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Abstract

Prediction accuracies of estimated breeding values for economically important traits are expected to benefit from genomic
information. Single nucleotide polymorphism (SNP) panels used in genomic prediction are increasing in density, but the
Markov Chain Monte Carlo (MCMC) estimation of SNP effects can be quite time consuming or slow to converge when a large
number of SNPs are fitted simultaneously in a linear mixed model. Here we present an EM algorithm (termed ‘‘fastBayesA’’)
without MCMC. This fastBayesA approach treats the variances of SNP effects as missing data and uses a joint posterior mode
of effects compared to the commonly used BayesA which bases predictions on posterior means of effects. In each EM
iteration, SNP effects are predicted as a linear combination of best linear unbiased predictions of breeding values from
a mixed linear animal model that incorporates a weighted marker-based realized relationship matrix. Method fastBayesA
converges after a few iterations to a joint posterior mode of SNP effects under the BayesA model. When applied to
simulated quantitative traits with a range of genetic architectures, fastBayesA is shown to predict GEBV as accurately as
BayesA but with less computing effort per SNP than BayesA. Method fastBayesA can be used as a computationally efficient
substitute for BayesA, especially when an increasing number of markers bring unreasonable computational burden or slow
convergence to MCMC approaches.
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Introduction

Genomic prediction of breeding values for economically

important traits of farm animals based on high-density genome-

wide SNP genotypes is typically performed in two steps [1]. First,

allele substitution effects of SNPs are estimated from a reference

population with both trait phenotypes and SNP genotypes

(training); then, the genomic estimated breeding values (GEBV)

for selection candidates, often the genotyped progeny of the

training population, are obtained by summing the estimated SNP

effects across the genome [1,2]. In this second step, which in

a research context we refer to as validation, the prediction

accuracy of GEBV can be assessed by the correlation of GEBV

with either true breeding values (TBV) or phenotypes. Compar-

ative studies on both simulated and field data have shown that

GEBV tend to have higher accuracy than breeding values

estimated using pedigree relationships [2,3], depending on the

genetic architecture of the trait [4], the nature of the SNP panel

[1,5,6], the size of the training data [6–8], the population structure

[9] and the relationship between training and validation individ-

uals [3,10].

Currently, two classes of methods are used to overcome the

over-parameterization problem of linear models used for genomic

prediction when relating a lesser number of phenotypes to a larger

number of SNP genotypes. The first is best linear unbiased

prediction of SNP effects from a linear mixed model in which

random SNP effects are assumed to be independently and

identically distributed as zero-mean normal random variables

with a common effect variance (ridge regression) [1,3]. This

corresponds to an assumed genetic architecture characterized by

a large number of loci contributing equally to the overall genetic

variance of the trait. The model for ridge regression is equivalent

to an animal model in which a marker-derived realized relation-

ship matrix is used as the variance-covariance structure of random

genomic breeding values (GBLUP) [3,7,11]. Equation (3) of

Habier et al. [3] showed that the expected covariance between

marker genotypes of two individuals is proportional to the additive

relationship coefficient among them. Assuming variance compo-

nents known, solving for SNP effects as linear combination of best

linear unbiased predicted breeding values from GBLUP can be

efficient because the dimension of mixed model equations for

GBLUP is the number of individuals, which is usually much

smaller than the number of SNPs [12]. The second class of

methods for genomic prediction do not necessarily result in

prediction rules that are linear in the observed phenotypes. These

methods are often based on Bayesian hierarchical models and are

implemented through Markov chain Monte Carlo (MCMC)

sampling, for instance, BayesA [1], BayesB [1], Bayesian LASSO

[13,14], BayesCp [15], etc. Prior distributions for SNP effects are

chosen to shrink ignorable small effects towards zero. Sampled

SNP effects are averaged over MCMC iterations to obtain

posterior means of SNP effects. Depending on the choice of priors,
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most Bayesian hierarchical methods impose stronger shrinkage

towards zero on small SNP effects and less shrinkage on relatively

large effects by allowing each SNP to have a distinct effect

variance (e.g. BayesA) and/or by fitting a mixture distribution that

assumes any SNP might come from a continuous distribution or

a distribution degenerate at zero (e.g. BayesB). The mixture

fraction is influenced through a hyperparameter p, which specifies

the prior proportion of SNPs that have zero effects. At the cost of

higher computing effort, Bayesian methods tend to achieve higher

prediction accuracy than GBLUP for simulated datasets [1–3,16].

Further, results from real data often show that methods that fit all

SNPs in the model (GBLUP and BayesA) tend to give similar

accuracy as methods with variable selection, suggesting that most

economically important traits might be controlled by a large

number of loci with relatively small effects [8,10,17,18].

Several non-MCMC algorithms have been proposed to improve

computational efficiency for linear models with differential

shrinkage of SNP effects and/or with variable selection. VanRa-

den [7] presented two non-linear predictions A and B that are

analogous to BayesA and BayesB in Meuwissen et al. [1],

respectively. The ratio of residual variance over common effect

variance in ridge regression, which controls the amount of

shrinkage of SNP effects, is modified depending on the size of

estimated SNP effects to allow differential shrinkage. Estimates of

SNP effects are calculated efficiently using Jacobi iteration. Both

simulation [7] and real data [19] showed that VanRaden [7] non-

linear predictions were fast and accurate for large datasets.

Moreover, Expectation-Maximization (EM) algorithms [20] can in

some cases be computationally more efficient than MCMC

approaches. Bayesian LASSO, which uses a double exponential

(DE) prior distribution for SNP effects, and BayesA, which

assumes t prior distribution for SNP effects, have been adapted to

fast non-MCMC deterministic or EM algorithms. Meuwissen

et al. [21] presented a fast heuristic iterative conditional expecta-

tion (ICE) algorithm, where the posterior expectation of SNP

effects was calculated analytically, assuming a fixed known DE

parameter and dispersion parameters. Shepherd et al. [22]

formulated an EM algorithm which they called emBayesB, based

on the same model as ICE, which used an indicator variable for

each SNP that is in linkage disequilibrium (LD) with QTL as

missing data, and estimated SNP effects and the DE parameter in

the M-step. Yi and Banerjee [23] derived an EM algorithm for

a BayesA model for QTL detection by treating the unknown SNP

effect variances as missing data. Hayashi and Iwata [24] developed

a generalized EM algorithm (EM-BSR) with a slightly different M-

step and further extended it to a heuristic algorithm for the BayesB

model. BayesA modeling of SNP effects can be more appealing

than LASSO, in that the estimated SNP effects are nearly

unbiased for large effects, while in LASSO the bias does not

diminish even when SNP effects are large [25].

In this study we formulate a principled EM algorithm (termed

‘‘fastBayesA’’) that converges to a joint posterior mode of SNP

effects under the BayesA model. By applying the method to

simulated datasets with contrasting sizes and genetic architectures,

fastBayesA is shown to predict GEBV as accurately as BayesA but

with less computing effort per SNP than BayesA. The latter will

become more important as SNP densities increase to that provided

by individual DNA sequence.

Materials and Methods

Statistical Model
The linear mixed model for phenotypes based on GBLUP is

y~XbzZcze,

where y is an n|1 vector of phenotypes, with n equal to the

number of individuals in the training dataset; b is a vector of fixed

effect parameters and X is a known design matrix relating fixed

effects to phenotypes; Z is an n|m matrix of SNP genotypes in

the ‘‘0=1=2’’ allele dosage coding, with row i containing genotypes

of m SNPs for individual i; c is an m|1 zero-mean random vector

of allele substitution effects with Var(cDs2)~diagfs2j g
m
j~1, where

s2 is an m|1 vector with the jth element s2j being the effect

variance of SNP j; and e is an n|1 vector of independently and

normally distributed random errors with mean 0 and variance s2e .

In Meuwissen et al. [1], GBLUP assumes that effect variances s2j
are known and the same for all SNPs and that the SNP effects are

marginally normally distributed, whereas BayesA assumes a scaled

inverse Chi-square prior distribution for effect variances with scale

parameter S2
c and degrees of freedom nc, and a normal

distribution for the effect of SNP j conditional on its variance, i.e.,

cj Ds
2*independentN(0,s2j ),

where cj is the jth element of c, and

s2j *i:i:d:
ncS

2
c

x2nc

for all j~1,2, � � � ,m. It can be shown that in BayesA the marginal

distribution of the SNP effect is scaled univariate-t with degrees of

freedom nc and scale parameter S2
c [26].

Efficient Solving of SNP Effects Using an Equivalent
Animal Model
The calculation strategy to develop fastBayesA follows Strandén

and Garrick [12] and is generalized here. The phenotype can be

modeled by the following animal model [27]:

y~Xbzcze,

where y, X, b and e are as previously defined, g is an n|1 vector

of genomic breeding values of the individuals, which can be

modeled as the sum of the m SNP effects, as described above, i.e.,

g~Zc. This genomic animal model is equivalent to the GBLUP

model given normality of SNP effects. The (co)variance matrix of

genomic breeding values is

Var(gDs2)~Var(ZcDs2)~ZDZ0~Gs2g,

where D~Var(cDs2), G is the realized relationship matrix derived

from the SNP genotypes and s2g is the variance of genomic

breeding values. Element Gvw of G is the proportion of SNPs that

are IBD between individuals v and w [28,29]. For GBLUP, the

EM Algorithm for BayesA
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common effect variance of SNPs is equal to
s2g

2
Pm

j~1
pj (1{pj )

in

which pj is the minor allele frequency of SNP j [3]. Given D, the

BLUP bcc of SNP effects c can be efficiently computed in two steps

using the animal model [12]. First the BLUP of genomic breeding

values bcc is obtained by solving the mixed model equations of the

animal model, then bgg can be solved following Strandén and

Garrick [12] as:

bcc~DZ0G{1bcc :

EM Algorithm for Estimating SNP Effects
We use the above relationships to develop an EM algorithm for

BayesA by treating the effect variance of each SNP as missing

data. In the E-step, the conditional expectation of the logarithm of

the joint probability of y, c and s2, with expectation taken over the

distribution of s2 conditional on the observed phenotypic data y

and the current estimate (the kth step) bcc (k) of SNP effects, is

calculated:

E
s2 Dy,c~bcc (k) ½logfp(y,c,s2)g�~E

s2 Dy,c~bcc (k) ½logfp(yDc)p(cDs2)p(s2)g�

~E
s2 Dy,c~bcc (k) ½logfp(yDc)gz logfp(cDs2)gz logfp(s2)g�,

where we use the shorthand notation p(:) to represent the

marginal density of : and p(aDh) notation represents the conditional

density of a given h. The first term of this expectation is free of s2.
The second term of the expectation is over the sum of the

logarithms of normal densities for cj and can be calculated

element-wise. And the third term is free of c. Hence

E
s2 Dy,c~bcc (k) ½logfp(y,c,s2)g�~ logfp(yDc)g

zE
s2 Dy,c~bcc (k) ½{

1

2

Xm
j~1

f
c2j

s2j
z log (2ps2j )g�zR

~ logfp(yDc)g{ 1

2

Xm
j~1

c2j Es2 Dy,c~bcc (k) (
1

s2j
)zR’,

where R and R’ are the remaining terms that are free of c. As

shown in Appendix S1, the conditional distribution of s2j given c is

a scaled inverse Chi-square distribution with degrees of freedom

ncz1 and scale parameter
c2
j
zncS

2
c

ncz1
, and

E
s2 Dy,c~bcc(k) (

1

s2j
)~(

fbcc (k)
j g2zncS

2
c

ncz1
){1

and

E
s2 Dy,c~bcc(k) ½logfp(y,c,s2)g�~ logfp(yDc)g{ 1

2

Xm
j~1

c2j

fbcc (k)
j

g2zncS2c

ncz1

zR’:

The M-step of the algorithm is to maximize the above

expectation with respect to c, which is equivalent to finding the

BLUP of SNP effects as described in the previous section, using

fbcc (k)
j
g2zncS

2
c

ncz1
as effect variance for SNP j, i.e., the jth diagonal

element of D. After iterating between the E-step and the M-step

until convergence, a local posterior mode of c will be obtained.

Details of the maximization and the estimation equations are

shown in Appendix S2. Because of the success of GBLUP in

traditional breeding methods, we choose the starting values for s2j

to be the variance under the GBLUP method, i.e.
s2g

2
Pm

j~1
pj (1{pj )

,

where s2g is the genetic variance, which will be assumed known in

simulation.

Simulation
Prediction of breeding values and computational efficiency of

fastBayesA were compared to other methods by applying to

simulated phenotypes and SNP genotypes of pedigreed popula-

tions. The initial generation comprised a population of effective

size 500 that was randomly mated for 1,000 generations to reach

mutation-drift equilibrium and then gradually expanded to an

actual size of 2,000 in the next 4 generations. In the 1,004th
generation, 20 sires and 200 dams were randomly sampled

without replacement from the 2,000 individuals in generation

1,004 to represent the founders of the pedigree. Each of the 20
sires in these and subsequent generations was randomly mated to

10 different dams, with each dam producing 1 male and 1 female

offspring. That scheme continued for several generations at

a constant size of 400 (200 male and 200 female offspring).

Two datasets were generated for the comparison of alternative

methods in terms of prediction accuracy of GEBV (Dataset A) and

computing time (Dataset B). Dataset A includes four scenarios of

different genetic architectures and Dataset B varies in training size

and genome length. The scenarios used in each dataset are

summarized in Table 1. The standard scenario was a training

group of 1,020 individuals from the first three pedigree

generations, two chromosomes with *1,000 SNPs each, and

a total number of 0:1Me QTL, (A1 and B2 of Table 1), where Me

is the number of independently segregating loci across the genome,

computed following Goddard [30] and Hayes et al. [28] and is

given in Table 1 for the different scenarios. SNP loci and QTL

were sampled among simulated loci to have minor allele frequency

larger than 0:05. For scenario B1, B2 and B4, the first 2, 3 and 6
pedigree generations were used for training, respectively, and the

five generations following training were used for validation.

Each chromosome was 1 Morgan in length and initially evenly

covered by 2,000 SNPs, among which 5 times the desired number

of QTL were randomly positioned as candidate QTL to guarantee

enough QTL segregating at mutation-drift equilibrium. The SNPs

and QTL were biallelic, with initial allele frequencies 0:5 and in

Hardy-Weinberg equilibrium. Mutation rate was 2:5|10{5 per

meiosis per locus for both QTL and SNPs. The number of

crossovers per chromosome was sampled from a Poisson distribu-

tion with mean 1. Recombination rates were modeled by the

Haldane mapping function [31]. At generation 1,004, all SNPs

EM Algorithm for BayesA
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with minor allele frequency less than 0:05 were eliminated and the

desired number of QTL were randomly selected from candidate

QTL with minor allele frequency larger than 0:05. QTL effects

were generated according to different scenarios and scaled to

achieve a total genetic variance of 1:0 in generation 1,005. In
scenarios where QTL variances were heterogeneous, QTL effects

were randomly sampled from a Gamma distribution with shape

parameter 0:4 and scale parameter 1:66 [1], while in scenarios

with constant QTL variances, the effect of the jth QTL was

backsolved as the square root of 1
2pj (1{pj )

, with equal probability of

being positive or negative, where pj is the minor allele frequency at

generation 1,004.

True breeding values were obtained by summing up all QTL

effects for a given individual. In Dataset A, normal random errors

with mean 0 and variance 1:0 or 9:0 were added to true breeding

values to generate phenotypes of traits with heritability 0:5 or 0:1,
respectively. The simulated heritability for all scenarios in Dataset

B was 0:5. For each scenario, these activities were repeated to

provide 50 replicates. All replicates used the same initial SNP

positioning but varied in the position of QTL and SNPs and in the

effects of QTL after selecting loci with minor allele frequencies

larger than 0:05.
For the analysis of the simulated datasets using the Bayesian

methods, the degrees of freedom of the prior distribution for effect

variance and residual variance was 4:2, following Meuwissen et al.

[1]. BayesA and BayesB were implemented in genomic selection

software GenSel [32]. Formulation of BayesA and BayesB was

almost identical with Meuwissen et al. [1] except that the effect of

each SNP instead of haplotype was sampled by MCMC in

GenSel. The proportion of the number of QTL over the total

number of SNPs was used for p in BayesB. Simulated variance

components were provided to the mixed model equations in

fastBayesA and used to estimate hyperparameters of prior

distributions for variance components.

For Bayesian methods, the MCMC was run for 21,000
iterations, with the first 1,000 discarded as burn in. The

fastBayesA algorithm stopped when the change of estimated

SNP effects became small, i.e.

½bcc (k){bcc (k{1)�’½bcc (k){bcc (k{1)�
½bcc (k)�’½bcc (k)� v1|10{4:

Results

Prediction Accuracy and Bias of GEBV under Alternative
Genetic Architectures
Eight scenarios of contrasting heritability, number of QTL and

distribution of QTL variance were simulated to represent a range

of genetic architectures. The average correlation and regression

coefficient of TBV on GEBV in the first validation generation

from 50 replicates are shown in Table 2. Method fastBayesA had

similar accuracy to BayesA and was much more accurate than

GBLUP but less accurate than BayesB, regardless of genetic

architecture or heritability. The results are as expected, in that

fastBayesA predicts GEBV with similar accuracy as BayesA.

As the number of QTL increased from 0:1 to 2:0Me, the

accuracy of (fast)BayesA and BayesB decreased by up to 0:08,
while that of GBLUP did not drop as much. This result is in

accordance with Daetwyler et al. [4], in that the accuracy of

GBLUP was not affected by the number of QTL. However, even

when the number of QTL was 2:0Me, the accuracy of the

Bayesian methods remained higher than that of GBLUP, which

contradicts Daetwyler et al. [4], who found that the advantage of

BayesB over GBLUP diminished as the number of QTL increased

up to 1:0Me. The contradiction was probably due to the fact that

the training size relative to genome length was much larger in our

study than in Daetwyler et al. [4].

Bias in the prediction of GEBV is shown by the deviation of

regression coefficients from 1:0 in Table 2. Except for BayesB,

which had regression coefficients close to 1:0, regression coeffi-

cients were substantially below 1:0 for the other methods, as low as

0:75. In all scenarios, the regression coefficients for fastBayesA

were smaller than those for BayesA, indicating larger bias of

fastBayesA than BayesA in predicting TBV. This suggests that the

estimated SNP effects and hence GEBV are not shrunk enough.

The reason might be that the joint posterior mode of SNP effects,

which is obtained as the estimate in fastBayesA, can deviate

substantially from the posterior means used in BayesA due to the

asymmetry of the posterior densities. An improper scale of the

genomic relationship matrix could also result in biased GEBV.

Decline of Accuracy Over Generations
Figure 1 shows the mean prediction accuracy of GEBV in five

consecutive generations after training in the scenario with

heritability 0:5 and 0:1Me QTL with equal variance. For all four

methods, accuracy decreased with generations, in agreement with

Habier et al. [3]. The accuracies of fastBayesA and BayesA were

very similar in all five generations and were higher than accuracies

of GBLUP and lower than accuracies of BayesB. The decrease in

Table 1. Summary of simulated datasets and scenarios.

Dataset Dataset A Dataset B

Scenario A1 A2 A3 A4 B1 B2 B3 B4 B5

Training size 1,020 620 1,020 1,020 1,020 2,220

No. chromosomes 2 2 2 5 10 2

Me 241 241 241 543 1,010 241

No. QTL 0.1Me 0.1Me 2.0Me 2.0Me 0.1Me

QTL variance hetero const hetero const hetero

Scenarios differed in training data size, number of chromosomes, number of QTL, and whether the genetic variance contributed by QTL was constant (const) or
heterogeneous (hetero).
doi:10.1371/journal.pone.0049157.t001
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accuracy over the five generations was largest for GBLUP and

smallest for BayesB, with (fast)BayesA in between. Similar trends

were also observed in other scenarios with different genetic

architectures (results not shown).

Accuracies across EM iterations. To study the optimizing

property of fastBayesA, accuracies of GEBV in the five validation

generations were calculated at each EM iteration until the

convergence criterion was achieved. Figure 2 shows the accuracy

at each iteration in the first validation generation from one

random replicate of each scenario in Dataset A (heritability was

0:5). The accuracy of GEBV from fastBayesA increased gradually

with iteration and stabilized at a higher accuracy than GBLUP,

which is the accuracy achieved in the first iteration. In Figure 2,

the accuracy stabilized within 10 steps but the algorithm continued

for several more steps before reaching the convergence criterion,

which was based on changes in estimated SNP effects rather than

estimated breeding values. This indicates that the accuracy of

GEBV is insensitive to small changes in SNP effects.

Table 2. Accuracy of GEBV and regression coefficient of TBV on GEBV in the first validation generation of Dataset A for GBLUP,
BayesA, BayesB and fastBayesA.

Heritability 0.5 0.1

No. QTL 0.1Me 2.0Me 0.1Me 2.0Me

QTL Variance Hetero1 Const2 Hetero Const Hetero Const Hetero Const

Accuracy of GEBV

GBLUP 0.7773 0.777 0.765 0.749 0.516 0.511 0.509 0.470

BayesA 0.832 0.834 0.778 0.764 0.552 0.543 0.515 0.477

BayesB 0.869 0.866 0.789 0.777 0.598 0.593 0.522 0.486

fastBayesA 0.839 0.841 0.777 0.763 0.544 0.539 0.509 0.476

Regression coefficient of TBV on GEBV

GBLUP 0.9794 0.981 0.984 0.968 0.953 0.949 0.954 0.888

BayesA 0.947 0.955 0.985 0.976 0.942 0.952 0.956 0.901

BayesB 1.019 1.009 0.996 0.991 1.050 1.083 0.964 0.932

fastBayesA 0.902 0.905 0.887 0.873 0.887 0.891 0.906 0.867

1. Heterogeneous genetic variance of QTL.
2. Constant genetic variance of QTL.
3. Mean of correlation of TBV with GEBV over 50 replicates. Standard errors were less than 0:006 for all scenarios with heritability 0:5 and less than 0:015 for scenarios
with heritability 0:1.
4. Mean of regression coefficient of TBV on GEBV over 50 replicates. Standard errors were less than 0:012 for all scenarios with heritability 0:5 and less than 0:036 for
scenarios with heritability 0:1.
doi:10.1371/journal.pone.0049157.t002

Figure 1. Prediction accuracy of GEBV in five validation generations by alternative methods. The scenario is 0:1Me QTL with
heterogeneous variance, heritability 0:5. Results are averaged over 50 replicates.
doi:10.1371/journal.pone.0049157.g001
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Computational efficiency of EM. Computational efficiency

of different methods was compared in relation to training

population size and size of SNP panels. Results are in Table 3.

Method fastBayesA has less computing effort per SNP than

BayesA. The increase in computation time is likely to be between

quadratic to cubic with the number of individuals, depending

upon the actural algorithm used for solving the mixed model

equations.

Discussion

In this study, a fast EM algorithm fastBayesA was developed for

genomic selection without MCMC. The method is non-stochastic,

but only approximates BayesA estimates of marker effects and

GEBV because it uses a joint posterior mode of effects rather than

the posterior means used in BayesA. Compared with MCMC-

based Bayesian methods on the simulated datasets, fastBayesA was

shown to have similar prediction accuracy to BayesA but less

computational effort per SNP than BayesA.

An EM algorithm with the marginal distribution of SNP effects

modeled as a t distribution was first proposed by Yi and Banerjee

[23] for mapping QTL with epistatic and genotype-by-environ-

ment interaction effects. Since their main objective was to map

major QTL, they used few degrees of freedom and a small scale

parameter for the inverse Chi-square prior for the effect variance,

which imposed heavy shrinkage on small effects such that only

large effects would be detected. This is not ideal for genomic

prediction for which many SNPs with small effects can usefully

contribute to predictions in models influenced by polygenic gene

action. Based on the same EM formulation as Yi and Banerjee

[23], Hayashi and Iwata [24] presented a generalized EM

algorithm (EM-BSR) for genomic prediction, but in the M-step

only partial maximization is performed. The method fastBayesA

that was developed in this study, following Yi and Banerjee [23],

was also designed for predicting breeding values but has a different

formulation than EM-BSR in the maximization step. In

fastBayesA, the posterior distribution of SNP effects was jointly

maximized using BLUP, which is more efficient and requires fewer

EM iterations to converge. The advantage of the M-step of

fastBayesA is that all SNP effects can be estimated simultaneously

and computational efficiency is insensitive to the number of SNPs.

The computational efficiency of fastBayesA is sensitive to the

number of individuals in training since construction and inversion

of the realized relationship matrix is computationally expensive.

For datasets with a large number of training individuals, the faster

Jacobi iteration as in VanRaden [7] can be used to obtain the

BLUPs of SNP effects in fastBayesA. Since computing time of the

Bayesian MCMC methods is expected to increase linearly with the

number of markers, fastBayesA can be advantageous over

MCMC-based methods as marker density increases, as it will

until all polymorphisms available from whole genome resequen-

cing are used as candidates.

Both in BayesA and fastBayesA, inferences are based on the

same posterior distribution that may not be unimodal, and both

methods have to be used with caution. In BayesA the posterior

mean is used to estimate SNP effects, and when the marginal

posterior distribution for SNP effect is multimodal, the MCMC

sampler will tend to stay within the neighborhood of a local mode

and fail to visit other modes that are distant from this one [33].

Therefore, the empirical distribution from the MCMC samples

may be different from the true posterior distribution and the

posterior mean estimated by MCMC samples may not be

accurate. In fastBayesA a joint posterior mode is used to estimate

SNP effects, and the mode that the EM algorithm finds may not be

the global mode. The GBLUP estimates of SNP effects provide

a reasonable starting point that guarantees fastBayesA estimates

will at least be no worse than GBLUP estimates.

Figure 2. Prediction accuracies of GEBV across EM iterations in the first validation generation. The four scenarios are 0:1Me QTL with
constant variance (0:1Me , Const), 0:1Me QTL with heterogeneous variance (0:1Me, Hetero), 2:0Me QTL with heterogeneous variance (2:0Me, Hetero)
and 2:0Me QTL with constant variance (2:0Me , Const). Results for each scenario are averaged over 50 replicates.
doi:10.1371/journal.pone.0049157.g002

Table 3. Computing time (in seconds) for training by BayesA,
BayesB and fastBayesA.

Training size 620 1,020 1,020 1,020 2,220

No. chromosomes 2 2 5 10 2

BayesA 321.7 479.8 1,215.2 2,492.8 928.8

BayesB 376.8 473.7 1,194.0 2,384.5 687.9

fastBayesA 25.3 63.0 114.6 168.2 350.5

doi:10.1371/journal.pone.0049157.t003
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Method fastBayesA results in similar prediction accuracy as

BayesA because of their identical modeling of SNP effects. Any

differences in accuracy are due to the fact that the joint posterior

mode of SNP effects used in fastBayesA can be quite different from

the posterior means used in BayesA. In Figure 3, shrinkage

estimation of SNP effects from ridge regression, BayesA,

fastBayesA and VanRaden non-linear prediction A (VanRaden

A) [7] are plotted against least squares estimates. Comparing with

ridge regression, BayesA, fastBayesA and VanRaden A shrink

small effects towards zero more than large effects. The estimates

from fastBayesA are indistinguishable to that from BayesA for

those effects larger than a certain value around 0:1 standard

deviation and they are close to least squares estimates, but smaller

effects are shrunk more heavily toward zero by fastBayesA than

BayesA. The reason may be that the local modes of small effects

that fastBayesA finds tend to be closer to zero than the mean. This

suggests that calculating the mean like VanRaden A instead of

mode can be an advantage in some cases since the maximization is

over all possible effect values without getting stuck at local modes.

Figure 4 shows that in scenarios with 0:1Me QTL, most of the

large effects from fastBayesA tend to be bigger than those from

BayesA but similar to those from BayesB, which indicates that with

few QTL, the joint mode that fastBayesA finds tend to be larger

than BayesA posterior means but close to BayesB posterior means,

and that the shrinkage of large effects with fastBayesA is less than

with BayesA but similar to BayesB. Furthermore, in scenarios with

2:0Me QTL, most of the large effects from fastBayesA are bigger

than those from either BayesA or BayesB, indicating that with

a large number of QTL, the posterior mode that fastBayesA finds

are even larger than posterior means of BayesB. However, Figure 4

also shows that in all four scenarios of genetic architectures, there

are subsets of estimated SNP effects that are almost zero with

fastBayesA but are large with BayesA and BayesB. The reason

might be that for these subsets of SNP effects, fastBayesA chose

a mode that is close to zero and is far from the posterior means.

This explains the lower accuracy of fastBayesA than BayesB, since

some moderately large effects in BayesB are over-shrunk to zero by

fastBayesA due to the convergence to a local mode. The above

observations suggest that the shrinkage behavior of fastBayesA and

the shape of the posterior distribution of SNP effects under the

BayesA model require further study.

The regression coefficient of TBV on GEBV was smaller than

1:0 in most scenarios of Dataset A for both fastBayesA and

BayesA, which means the variance of GEBV was inflated and

GEBV should be shrunk more to make prediction of TBV

unbiased [1]. Biases were greater for fastBayesA than BayesA,

likely because of insufficient shrinkage of large effects, as shown in

Figure 3. Another reason might be that for BayesA residual

variance was sampled by MCMC iteration while the simulated

real residual variance was used for fastBayesA. The bias for

fastBayesA is expected to become smaller than observed here

when the residual variance is also updated as mean square error in

each step of EM iteration (Appendix S2). This modified algorithm

was applied to the 50 replicates of scenario A1. The average

regression coefficient became 0:996 with no change in prediction

accuracy.

Each single step of fastBayesA can be regarded as BLUP of

breeding values based on a weighted marker-derived relationship

matrix. The realized relationship between each pair of individuals

not only incorporates information of genome fragments that are

IBS or IBD given high density SNP genotypes but also

incorporates information about genetic architecture by allowing

differing sizes of contributions of each SNP to the overall genetic

variance. The relationship matrix used here is similar to the trait-

specific relationship matrix in the heuristic TA-BLUP of Zhang

et al. [34] but differs in that TA-BLUP used genetic variance as

weights for different SNPs. Method fastBayesA and TA-BLUP

share the idea that SNPs that are in LD with QTL contribute

more to the genetic covariance between individuals for a specific

trait than SNPs that are in linkage equilibrium with QTL, but the

maximizing behavior of TA-BLUP is not clear. Approximately,

TA-BLUP could be regarded as one step of fastBayesA with an

improper prior for effect variance, with degrees of freedom and

scale parameter close to zero. Yi and Banerjee [23] used degrees of

freedom equal to 0:01 and scale parameter equal to 1|10{4 for

the prior of effect variance, which resulted in strong shrinkage of

small effects. With this choice of hyperparameters, the effect

variance of each SNP is dominated by the squared estimated effect

and hence for small effects, the effect variance diminishes with EM

iteration and the estimated effect is shrunk to zero. Method

fastBayesA with such an improper prior was tested on datasets

with 0:1Me QTL with heterogeneous variance and heritability

0:5, and resulted in much lower prediction accuracy at conver-

gence than in the first several iterations for several replicates (result

not shown). This, however, suggests that improper priors, as in Yi

and Banerjee [23], can be used to identify the largest effects in

genome wide QTL mapping studies but at the risk of decreased

predictability for breeding values due to ignoring many small

effects.

Method fastBayesA inherits the main advantages that GBLUP

possesses and which MCMC-based methods lack. First, animals

that have not been genotyped can be included in the model

through pedigree relationship using single-step approach by

Legarra et al. [35] and Misztal et al. [36], in which phenotypes

from ungenotyped animals contribute to the estimates of breeding

values and hence marker effects. For MCMC-based methods,

genotypes of ungenotyped animals must be imputed in order to

include them into the analysis since genotype is indispensible.

Figure 3. Shrinkage estimate of SNP effects from ridge
regression (black line), BayesA (red dots), fastBayesA (blue
line) and VanRaden non-linear prediction A (green line)
against least squares estimate. SNP effects are measured in
standard deviation units.
doi:10.1371/journal.pone.0049157.g003
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Second, prediction error variance and hence reliability or

accuracy of the GEBV of each animal (especially validation

animals) could be obtained using methods by Strandén and

Garrick [12]. For MCMC methods, the reliability of GEBV is

available only when the posterior distribution of GEBV is known.

This requires interim validation during Markov Chain using the

sampled SNP effects to calculate the prediction error variance of

GEBV.

In conclusion, a fast EM algorithm fastBayesA is shown to

approach BayesA estimates of marker effects without requiring

MCMC. Simulation studies showed that fastBayesA has similar

accuracy to BayesA under a range of genetic architectures.

Method fastBayesA can be an appropriate substitute for BayesA

for datasets with large numbers of markers or for pedigreed

population with ungenotyped animals.

Supporting Information

Appendix S1 Expectation of the reciprocal of a scaled
inverse Chi-square random variable.

(PDF)

Appendix S2 Estimation equations for parameters from
fastBayesA.

(PDF)

Figure 4. Estimated SNP effects from fastBayesA (y axis) against estimates from BayesA and BayesB (x axis). All SNPs across 50
replicates are pooled for each scenario. Red dots show estimated SNP effects, and the blue line represents y~x.
doi:10.1371/journal.pone.0049157.g004
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