P = 0.03).

Interestingly, supplementation of n-3 PUFA blocked the obesity-

associated increase in RORct expression, which was significantly

reduced compared to the HF group but did not differ from LF.

These data demonstrate that expression of RORct, a master

transcription factor that directs both the differentiation of Th17

cells and the expression of hallmark Th17 cytokines [55], was

modulated by n-3 PUFA in a manner consistent with a reduced

Th17 cell response in the colon. Tbet, the master transcription

factor driving Th1 cell polarization, similarly exhibited an obesity-

associated elevation in mucosal mRNA expression during TNBS-

induced colitis (HF vs. LF, P = 0.02). However, Tbet mRNA

Figure 3. Colon histological disease scores for TNBS-treated mice. Colonic mucosal injury (0–3) and inflammation (0–3) scores were assessed
in a blinded manner by a board-certified pathologist (B. Weeks) and combined for a total score (0–6). Representative images (100 6magnification)
are shown for the HF, HF-FO and LF TNBS-treated groups, respectively (panels A-C) and a representative image of a HF vehicle control (panel D) is
shown. E) Combined injury/inflammation histological score within the distal colon (n = 10214 TNBS treated mice/diet). Data were analyzed using the
Kruskal-Wallis test followed by Wilcoxon two-sample testing, and bars represent median values. Bars not sharing a common letter are significantly
different (P#0.05).
doi:10.1371/journal.pone.0049739.g003
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expression in the HF-FO group did not differ from either HF or

LF (P.0.05), but exhibited an intermediate level of expression

with a trend towards suppression by n-3 PUFA (HF versus HF-

FO, P = 0.07). There was no effect of diet on FOXP3 mRNA

expression (P.0.05).

Expression of colonic lamina propria cell-derived cytokines

known to govern Th17 cell differentiation/polarization, prolifer-

ation and maintenance of a Th17 cell phenotype were also

examined (Table 2). As expected, exposure to TNBS upregulated

mucosal inflammatory gene expression relative to vehicle controls

(P.0.05) in all dietary groups. Within TNBS-treated mice, the

HF-FO diet reduced mucosal mRNA expression of Th17

cytokines, IL-17A and IL-17F, by 64% (P = 0.05) and 66%

(P = 0.01), respectively, compared to HF. Similarly, HF-FO

reduced IFNc mRNA expression by 80% (P = 0.05) compared to

HF. Additionally, dietary n-3 PUFA reduced IL-6 and IL-21

mRNA expression by 83% (P = 0.03) and 75% (P = 0.03),

respectively, compared to HF. This is noteworthy because in

combination with TGF-b, which was unaffected by diet (P = 0.54),

IL-6 or IL-21 can drive Th17 cell differentiation [56]. Similarly,

mucosal mRNA expression of IL-23, which contributes to Th17

cell expansion, stabilization and/or conditioning of a fully

inflammatory cell phenotype [57], was reduced by 43%

(P = 0.04) in HF-FO-fed mice relative to HF whereas mRNA

expression of IL-1b and IL-27 were unaffected by diet (P.0.05).

Conversely, consistent with the anti-inflammatory nature of n-3

PUFA, mucosal mRNA expression of IL-10 was elevated 67%

(P = 0.03) in the HF-FO group versus HF. Collectively, these data

indicate that during coincident obesity and TNBS-induced colitis,

the inflammatory phenotype of the colonic mucosal cytokine

microenvironment is suppressed by n-3 PUFA.

n-3 PUFA Suppress Systemic Inflammatory Th17 and Th1
Cells Following TNBS Exposure

Critical T cell subsets were monitored in the spleen, the central

systemic lymphoid organ of the body that is responsible for

propagating inflammatory immune responses following colitis

induction, and representative dot plots for each T cell subset are

shown in Figure S2. The percentage of splenic Tregs (CD4+

FOXP3+, Figure 4A) did not differ between dietary groups

(P = 0.64) nor did this subset of cells exhibit a colitis-associated

change in frequency (P = 0.45). Conversely, the percentage of

splenic Th17 cells (CD4+ IL-17A+, Figure 4B) was elevated

within both the HF and LF diet groups following the induction of

colitis (within dietary groups vehicle control versus TNBS,

P,0.05), which was not apparent in the HF-FO group (vehicle

control versus TNBS-treated, P = 0.66). Moreover, the magnitude

of the TNBS-associated induction in splenic Th17 cells was higher

in the HF group relative to the LF, indicating that obesity

promoted a colitis-associated Th17 cell response, as reported

previously [36]. Within TNBS-treated mice, the HF-FO group

exhibited a reduced percentage of Th17 cells relative to HF but

did not differ from LF. Similarly, the percentage of inflammatory

Th1 cells (CD4+ IFNc+, Figure 4C) exhibited a TNBS-associated

increase compared to vehicle controls in the HF and LF groups;

however, this was prevented in the HF-FO group. Although the

magnitude of the colitis-associated change in Th1 cells did not

differ between the HF and LF groups, comparatively, HF-FO

reduced the percentage of Th1 cells (P,0.05). Overall, these data

indicate that n-3 PUFA suppress the systemic induction of two

critical inflammatory T cell subsets that are strongly implicated in

the pathogenesis of IBD [20].

One potential mechanism underlying the observation of

reduced splenic Th17 cells in the HF-FO group is the ability of

n-3 PUFA to suppress T cell differentiation into a Th17 cell

phenotype. To address this mechanism, splenic CD4+ T cells were

purified from TNBS-treated mice and cultured under Treg and

Th17 cell polarizing conditions ex vivo (Figures 5A & B). Clonal

expansion of Treg cells was unaffected by diet (P = 0.17).

Conversely, differentiation of CD4+ T cells into Th17 cells was

altered by diet (P = 0.04), with an increased percentage of Th17

cells detected in the HF group versus LF. Moreover, Th17 cell

polarization was reduced in the HF-FO group as compared to HF

(P,0.05).

Discussion

We examined the effects of n-3 PUFA supplementation on

obesity-associated colitis severity using the TNBS model of

chemically induced colitis which is considered to be representative

of CD [48]. Since the low-grade chronic inflammation associated

with obesity further complicates many disease states, elucidation of

mechanisms through which dietary n-3 PUFA impact the clinical

outcome of concurrent diet-induced obesity and colitis has

translational utility. In the TNBS colitis model, obesity increases

disease severity and exhibits a bias towards the activation of

inflammatory Th17 cells [36], a T cell subset that plays a

pathogenic role in IBD [18,57]. Moreover, obesity worsens the

clinical outcome of CD wherein adipose-derived inflammatory

mediators perpetuate inflammatory responses [26,32,33], promot-

ing a more aggressive clinical course [27,31,34,35]. Focusing on

three major tissue sites, namely the visceral adipose tissue (local site

of obesity-associated inflammation and a major endocrine organ

that is closely associated with the inflamed colon during colitis),

colon (target tissue and site of local inflammation in colitis) and

spleen (indicative of the systemic immunological and inflammatory

phenotype), we were able to document changes in both the local

and systemic inflammatory milieu while tracking changes in key

immune cell populations driving the obesity-associated inflamma-

tory response to colitis.

Table 2. Colonic mucosal mRNA expression in TNBS-treated
mice1.

Gene HF HF-FO LF P-value

RORct 2.360.3a 1.660.1b 1.360.2b 0.03

T-bet 3.661.9 2.160.2 1.160.4 0.07

Foxp3 2.860.7 2.160.4 1.260.5 0.18

IL-6 12.863.6a 2.260.7b 6.860.3ab 0.03

IL-1b 18.368.9 3.361.6 11.366.2 0.29

IL-17A 15.464.5a 5.562.1b 4.262.4b 0.05

IL-17F 4.461.0a 1.560.4b 2.860.4ab 0.01

IL-21 3.260.5a 0.860.2b 3.460.7a 0.03

IL-23 9.562.5a 5.460.8b 8.960.6a 0.04

IL-27 6.561.5 5.060.7 5.260.8 0.60

IFNc 6.562.4a 1.360.2b 5.961.4a 0.05

IL-10 0.660.3a 1.860.4b 0.360.07a 0.03

TGF-b1 3.560.6 3.060.8 3.760.9 0.54

1Values are means 6 SEM (n = 6/TNBS-treated mice/dietary group). Data were
analyzed by two-way ANOVA (main effects: diet and treatment). For all genes,
only the effect of diet is shown (P#0.05). Values not sharing a lower case letter
differ. Data were normalized to ribosomal 18S.
doi:10.1371/journal.pone.0049739.t002
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The HF-FO diet significantly impacted the obese phenotype in

a manner consistent with reduced inflammation and improved

metabolic outcomes. The blood hormone profile was improved as

dietary n-3 PUFA reduced circulating levels of the inflammatory

hormones leptin and resistin (Figure 1C & D), while increasing

the levels of the anti-inflammatory hormone adiponectin relative

to the HF group (Figure 1E). These results confirm previous

findings in n-3 PUFA supplemented rodent diet-induced obesity

models [5,6,12] and extend the n-3 PUFA modifiable blood

hormone profile to include resistin, an inflammatory adipokine

that is increased in both the serum and adipose tissue in obese

humans [49,58].

Obesity-induced adipose tissue inflammation is a unique process

characterized by a broad panel of cytokines [37,59]. The obesity-

related adipose gene expression pattern was dramatically altered

by the HF-FO diet (Table 1), whereby expression of MCP-1, IL-6

and IFNc mRNA levels were reduced and IL-10 mRNA

expression was elevated, compared to HF. Moreover, mRNA

levels of cytokines related to the inflammatory Th17 cell

population, IL-17F and IL-21, were also reduced by n-3 PUFA.

Lastly, mRNA expression of adipose derived T cell-associated

transcription factors specific for particular inflammatory T cell

subsets Tbet (Th1 cells) and RORct (Th17 cells) were significantly

reduced or exhibited a non-significant trend towards reduction,

respectively, by n-3 PUFA.

A hallmark of obesity is the increased infiltration of macro-

phages into the inflamed adipose tissue [51,52,53]. Interestingly,

n-3 PUFA reduced the percentage of adipose tissue macrophages

(F4/80+ CD11b+) relative to the HF diet (Figure 2A), consistent

with the effect of n-3 PUFA on reducing MCP-1 gene expression

(Table 1). Macrophages are broadly characterized as M1 or M2

by their polarization or activation state [60]. The M1 designation

denotes classically activated macrophages (i.e., following stimula-

tion with IFNc and LPS), which exhibit an inflammatory

phenotype (secrete high levels of TNFa, IL-6, IL-1b and MCP-

1) and gene expression profile that differs from alternatively

activated M2 macrophages which exhibit an anti-inflammatory

phenotype and support tissue repair, remodeling and inflamma-

tion resolution via secretion of components of the extracellular

matrix and IL-10 [44,45,53,61]. In obesity, adipose tissue

macrophages seemingly undergo a phenotypic switch from the

M2 to the M1 phenotype [51,52]. However, the precise

mechanism underlying this observation is unknown and could be

a result of newly recruited M1 macrophages to the adipose from

the circulation, differentiation of resident M2 macrophages into

the M1 phenotype, or both. Interestingly, our data indicate that

the obesity-associated increase in adipose M1 macrophages can be

prevented by the HF-FO diet (Figure 2B). There was no obesity-

associated change in the percentage of adipose M2 macrophages

(HF vs. LF); however, the percentage of M2 cells in the HF-FO

group was significantly reduced relative to both HF and LF

(P = 0.011, Figure 2C). Collectively, these results demonstrate

that supplementation of n-3 PUFA to a high fat diet reduces total

adipose macrophage infiltration, thereby reducing the percentage

of both the M1 and M2 subsets. The reduction in M1 macrophage

number, a predominant cellular source of inflammatory adipo-

kines [44,45,51,61], may explain the reduced mRNA levels of IL-6

and MCP-1 in the HF-FO group. Overall, the HF-FO diet

Figure 4. Effect of diet and colitis on splenic T cell subsets. A) Tregs (CD4+ FOXP3+), B) Th17 (CD4+ IL17A+), and C) Th1 (CD4+ IFNc+) cell
populations (n = 3–6 vehicle controls and n = 6212 TNBS treated mice/dietary group). Bars represent mean values 6 SEM. Bars not sharing a common
letter are significantly different (P#0.05).
doi:10.1371/journal.pone.0049739.g004

Figure 5. Effect of diet on splenic CD4+ T cell polarization. Splenic CD4+ cells were purified by positive selection and cultured for 3 d under A)
Th17 or B) Treg polarizing conditions (see Materials and Methods, n = 324 TNBS treated mice/dietary group). Bars represent mean values 6 SEM. Bars
not sharing a common letter are significantly different (P#0.05).
doi:10.1371/journal.pone.0049739.g005
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dramatically ameliorated the adipose tissue inflammatory pheno-

type; including reducing (i) circulating levels of adipocyte derived

inflammatory hormones (leptin and resistin), (ii) adipose inflam-

matory cytokine mRNA expression and (iii) total macrophage

infiltration and the percentage of inflammatory M1 cells.

Obesity increases the severity of mucosal damage associated

with TNBS-induced colitis [36], and we confirmed this finding by

observing that colon injury and inflammation scores were higher

in the HF group compared to LF. A key novel finding of this study

was the ability n-3 PUFA supplementation to ameliorate the

obesity-associated increase in colon architectural damage

(P = 0.05, Figure 3E). This beneficial effect of n-3 PUFA has

been observed previously in the chronic DSS colitis model [25]

and is consistent with the ability of dietary n-3 PUFA to promote

long-term resolution of colon inflammation and mucosal repair

[42,62]. Furthermore, we monitored the inflammatory milieu

based on changes in gene expression within the colonic mucosal

microenvironment with a particular focus on Th17 cell-related

cytokine targets, as the combination of obesity and TNBS-induced

colitis is associated with a bias towards Th17 cells [36]. In TNBS-

treated mice, the obesity-associated increase in colonic mRNA

levels of Th17-associated cytokines was suppressed by n-3 PUFA

(Table 2). Thus, colonic mucosal mRNA expression of IL-17A,

IL-17F, IL-6, IL-21, IL-23 and INFc was reduced in the HF-FO

group compared to HF. Consistent with the reduced activation

and presence of inflammatory T cell subsets within the colon

following colitis induction, mRNA expression of the Th17 cell

specific transcription factor RORct was significantly reduced by

n-3 PUFA, whereas Tbet mRNA levels showed a non-significant

trend towards suppressed colonic expression. Therefore, on an

mRNA level, signature cytokines of inflammatory T cell subsets

involved in the pathogenesis of colitis [18,20] are significantly

reduced by dietary n-3 PUFA. Lastly, n-3 PUFA upregulated

mRNA expression of the anti-inflammatory cytokine, IL-10, which

suppresses colonic inflammation [63] and is capable of suppressing

Th17 cells [64,65]. These findings confirm previous reports that n-

3 PUFA suppress multiple aspects of Th17 cell mucosal biology

during chronic colitis [25] and collectively demonstrate that n-3

PUFA modulate the colonic cytokine microenvironment in a

manner that is less compatible with the activation, polarization,

proliferation, maintenance and function of pathogenic inflamma-

tory Th17 cells [18,25,56].

We demonstrate for the first time that the combined obesity and

colitis-associated increase in the percentage of inflammatory

splenic Th17 and Th1 cells is reduced by n-3 PUFA

(Figure 4B&C). These data provide direct evidence that dietary

n-3 PUFA can prevent the obesity-associated Th17 cell bias.

When splenic CD4+ T cells were cultured under Th17 cell

polarizing conditions (Figure 5A), n-3 PUFA rendered the cells

more refractive towards polarization signals. Further studies are

required to determine the mechanism(s) by which n-3 PUFA

suppress Th17 polarization.

In summary, we combined established models of high fat diet

induced obesity and colitis to demonstrate the ability of dietary

long chain n-3 PUFA to ameliorate disease progression, in part, by

reducing inflammatory cytokine gene expression and immune cell

populations both locally and systemically. The obesity-associated

bias towards inflammatory Th17 cells was prevented by n-3 PUFA

supplementation. Both the adipose and colonic mucosal gene

expression profiles were reconfigured in a manner consistent with

reduced inflammatory capacity and the suppression of Th17 cell

activation and function. Further studies are required to determine

the utility of dietary n-3 PUFA as an anti-IL-17 and/or anti-IFNc
therapy for treating chronic inflammatory diseases.

Supporting Information

Figure S1 Representative dot plots from high fat (HF) TNBS-

treated mouse visceral adipose tissue stromal vascular cells. A)

Total macrophages (F4/80+ CD11b+), B) M1 macrophages (F4/

80+ CD11c+), and C) M2 macrophages (F4/80+ CD206+).

(TIF)

Figure S2 Representative dot plots of splenic T cell subsets

isolated from high fat (HF) TNBS-treated mice. T cell subsets were

identified within a mononuclear cells suspension by a combination

of surface (CD4+) and intracellular staining. A) Tregs (CD4+

FOXP3+), B) Th17 cells (CD4+ IL17A+) C) Th1 cells (CD4+

IFNc+). CD4+ T cells were purified by positive selection (Miltenyi

Biotec) and cultured for 72 h under Treg or Th17 cell polarizing

conditions (see Materials and Methods). Representative dot plots

of polarized D) Tregs (CD4+ FOXP3+) and E) Th17 cells (CD4+

IL17A+) are shown.

(TIF)

Table S1 Semi-purified diet composition. All diet constituents

were purchased from Bio Serv (Bio Serv, Frenchtown, NJ), except

lard (ConAgra Foods, Omaha, NE) corn oil (Dyets, Madison, WI)

and fish oil (Omega Protein Inc, Reedville, VA).

(PDF)

Table S2 Colonic mucosal mRNA expression in vehicle control

treated mice. Values are means 6 SEM (n = 426/vehicle control

mice/dietary group). Data were normalized to ribosomal 18S and

analyzed by ANOVA. For all genes, the effect of diet is shown

(significance P#0.05).

(PDF)

Acknowledgments

The authors wish to thank Evelyn Callaway for technical assistance with

TNBS administration.

Author Contributions

Conceived and designed the experiments: JMM DNM RSC. Performed

the experiments: JMM TYH HFT CW. Analyzed the data: JMM. Wrote

the paper: JMM DNM RSC. Assessed colon histological scores: BW.

References

1. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and

trends in the distribution of body mass index among US adults, 1999–2010.

JAMA 307: 491–497.

2. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to

insulin resistance and type 2 diabetes. Nature 444: 840–846.

3. Kalupahana NS, Moustaid-Moussa N, Claycombe KJ (2012) Immunity as a link

between obesity and insulin resistance. Mol Aspects Med 33: 26–34.

4. Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, et al. (2005)

Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis

and induce beta-oxidation in white fat. Diabetologia 48: 2365–2375.

5. Flachs P, Mohamed-Ali V, Horakova O, Rossmeisl M, Hosseinzadeh-Attar MJ,

et al. (2006) Polyunsaturated fatty acids of marine origin induce adiponectin in

mice fed a high-fat diet. Diabetologia 49: 394–397.

6. Flachs P, Ruhl R, Hensler M, Janovska P, Zouhar P, et al. (2011) Synergistic

induction of lipid catabolism and anti-inflammatory lipids in white fat of dietary

obese mice in response to calorie restriction and n-3 fatty acids. Diabetologia 54:

2626–2638.

7. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, et al. (2009)

Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-

3 fatty acids: a role for resolvins and protectins. FASEB J 23: 1946–1957.

Effect of n-3 PUFA on Obesity-Associated Colitis

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e49739



8. Hsueh HW, Zhou Z, Whelan J, Allen KG, Moustaid-Moussa N, et al. (2011)

Stearidonic and eicosapentaenoic acids inhibit interleukin-6 expression in ob/ob
mouse adipose stem cells via Toll-like receptor-2-mediated pathways. J Nutr

141: 1260–1266.

9. Mori T, Kondo H, Hase T, Tokimitsu I, Murase T (2007) Dietary fish oil
upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/

6J mice. J Nutr 137: 2629–2634.
10. Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, et al. (2004)

Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing

cellularity of adipose tissue. Lipids 39: 1177–1185.
11. Takahashi Y, Ide T (2000) Dietary n-3 fatty acids affect mRNA level of brown

adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose
transporter 4 in the rat. Br J Nutr 84: 175–184.

12. Todoric J, Loffler M, Huber J, Bilban M, Reimers M, et al. (2006) Adipose tissue
inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3

polyunsaturated fatty acids. Diabetologia 49: 2109–2119.

13. Kong SC, Hurlstone DP, Pocock CY, Walkington LA, Farquharson NR, et al.
(2005) The Incidence of self-prescribed oral complementary and alternative

medicine use by patients with gastrointestinal diseases. J Clin Gastroenterol 39:
138–141.

14. Turner D, Shah PS, Steinhart AH, Zlotkin S, Griffiths AM (2010) Maintenance

of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): A
systematic review and meta-analyses. Inflamm Bowel Dis.

15. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S (2010) Foxp3+
regulatory T cells, Th17 effector cells, and cytokine environment in

inflammatory bowel disease. J Clin Immunol 30: 80–89.
16. Holtta V, Klemetti P, Sipponen T, Westerholm-Ormio M, Kociubinski G, et al.

(2008) IL-23/IL-17 immunity as a hallmark of Crohn’s disease. Inflamm Bowel

Dis 14: 1175–1184.
17. Liu ZJ, Yadav PK, Su JL, Wang JS, Fei K (2009) Potential role of Th17 cells in

the pathogenesis of inflammatory bowel disease. World J Gastroenterol 15:
5784–5788.

18. Sarra M, Pallone F, Macdonald TT, Monteleone G (2010) IL-23/IL-17 axis in

IBD. Inflamm Bowel Dis 16: 1808–1813.
19. Shih DQ, Targan SR (2008) Immunopathogenesis of inflammatory bowel

disease. World J Gastroenterol 14: 390–400.
20. Zenewicz LA, Antov A, Flavell RA (2009) CD4 T-cell differentiation and

inflammatory bowel disease. Trends Mol Med 15: 199–207.
21. Elson CO, Cong Y, Weaver CT, Schoeb TR, McClanahan TK, et al. (2007)

Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model

in mice. Gastroenterology 132: 2359–2370.
22. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, et al. (2006) IL-23 is

essential for T cell-mediated colitis and promotes inflammation via IL-17 and
IL-6. J Clin Invest 116: 1310–1316.

23. Zhang P, Kim W, Zhou L, Wang N, Ly LH, et al. (2006) Dietary fish oil inhibits

antigen-specific murine Th1 cell development by suppression of clonal
expansion. J Nutr 136: 2391–2398.

24. Zhang P, Smith R, Chapkin RS, McMurray DN (2005) Dietary (n-3)
polyunsaturated fatty acids modulate murine Th1/Th2 balance toward the

Th2 pole by suppression of Th1 development. J Nutr 135: 1745–1751.
25. Monk JM, Jia Q, Callaway E, Weeks B, Alaniz RC, et al. (2012) Th17 cell

accumulation is decreased during chronic experimental colitis by (n-3) PUFA in

Fat-1 mice. J Nutr 142: 117–124.
26. Bertin B, Desreumaux P, Dubuquoy L (2010) Obesity, visceral fat and Crohn’s

disease. Curr Opin Clin Nutr Metab Care 13: 574–580.
27. John BJ, Irukulla S, Abulafi AM, Kumar D, Mendall MA (2006) Systematic

review: adipose tissue, obesity and gastrointestinal diseases. Aliment Pharmacol

Ther 23: 1511–1523.
28. Peyrin-Biroulet L, Chamaillard M, Gonzalez F, Beclin E, Decourcelle C, et al.

(2007) Mesenteric fat in Crohn’s disease: a pathogenetic hallmark or an innocent
bystander? Gut 56: 577–583.

29. Sheehan AL, Warren BF, Gear MW, Shepherd NA (1992) Fat-wrapping in

Crohn’s disease: pathological basis and relevance to surgical practice. Br J Surg
79: 955–958.

30. Smedh K, Olaison G, Nystrom PO, Sjodahl R (1993) Intraoperative
enteroscopy in Crohn’s disease. Br J Surg 80: 897–900.

31. Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D, et al. (1999)
Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease.

Gastroenterology 117: 73–81.

32. Batra A, Zeitz M, Siegmund B (2009) Adipokine signaling in inflammatory
bowel disease. Inflamm Bowel Dis 15: 1897–1905.

33. Paul G, Schaffler A, Neumeier M, Furst A, Bataillle F, et al. (2006) Profiling
adipocytokine secretion from creeping fat in Crohn’s disease. Inflamm Bowel Dis

12: 471–477.

34. Hass DJ, Brensinger CM, Lewis JD, Lichtenstein GR (2006) The impact of
increased body mass index on the clinical course of Crohn’s disease. Clin

Gastroenterol Hepatol 4: 482–488.
35. Blain A, Cattan S, Beaugerie L, Carbonnel F, Gendre JP, et al. (2002) Crohn’s

disease clinical course and severity in obese patients. Clin Nutr 21: 51–57.
36. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, et al. (2009) Obesity

predisposes to Th17 bias. Eur J Immunol 39: 2629–2635.

37. Kanneganti TD, Dixit VD (2012) Immunological complications of obesity. Nat
Immunol 13: 707–712.

38. Kim W, McMurray DN, Chapkin RS (2010) n-3 polyunsaturated fatty acids–

physiological relevance of dose. Prostaglandins Leukot Essent Fatty Acids 82:

155–158.

39. Depner CM, Torres-Gonzalez M, Tripathy S, Milne G, Jump DB (2012)

Menhaden oil decreases high-fat diet-induced markers of hepatic damage,

steatosis, inflammation, and fibrosis in obese ldlr2/2 mice. J Nutr 142: 1495–

1503.

40. Huo Y, Guo X, Li H, Wang H, Zhang W, et al. (2010) Disruption of inducible 6-

phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates

systemic insulin resistance and adipose tissue inflammatory response. J Biol

Chem 285: 3713–3721.

41. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced

mouse models of intestinal inflammation. Nat Protoc 2: 541–546.

42. Jia Q, Lupton JR, Smith R, Weeks BR, Callaway E, et al. (2008) Reduced

colitis-associated colon cancer in Fat-1 (n-3 fatty acid desaturase) transgenic

mice. Cancer Res 68: 3985–3991.

43. Stienstra R, Duval C, Keshtkar S, van der Laak J, Kersten S, et al. (2008)

Peroxisome proliferator-activated receptor gamma activation promotes infiltra-

tion of alternatively activated macrophages into adipose tissue. J Biol Chem 283:

22620–22627.

44. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, et al. (2009) Regulatory

mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese

mice. Diabetes 58: 2574–2582.

45. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch

in adipose tissue macrophage polarization. J Clin Invest 117: 175–184.

46. Fan YY, Monk JM, Hou TY, Callway E, Vincent L, et al. (2012)

Characterization of an arachidonic acid-deficient (Fads1 knockout) mouse

model. J Lipid Res 53: 1287–1295.

47. Hou TY, Monk JM, Fan YY, Barhoumi R, Chen YQ, et al. (2012) n-3

polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-

dependent actin remodelling during CD4+ T-cell activation. Biochem J 443:

27–37.

48. Waldner MJ, Neurath MF (2009) Chemically induced mouse models of colitis.

Curr Protoc Pharmacol Chapter 5: Unit 5 55.

49. Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, et al.

(2003) Serum resistin (FIZZ3) protein is increased in obese humans. J Clin

Endocrinol Metab 88: 5452–5455.

50. Maury E, Ehala-Aleksejev K, Guiot Y, Detry R, Vandenhooft A, et al. (2007)

Adipokines oversecreted by omental adipose tissue in human obesity.

Am J Physiol Endocrinol Metab 293: E656–665.

51. Claria J, Gonzalez-Periz A, Lopez-Vicario C, Rius B, Titos E (2011) New

insights into the role of macrophages in adipose tissue inflammation and Fatty

liver disease: modulation by endogenous omega-3 Fatty Acid-derived lipid

mediators. Front Immunol 2: 49.

52. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased

inflammatory properties of adipose tissue macrophages recruited during diet-

induced obesity. Diabetes 56: 16–23.

53. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. (2003)

Obesity is associated with macrophage accumulation in adipose tissue. J Clin

Invest 112: 1796–1808.

54. Riordan NH, Ichim TE, Min WP, Wang H, Solano F, et al. (2009) Non-

expanded adipose stromal vascular fraction cell therapy for multiple sclerosis.

J Transl Med 7: 29.

55. Ivanov, II, Zhou L, Littman DR (2007) Transcriptional regulation of Th17 cell

differentiation. Semin Immunol 19: 409–417.

56. Abraham C, Cho JH (2009) IL-23 and autoimmunity: new insights into the

pathogenesis of inflammatory bowel disease. Annu Rev Med 60: 97–110.

57. Abraham C, Cho J (2009) Interleukin-23/Th17 pathways and inflammatory

bowel disease. Inflamm Bowel Dis 15: 1090–1100.

58. Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, et al. (2001)

Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-

activated receptor-gamma action in humans. Diabetes 50: 2199–2202.

59. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N (2011) (n-3) Fatty acids

alleviate adipose tissue inflammation and insulin resistance: mechanistic insights.

Adv Nutr 2: 304–316.

60. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage

activation. Nat Rev Immunol 8: 958–969.

61. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev

Immunol 5: 953–964.

62. Nieto N, Torres MI, Rios A, Gil A (2002) Dietary polyunsaturated fatty acids

improve histological and biochemical alterations in rats with experimental

ulcerative colitis. J Nutr 132: 11–19.

63. Kelsall BL (2008) Innate and adaptive mechanisms to control [corrected]

pathological intestinal inflammation. J Pathol 214: 242–259.

64. Gu Y, Yang J, Ouyang X, Liu W, Li H, et al. (2008) Interleukin 10 suppresses

Th17 cytokines secreted by macrophages and T cells. Eur J Immunol 38: 1807–

1813.

65. Huber S, Gagliani N, Esplugues E, O’Connor W, Jr., Huber FJ, et al. (2011)

Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and

Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner.

Immunity 34: 554–565.

Effect of n-3 PUFA on Obesity-Associated Colitis

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e49739


