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Abstract

Background: Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural
phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA
needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system
biology.

Method: An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the
rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor,
which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement
operator were modified.

Results: Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global
minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima
experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the
efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to
optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering,
UPGMA. The efficiency of IGFA is proved.

Citation: Zheng M, Sun Y, Liu G-x, Zhou Y, Zhou C-g (2012) Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering. PLoS ONE 7(11):
e49039. doi:10.1371/journal.pone.0049039

Editor: Frank Emmert-Streib, Queen’s University Belfast, United Kingdom

Received July 28, 2012; Accepted October 1, 2012; Published November 16, 2012

Copyright: � 2012 Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from The National Natural Science Foundation of China (60873146, 60973092, 60903097, 61172183, 61202309), Hi-
Tech Research and Development Program of China (2009AA02Z307), Project of Science and Technology Innovation Platform of Computing and Software Science
(985 En-gineering), The Key Laboratory for Symbol Computation and Knowledge Engineering of the National Education Ministry of China, Graduate Innovation
Fund of Jilin University (20111062, 20121109), and the Science-Technology Development Research Project from Jilin Province of China (20101589,201201139). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zyou@jlu.edu.cn

Introduction

Large-scale gene sequencing technologies [1] such as mRNA

micro-arrays have sharply increased our ability to explore the

genes organism. To identify genes of interest, we need some

algorithms capable of selecting and screening candidate genes for

further investigation. Hierarchical method [2] is one method,

which returns a hierarchy of nested clusters, where each cluster

(subtree) typically consists of the union of two or more smaller

clusters. The hierarchical clustering is the notion that similar genes

are assigned to the same set using a measure of Similarity.

Two challenging tasks of various optimization algorithms are to

search the global optimum and to find all local optima in the

solutions space of genes hierarchical clustering from available

experimental data, especially from large-scale gene expression

data. Selection or creation a proper optimization algorithm is one

important work for many system biologists. And a lot of

optimization algorithms had been proposed and applied in many

biology fields. In these researches, the research on heuristic search

algorithms is the fastest growing field. These algorithms include

genetic algorithm (GA) [3], simulated annealing(SA) [4], particle

swarm optimization(PSO) [5], and even the new algorithm

gravitation field algorithm(GFA) [6]. These algorithms were used

to optimize a certain function from various obtained data or given

system biology problems, such as gene clustering [7], gene

regulatory network reconstruction [8], etc.

In these algorithms, the efficiency of GFA, which is a novel

heuristic search algorithm proposed in 2010, had been proved for

many functions and problems. And some advantages can be found

in GFA. First of all, GFA can not only deal with global extreme

optimal problems, but also the multi extremes optimal problems

which traditional heuristic search algorithms can’t deal with.

Secondly, GFA can be convergent in the global solution space with

probability 1 in three conditions for object functions of one-

dimensional independent variable. And the convergence had been

proved through mathematical demonstration [6].

But actually, GFA are not matured as a novel algorithm,

especially in two parts. The first part is the theory of GFA. Some

immature theory problems should be resolved, especially the

strategy of solution space division. The other part is the accuracy

of GFA. Some algorithm steps should be improved, and the

rotation factor is proposed in this paper to increase the efficiency

of GFA. In our prophase research, no effective method can be

used for division, only one or two-dimensional variables could be
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divided properly in solution space. When the dimensionality is

greater than two, only one selected dimensionality is used as

criteria for division. And other dimensionalities are not considered

as the criteria. Some better division strategy should be proposed to

improve the division theory quality. In addition, the movement

operator of GFA is not good enough for most problems, although

the convergence is proved. When the number of dusts is not big

enough, GFA will not be convergent with probability 1. New

mechanism should be used in this step of GFA.

In this paper, an improved GFA was proposed with two

improvements, which is called IGFA. The two improvements are

random division and rotation factor respectively. Random division

strategy is used for multi-dimensional problem. This method will

allocate every dust randomly to any group for certain solution

space. And any group will not be dismissed until the optimum in

IGFA is not changed for a long time. When all dusts assemble

together in one group, the assembled aggregate will be considered

as a new dust for next random division. The other improvement is

the rotation factor which is used to improve the efficiency of IGFA

in this paper and to avoid the local convergence in IGFA. When

the small surrounding dusts come to the bigger centre dust, the

surrounding dusts could be pushed away from the centre dust in

some direction with a certain probability. The whole modified

procedure of IGFA will be described in this paper.

In some computational biology, such as reconstruction of gene

regulatory network and simulation of gene expression [9], the data

used to be analyze are continuous. But in other fields of

computational biology, such as hierarchical clustering, the data

may be discrete. IGFA can be used to analyze continuous data. So

IGFA will be modified again to resolve discrete data problem.

Two parts were modified in IGFA. The first one was the dusts

initialization in discrete solution space. The other one is the

movement operator which concludes four steps to move the dusts

and search optimal solution.

Two kinds of experiments from a suite of benchmark functions

were used to test the efficiency of IGFA. One is the global

minimum searching. The other is the multi-minima searching.

And we also compared the performance of IGFA with GFA, GA

and SA. 500 minimization runs were used in this paper. The

results showed that the performance of IGFA is better than GFA

in many cases, including the accuracy and running time.

And for the application in hierarchical clustering algorithm,

Yeast Saccharomyces cerevisiae gene expression data were used in

this paper. And the results were compared with GA and SA

methods. The efficiency of IGFA can be proved.

Methods

Brief Introduction of GFA
GFA is derived from the point of the hypothesis theory Solar

Nebular Disk Model (SNDM) [10]. The algorithm goal is to search

the optimal solution of given function or problem. To start with,

all the solutions, which are the dusts in the algorithm model, are

initialized randomly, or based on the prior knowledge. What’s

more, we assign every dust (solution) a weight, we call it mass,

whose values are based on the mass function generated from the

criteria function. Finally, the power of the dust attraction, which

belongs to a certain dust and exists between every two dusts, pulls

other dusts to the dust. Hence, the dusts assemble together, and

the planets come out in the end they are the optima. The

mathematical proof demonstrates that GFA could be convergent

in the global optimum by probability 1 in three conditions for one

independent variable mass functions [6].

Description of IGFA
Initialization. IGFA will start with dusts initialization which

simulates the dark nebular in SNDM. For continuous data, the

task is to generate N dusts di(i = 1,2, …, N) in certain solution

space. Any dust di is an M-dimensional vector variable. Many

distribution functions could be used as the dusts distribution

criteria in this step. Uniform distribution [11] is the most

commonly used one. The initial procedure is described below.

Any-dimensional value of dust di (i = 1, 2, …, N) is generated

randomly from the scale region [xjbegin,xjend ] which is the value

domain of dimension j in dust di. After M times generating

operations, di will be one solution in the solution space. N is an

important adjustable parameter in IGFA. When N is infinite, the

algorithm could be convergent in the global solution space with

probability 1 in three conditions for one independent variable

mass functions [6]. When N is 1, IGFA will not run at all. So the

selection of N should be related to the balance between accuracy

and speed with certain problem.

It will be meaningless for the value of di if there is no object

function defined in IGFA. di is just defined as a certain location

value in the solution space. The object function should be used to

decide which dust value is better than others in some standards.

The object function in IGFA is called mass function.

Strategy of division. The random division strategy is the

core part in IGFA and the most important improvement of the

algorithm in this paper. The task of division is to divide the

solution space into G groups. In any group, the dust with the

biggest mass value is called the centre dust. The others are called

surrounding dusts. A proper division operator will improve the

efficiency and reduce the running time.

The division strategy in two-dimensional solution space is a

smart method which is called the greatest common divisor method

described in [6]. An example of 6 groups with this method is

shown as Fig. 1. But there is no proper division strategy for higher-

dimensional solution space. The easiest strategy is to select one

certain dimensionality as division criteria. And other dimension-

alities are not considered. The criteria dimensionality, which is a

number axis, will be divided with any strategy, such as random

method and average method shown as Fig. 2. And other

dimensionalities are not the criteria for division.

Although this strategy is feasible for any-dimensional solution

space, it is not reasonable for just using one certain dimensionality

as division criteria, especially for high-dimensional solution space.

So a generic strategy must be proposed in IGFA. Random

Division Decomposition (RDD) was proposed in this paper

described as following.

Figure 1. An example of 6 groups with greatest common
divisor method. In this method, all areas in solution space are all the
same. The number of groups will be decomposed as G~a|b. In this
example, G~6, a~2, b~3.
doi:10.1371/journal.pone.0049039.g001
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G is defined as the number of groups in RDD. In one epoch,

every dust is allocated to any group i randomly. After membership

between all dusts and all groups is determined, movement

operator and the corresponding absorption operator will start in

this iteration of RDD. RDD operator can be used for any-

dimensional solution space, including one-dimensional and higher-

dimensional solution space. An example of one-dimensional RDD

is shown as Fig. 3. Two-dimensional example is shown as Fig. 4.

More information can be seen from Fig. 4. And any dust in RDD

just belongs to only one group, not two or more groups. That is,

the movement and absorption operators of any dust will only run

in their own groups.

Before all movement and absorption operator epochs finish in

this iteration, two RDD strategies were designed to change the

dusts membership. The first one is called Regular Update Strategy

(RUS). In one epoch of RDD, if the optimal value in the whole

IGFA procedure is changed in certain number of movement and

absorption epochs, the membership of all dusts does not need to

update. But if the optimal value in the whole IGFA is not changed

at all in certain number of movement and absorption epochs, all

groups would be dismissed and every un-deleted dust in solution

space will divide randomly again. The main consideration of RUS

strategy is that there is no optimal value in all the dusts and the

paths along the movement of surrounding dusts. But actually,

maybe the optimal value is already in some groups. So another

strategy is used in RDD, which is called Never Update Strategy

(NUS). In one epoch, no matter the optimal value is changed or

not in IGFA, all groups will not be dismissed and updated until

this iteration finish.

When the movement and absorption operators in one or more

groups finish, the number of dusts in the corresponding groups is

just one. And all groups in the whole IGFA will be dismissed. This

RDD operation ends. The number of groups G will be updated

then. And the membership of all dusts will be determined again.

RDD will go into the next epoch.

The selection of RUS and NUS is very important. The

algorithm may be not convergent, or the running time will be too

long with a wrong selection. A better way is to use a mixed method

for RUS and NUS. RUS is used when IGFA is in the earlier

period. And NUS is used when GFA is in the later period. It’s hard

to decide the border line between these two period, so the number

of iterations is used as the criteria to decide. 10 were used for the

line between RUS and NUS in the experiments of IGFA.

The rules of the movement of the dusts and strategy of

absorption. The movement operator is another kernel part in

IGFA. The task of this operator is to search the optimal value in

each group with absorption operator together. So the convergence

of IGFA is related to movement operator, especially when the

number of groups is just one in the late period of IGFA. The main

idea of this operator is described in the prophase research [6], but

some problems should also be resolved. The improved movement

operator is described in the following.

The movement is the iterative procedure. In each epoch, the

centre dust, whose mass function value is the maximum or

minimum in its own group, will be selected at first. The other

dusts, which are called surrounding dusts, will be in the gravitation

field of the centre dust and move towards centre dust. The rule of

movement of surrounding dusts for any-dimensional solution

space is mentioned in [6]. But Euclidean distance [12] is easy to

calculate only for one-dimensional solution space, which is the

difference of two scale number. For multi-dimensional solution

space, this method is not an effective one. And much time will be

wasted for getting the Euclidean distance value.

In this paper, the distance between two dusts was defined as a

difference between two vector variables, which can reduce the

Figure 2. The random method and average method in criteria dimensionality. Every sub-figure in Fig. 2 is divided into 7 groups. Sub-figure
(a) is the figure of random division method. In this method, the length of each group is random. Sub-figure (b) is the figure of average division
method. In this method, the length of each group is average.
doi:10.1371/journal.pone.0049039.g002

Figure 3. An example of one1dimensional RDD operator. There
are 3 groups in this one-dimensional RDD example: G1, G2 and G3. And
every dust belongs to these 3 groups randomly. In this example, 1st, 3rd
and 4th dusts belong to G1, 2nd dust belongs to G2, and 5th and 6th
dusts belong to G3.
doi:10.1371/journal.pone.0049039.g003

Figure 4. An example of two-dimensional RDD operator. There
are 3 groups in this two-dimensional RDD example: G1, G2 and G3. And
every dust belongs to these 3 groups randomly. In this example, cycle
dusts belong to G1, rectangle dusts belong to G2, and triangle dusts
belong to G3.
doi:10.1371/journal.pone.0049039.g004

Improved Gravitation Field Algorithm

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e49039



running-time of IGFA. For example, the distance between the

centre dust (1, 1, 1) and one surrounding dust (3, 21, 7) is (22, 2,

26), which is also a vector. And this method is called Direct Minus

Method (DMM). When the proportion of distance is used for the

pace for the movement rules in [6], DMM is the same as the direct

Euclidean distance. The reason is described as the mathematical

framework section.

Although the convergence of GFA is proved in three

conditions [6], the conditions of infinite dusts can’t be

implemented in the computer. One situation of un-convergence

in one-dimensional solution space is shown as Fig. 5. So a

proper method should be used to increase the convergence

probability. The method proposed in this paper is called

Rotation Factor (RF) method.

Like the rotation of planets will throw out some dusts, the RF

proposed in this paper can be used to prevent local convergence.

The rotation operator is used when the movement epoch is

completed. The task of rotation is to push surrounding dusts

backwards the centre dust. The backward direction is not the

original forward direction, but any possible directions randomly.

And to avoid too much pace, the max backward pace is defined as

Eq. (1):

withdrawmax~2|dis|0:0618 ð1Þ

In Eq. (1), the max backward pace withdrawmax equals 2 times

of forward pace which is mentioned in [6]. And dis is not the total

length between the centre dust and the original surrounding dust

any more, but the current distance.

RF is a probability value with which the rotation operator runs.

And RF is inverse proportion to the current distance between the

surrounding dust and the centre dust. So the value will change in

the whole IGFA process. But only one RF for all dusts will be not

proper in IGFA obviously. It’s a better way to set a special RF for

each dust. And the RF value is defined as Eq. (2):

factor(iz1)~
factormax, factor(i)§factormax{0:03

factor(i)z0:03, factor(i)vfactormax{0:03

�
ð2Þ

In Eq. (2), factor (i+1) is the RF after (iz1)th movement

operator. factormax is the max RF. This value can’t be too big, or

it will increase running time of IGFA. In this paper, 0.2 was used

for this value, and factor(0) = 0. And several times movement

operators later, the RF will be the max value.

The basic rules of movement operator are described in detail as

above, but a serious problem will be also appeared in movement

operator. When a surrounding dust moves towards the centre dust,

the location value of the surrounding dust will change to a new

one. Obviously, this new value will also be in the solution space in

most cases, but it will also be out of the solution space in some

cases. So boundary verification should be used to ensure the new

value is legal. If the new value is in the solution space, the

algorithm will go on, or a new random dust will replace the illegal

dust.

The strategy of absorption is easy but efficient. The surrounding

dusts will be deleted when the distance between this dust and the

centre dust is small enough. And when the number of the

surrounding dusts is smaller than the threshold in IGFA, all dusts

will be deleted except the centre dust in the group. Then all groups

will dismiss and a new iteration of division will begin until the

algorithm ends.

Figure 5. One situation of un-convergence in one-dimensional solution space. The underside cycle was a surrounding dust which didn’t
run the movement operator. The upside cycle was the corresponding surrounding dust which had run the movement operator. It was an un-proper
movement operator obviously for a bigger pace The optimal value was missed and GFA would not be convergent.
doi:10.1371/journal.pone.0049039.g005
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The complete pseudo-code of IGFA is presented in Algorithm

1. In Algorithm 1,N is the number of dusts, G is the number of

groups. Both of values would decreases continuously in IGFA. So

the running-time will be small by this mechanism. ‘GetCentre’ is a

method of getting the centre dust through the current dust. And

‘GetMax’ is a method of getting the dust which has the biggest

mass value. ‘threshold’ is the smallest distance between the centre

dust and the surrounding dust. If the distance is smaller than this

value, the corresponding dust will be deleted. centre[] is the final

results. It can be one value, or many optima.

Algorithm 1 GFA

1: dusts½�/random

2: for all i such that 0ƒivN do

3: dusts[i] [ group[random]

4: end for

5: for all i such that 0ƒivG do

6: centre[i] / GetMax(group[i])

7: end for

8: end for i such that 0ƒivN do

9: dusts[i] / dusts[i]+(GetCentre(dusts[i])-dust[i])|0:0618

10: while dusts[i]=[ solution space do

11: dusts[i]/random

12: end while

13: end for

14: for all i such that 0ƒivN do

15: if Fun((GetCentre(dusts[i]))-Fun(dusts[i]))vthreshold then

16: delete dusts[i]

17: end if

18: end for

19: for all i such that 0ƒivN do

20: if dust[i] is not GetCentre(dusts[i]) and randomvr then

21: dusts[i] / dusts[i]+random

22: end if

23: end for

24: if GroupNotFinish then

25: goto [5]

26: else

27: goto [29]

28: end if

29: if Finish then

30: return centre[]

31: else

32: update N,G

33: goto [2]

34: end if

Mathematical Framework
In this part, DMM can be verified. And a new theorem will be

proposed and proved.

Theorem 1. the proportions of movement are

equal. When the movement operator is on, if the pace is the

proportion of the total distance between this dust and the centre

dust, the distance of DMM is equal to the Euclidean distance.

If the Theorem 1 for M-dimensional solution space is desired to

be proved, two parts must be proved. The first one is that the

Theorem 1 is correct when M = 1. The other is that if the

Theorem 1 is correct when the solution space is M-dimensional,

then Theorem 1 is correct too when the solution space is (M+1)-

dimensional. When these two parts are proved, Theorem 1 of any

dimensionality can be proved, such as M = 1, 2, � � �. The Theorem

1 will be proved in the theory of Euclidean geometry [13]. We

described the proof as following.

proof.

(1) The Theorem 1 is correct when M = 1 obviously, since the

distance of DMM is the Euclidean distance itself.

(2) Fig. 6 is the paragraph of DMM in (M+1) dimension. In Fig. 6,

C is the center dust, A is one surrounding dust. The direction

of movement is from A to C. The section of line AC is the

Euclidean distance of point A and point C in (M+1)-

dimensional solution space. The section of line AE is the

projection of AC in the M-dimensional solution space. The

section of line CE is the projection of AC in the (Mz1)th-

dimensional solution space. The section of line AB is one pace

in movement operator between point A and point C. Point D

is the projection of point B. So the Theorem 1 is transferred to
AB

AC
~

BD

CE
in (Mz1)th-dimensional solution space. Because

CE is vertical to the surface of M-dimensional solution space,

we can get that AE\CE. Then
AD

AE
~

BD

CE
is established.

Because Theorem 1 is correct when the number of dimension

is M, we can get
AB

AC
~

AD

AE
. So that

AB

AC
~

BD

CE
. We can get

that Theorem 1 is also correct in (Mz1)th-dimensional

solution space. Absolutely, we can get that if the Theorem 1 is

correct when the solution space is M-dimensional, then

Theorem 1 is correct too when the solution space is (M+1)-

dimensional. That is the Theorem 1 is correct for any

dimensionality.

The Application to the Hierarchical Clustering
In the theory framework, the mass function within a certain

continuous data solution space must be used in IGFA. But for

some applications in system biology, especially in hierarchical

clustering, the discrete data is used. Thus, the IGFA must be

modified again for discrete data in this paper.

First of all, the initial part must be modified. Because all

solutions are discrete, a new method should be used for initializing

all dusts. The distance function of each genes pair is used as the

mass function in IGFA. A series numbers are used for identifying

all the dusts, and two numbers are used as parameters in the

Figure 6. The paragraph of the proportions of movement is
equal. AC is the distance of points A and C in (M+1)- dimensional
solution space. AE is the projection of AC in M-dimension solution
space. CE is the projection of AC in (Mz1)th-dimensional solution
space. AB is one pace between points A and C.
doi:10.1371/journal.pone.0049039.g006
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distance function. In the hierarchical clustering, two integers are

selected randomly from 1 to Nh(number of genes) for initialization.

One is i, the other is j(j=i). The Euclidean distance is used as mass

function defined as Eq. (3). i and j are used as dimensionality D in

IGFA. And states of all i-j pairs are set to ‘not used’. The number

of conditions M is not the dimensionality because it is not the key

factor in Eq. (3).

disij~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2

i1{x2
j1)z(x2

i2{x2
j2)z � � �z(x2

iM{x2
jM )

q

(1ƒi,jƒM)

ð3Þ

The other modified part is the movement operator in IGFA.

The rule of decrease or increase progressively was used because

both i and j were integers in [1, N]. The modified movement

operator is described in detail as following:

1. step = 1.

2. If the serial number of centre dust id is smaller than the serial

number of surrounding dust ic, i = i-step. If id is greater than ic,

i = i+step. If id~ic, id will be not changed. The algorithm goes

to (4).

3. If the serial number of centre dust jd is smaller than the serial

number of surrounding dust jc, j = j-step. If jd is greater than jc,

j = j+step. If jd~jc, jd will be not changed. The algorithm goes

to (4).

4. If i-j pair of the surrounding dust is the state ‘used’, then

step = step+1 and goto (2) or (3) again. If i- j pair is ‘not used’,

Then step = 1 and goto (5).

5. After (4), i- j pair must be identified as ‘used’.

The state ‘used’ in (4) and (5) should be used because

unexpected results will not appear in the discrete IGFA described

above, so the state ‘used’ can reduce the running time of IGFA in

the application of hierarchical clustering.

Except these two parts, other parts will not be necessary to

modified for the application.

Results and Discussion

Test Method
To test the efficiency of IGFA proposed in this paper, a suite of

five functions, which include Eq. (4)–(8), was used to assess the

algorithm performance. And the test results of IGFA will be

summarized and be compared with GFA, GA and SA. 500

different runs of each method and each benchmark function were

performed and compared with each other.

Sphere function [14]:

f1~
XD

i~1

x2
i ð4Þ

Rosenbrock function [15]:

f2~
XD{1

i~1

(100(x2
i {xiz1)2z(1{xi)) ð5Þ

Rastrigin function [16]:

f3~10Dz
XD

i~1

(x2
i {10 cos (2pxi)) ð6Þ

Griewangk function [17]:

f4~
XD

i~1

x2
i

4000
{ P

D

i~1
cos (

xiffiffi
i
p )z1 ð7Þ

Ackley function [18]:

f5~20ze{20e{0:2e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

P
x2

i

q
){e

( 1
D

P
cos (2pxi )

� �
ð8Þ

In Eq. (4)–(8), D is dimensionality. And D = 50 was defined in

these experiments. Eq. (4) is the single minimum function, the

others can be used as both single minimum and multi minima

function.

The error functions used to determine the algorithm efficiency

were Mean squared error (MSE) [19], Standard deviation (STD)

[20] and Mean guass error (MGE) [21] which were defined as Eq.

(9)–(11).

MSE~
1

n

Xn

i~1

(f (xi){fopt(xi))
2 ð9Þ

STD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1
sumn

i~1(xi{ �XX )2

r
ð10Þ

MGE~
1

n

Xn

i~1

2ffiffiffi
p
p
ðx

0

e{t2 dt ð11Þ

In these three functions, n is the number of runs, f (xi) is the

performance for run i and fopt(xi) is the real function value at the

global minimum.

Global Minimum Experiment
The common settings of parameters were shown in Table 1. In

this table, maximum iteration number is 1000 for all four

Table 1. Common parameters settings of IGFA, GFA, GA and
SA.

Algorithm parameters IGFA GFA GA SA

Max. numbers of iterations 1000 1000 1000 1000

Population size 50 50 50 –

Number of polulations 200 200 200 –

Initial temperature – – – 0–5.0

various rate 0.3 – 0.3 –

doi:10.1371/journal.pone.0049039.t001
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algorithms. Initial temperature was used just for SA. Various rate

for IGFA was the rotation factor, for GA was the mutation rate.

To compare the performance of these four algorithms, 500

different runs of these five functions were used. And the value

range of each dimensionality was [22,2]. The MSE, STD and

MGE results had been concluded in Table 2. The efficiency of

IGFA could be seen from Table 2.

From the comparison results between IGFA, GFA, GA and SA,

we could see that for some simple functions, like Sphere’s,

Rastrigin’s and Griewank’s functions, MSE, STD and MGE of

IGFA were lower than ones of GA and SA. But for some complex

functions, like Rosenbrock’s and Ackley’s functions, IGFA was not

better than GA and SA.

From Table 2, the efficiency of IGFA could be seen. IGFA was

better than GFA in all conditions and for all functions. The STD

of IGFA was lower than others for Rosenbrock’s function. Even

for the most complex Ackley’s function, MSE of IGFA was lower

than all other three algorithms.

Sphere’s, Rastrigin’s and Griewank’s functions could be

optimized better by IGFA. Both Rosenbrock’s and Ackley’s

functions could be optimized partly better by IGFA than by

others. The lowest criteria were STD and MGE for IGFA. And all

functions could be optimized better by IGFA than by GFA.

For running time of IGFA, the rotation factor makes the epochs

number bigger, but the rules of random division makes the

running time of one epoch smaller. Less time would be used by

IGFA to divide the dusts in the solution space.

Time complexity of the four algorithms should be seen both

from epoch number and the whole running time of the algorithms.

The results had been concluded in Table 3 and Table 4. From

Table 3, we could see that the mean epoch number in IGFA with

every function was bigger than GFA caused by rotation factor. If

IGFA was not convergent within 1,000 epochs, the run was judged

as failure. No matter it was convergent or not, the mean epoch

number was rounded off and recorded in Table 3. Only SA can

reach failure condition.

It seems that only IGFA outperforms for four of five benchmark

function. Only for one function, which is Ackley’s function, GA is

better than IGFA. But actually, Time complexity of the algorithm

was also determined by the running time of one epoch. From

Table 4, the total running time can be seen. Rosenbrock’s,

Rastrigin’s and Ackley’s functions could be optimized faster by

IGFA than other three algorithms. And for Sphere’s and Ackley’s

functions, GA will optimized faster.

From the comparison result between IGFA and GFA for all

functions, the mean epoch number of IGFA will be bigger than

GFA. But total running time of IGFA is smaller than GFA. That

is, the efficiency of IGFA is better than GFA.

Table 2. MSE, STD, and MGE of IGFA, GFA, GA and SA.

Sphere Rosenbrock Rastrigin Griewank Ackley

IGFA

MSE 0.2854 0.0143 78.5732 4.6786e-
007

12.4189

STD 0.2847 0.0105 5.6497 4.8973e-
004

12.4189

MGE 0.4576 0.0454 0.7583 4.5937e-
004

1

GFA

MSE 0.3254 0.0155 151.5743 5.3587e-007 16.4500

STD 0.2931 0.0155 6.5848 5.1176e-004 16.4500

MGE 0.4769 0.1179 0.9587 5.9689e-004 1

GA

MSE 7.2747 0.0054 7054.2 6.7709e-007 14.6001

STD 0.7409 0.0556 16.2621 6.8194e-004 0.1891

MGE 0.9927 0.0546 1 5.2149e-004 1

SA

MSE 1619.2 0.0069 745.7810 0.0030 26.9123

STD 7.1102 0.0827 12.5530 0.0385 26.9123

MGE 0.9967 0.0061 0.9952 0.0439 1

Best performance (i.e., lowest error) for each function is highlighted in bold
underline letters.
doi:10.1371/journal.pone.0049039.t002

Table 3. Mean numbers of epochs until the minimization threshold was reached and mean number of failures of four algorithms.

Sphere Rosenbrock Rastrigin Griewank Ackley

IGFA

mean number
of epochs

33 51 36 57 113

number of failures 0 0 0 0 0

GFA

mean number of
epochs

30 47 31 47 98

number of failures 0 0 0 0 0

GA

mean number
of epochs

51 57 51 51 92

number of failures 0 0 0 0 0

SA

mean number of
epochs

816 46024 6349 21634 1001

number of failures 108 500 314 126 234

doi:10.1371/journal.pone.0049039.t003
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Multi-minima Experiment
Although most tasks of given problems is to search the global

minimum, multi-minima are also needed by some problems, such

as Bayesian network inferring [22]. In this problem, every results is

a stochastic network, so a lot of minima will be useful for

researchers.

Because the multi-minima searching is beyond GA’s and SA’s

ability, the algorithm results of IGFA will be compared with the

results with GFA using four benchmark functions: Eq. (5)–(8).

Sphere’s function is not suitable for multi-minima searching. In

this experiment, the domain in every dimensionality for all four

functions was [22, 2]. The max iteration number was 1000. The

number of initial dusts was 30000 for all functions. The number of

initial groups was 200. 500 different runs were performed, and 5

minima of two algorithms were calculated and concluded in

Table 5.

The error functions were not used. But the direct result values of

the multi-valleys searching with IGFA and GFA were calculated

and shown in Table 5. And the values in Table 5 were the mean

values of 500 different results. In this table, the smallest difference

between the calculated value and the real value was in bold.

From Table 5, we could see that for most cases, IGFA could do

better than GFA for multi-minima searching functions, including

Rosenbrock’s, Rastrigin’s and Griewank’s. And for Ackley

function, the efficiency of IGFA was equal to the GFA.

Experiment in Hierarchical Clustering
The data used in this paper for hierarchical clustering is GDS38

in GEO [23] online database. GDS38 is the Yeast Saccharomyces

cerevisiae expression data. And the results of the hierarchical

clustering will be compared with both GA and SA optimal

algorithm, and other traditional hierarchical clustering methods,

such as single linkage clustering method (SLC) [24] and

unweighted pair-group method with arithmetic means (UPGMA)

[25]. And the Euclidean distance is used as criteria function in

these algorithms. The data has 7,680 genes with 16 samples, of

which the 17 missing values were excluded. So the data used in

this paper has 7,663 genes. That is Nh~7,663 in this experiment.

In traditional hierarchical clustering, Nh|Nh distances must be

sorted, it will be wasted to find the minimum, if optimal algorithms

can be used in this part, the effective of the algorithm will be

proved.

After calculated clustering by IGFA, the direct result is shown as

Fig.7 with the free software TreeView [26]. In this red-green

heatmap, It is apparent that the similar genes are assigned to the

same set (subtree) using a measure of similarity. They almost have

the similar color in Fig. 7.

It is impossible to objectively evaluate how good a specific gene

expression clustering is without referring to what the gene cluster

will be used for. However, once an application has been identified,

it may be possible to evaluate objectively the quality of the gene

cluster for that special application. In our work, biological

applications are desirable. To provide more meaningful biological

information, all 300 genes involving mitosis of the yeast cell in the

Spellman’s experiment [27] should be near as much as possible in

hierarchical clustering result. When conducting the comparisons

among different methods for the clustering, it would be good to

give some biological significance. A distance between the

minimum child tree, which concludes all 300 mitosis genes, and

the root node in the binary tree was used as the criterion. An

algorithm is good when a distance is long enough. Another

parameter for comparing is the running time. To compare the

results, 500 runs were performed. And the average results were

summarized and shown as Table 6.

The efficiency of the IGFA in hierarchical clustering could be

seen from Table 6. IGFA was able to outperform other four

algorithms in our experiments, both in accuracy and running time.

In Table 6, the longest distance was the IGFA result. The length

was 2.445-fold of SA. That is the most accuracy algorithm was

IGFA in the experiments. The accuracy of SLC was in the second

place. GA was almost the same as UPGMA. The efficiency of SA

was poorly in the experiment. The running-time of any optimal

algorithms was lower than the traditional hierarchical clustering

methods. And IGFA is the fastest in these three optimal

algorithms. The running time of IGFA is lowest, which is 6-fold

of UPGMA result.

Overall, The IGFA achieved a longest distance and lowest

running time in the experiment. Relatively, the accuracy of any

traditional clustering algorithms was in the same magnitude with

GA. But the running time is too long to tolerant for clustering.

Conclusion
In this paper we improved the generic searching-optimization

algorithm GFA, which is called IGFA. There are two improved

parts in IGFA. One is the rule of random division, which

determines the every dust membership. The other is the rule of the

rotation factor, which can be used to prevent local convergence. In

addition, for the application in hierarchical clustering, IGFA will

be modified again to resolve the discrete data problem. The

modified parts conclude two parts, one is the initial part, and the

other is the movement operator.

Table 5. MSE, STD, and MGE of IGFA, GFA in searching multi-
minima.

Rosenbrock Rastrigin Griewank Ackley

IGFA

1 1.0021 1.0457 0.0101 3.9940

2 0.1007 1.0582 0.0078 3.5018

3 0.0021 0.0583 0.0005 0.0024

4 0.1037 1.0278 0.0073 3.5370

5 1.0026 0.9587 0.0075 3.6948

GFA

1 1.0026 1.0469 0.0117 3.9842

2 0.0997 1.0943 0.0094 3.5237

3 0.0029 0.0685 0.0009 0.0030

4 0.1043 1.0327 0.0081 3.5797

5 1.0031 1.0187 0.0097 3.6874

Best performance (i.e., lowest error) for each function is highlighted in bold
underline letters.
doi:10.1371/journal.pone.0049039.t005

Table 4. Total running-time of IGFA, GFA, GA and SA with
500 runs.

Sphere Rosenbrock Rastrigin Griewank Ackley

IGFA 191.2 62.29 103.1 68.75 79.57

GFA 201.4 66.84 114.87 67.93 82.58

GA 187.13 63.29 157.33 63.98 101.30

SA 14211.08 11463.29 52914.75 15536.02 6406.68

doi:10.1371/journal.pone.0049039.t004
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Three parts experiments were used in this paper. One is the

global minimum searching. In this experiment, the results of IGFA

were compared with GFA, GA and SA using five benchmark

functions. The second part is the multi-minima searching. The

results of IGFA were compared with GFA. The third part is the

application in the hierarchical clustering. And the results were

compared with GA and SA. The efficiency of the IGFA was

proved by these three kinds of experiments.
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