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Abstract

A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important
impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to
changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain
metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been
harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative
cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may
contribute, and show that acting together they can make negative cooperativity advantageous.
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Introduction

Most enzymes operate in multi-subunit complexes, and a

significant proportion, perhaps 25% or more, display cooperativity

in binding ligand molecules [1–4]. This pheonomenon plays an

important role in a number of cellular processes, among them

metabolic regulation [5,6].

Here we consider the impact of cooperativity on metabolic

regulation in the case of inhibitor binding to an enzyme. In this

situation binding at one subunit can influence the affinity of other

subunits for the same inhibitor, thereby affecting how the rate of

catalysis responds to inhibitor concentration. In fig. 1 the red curve

shows positive cooperativity, where inhibitor binding to one

subunit causes additional subunits to have a higher affinity for the

inhibitor. The blue curve shows negative cooperativity, where

inhibitor binding causes other subunits to have a lower affinity.

End-product inhibition provides a natural context for examin-

ing cooperativity in metabolic regulation, and a number of studies

have touched on its impact in this case [7–11]. One important

conclusion has been that positive cooperativity can be advanta-

geous because it allows a system to respond to environmental

changes while minimizing the deviation of some key metabolite

from its ideal concentration [10].

The value of negative cooperativity in metabolic regulation has

received less attention. However this represents an important

question because negative cooperativity is almost as common as

positive among enzymes in nature [12,13]. One hypothesis for the

use of negative cooperativity suggests it is associated with branch

points in metabolic networks [13]. Below we use computational

models to explore this possibility and others, and identify several

factors which can contribute to making negative cooperativity

advantageous.

Results and Discussion

A simple example metabolic network
Consider the metabolic network in fig. 2 A, a simplified version

of that discussed in Hofmeyr and Cornish-Bowden 1991 [10]. The

network consists of two molecules connected by a reversible

Michaelis-Menten reaction. Molecule 0 is the precursor whose

concentration is held constant by reactions outside the network.

Molecule 1 is the product molecule which is subject to a constant

rate outflow. This outflow varies in different environments. In our

scheme there are three environments defined by three possible

levels of outflow (arrows in fig. 2 A). We are interested in how

metabolic homeostasis can be maintained in these environments.

We explore this computationally using simple kinetic models of

enzymatic reactions. In the network in fig. 2 A, we first define a

target concentration for molecule 1. Effective homeostasis will

involve keeping molecule 1 as close as possible to this concentra-

tion. We establish the target by treating the environment with the

middle level of outflow as a sort of baseline environment. We

determine the steady state concentration of molecule 1 for this

baseline environment given a particular set of parameters (enzyme

amount, molecule energies and so on). This steady state value

becomes the target concentration which the system is trying to

maintain. We then examine what happens when the rate of

outflow is changed. Starting the system at the target concentration,

we see how molecule 1 concentration deviates when outflow is

raised or lowered.
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In the absence of regulation a new steady state will be reached

via mass action. In the case of a lowered outflow, the

concentration of molecule 1 will begin to build up. The rate of

the back reaction (1?0) increases relative to the forward reaction.

This continues until the net flow though the reaction has been

reduced to the same level as the new reduced outflow, and a new

steady state is reached.

Regulation can allow the system to achieve a new steady state

while minimizing the deviation of molecule concentrations from

their target values. Regulation in our system is achieved through

the action of one or more non-competitive inhibitors on an

enzyme. We model inhibitor binding with the Hill equation which

has been shown to provide a good fit to ligand binding data in a

wide variety of situations [14], including situations with negative

cooperativity [15–17]. We regard this equation as being empirical

and do not base it on an explicit physical model of binding. In our

set up an enzyme with an inhibitor has two parameters of interest:

the Hill coefficient and the half-saturation point for inhibitor

binding. The Hill coefficient controls the sharpness of the

enzyme’s response to inhibitor, and the half-saturation point

determines the inhibitor concentration at which enzyme reaches

half its maximum rate.

A regulated solution to the network in fig. 2 A involves end-

product inhibition of the enzyme by molecule 1 which we imagine

binding at an allosteric site. The system must respond to deviations

in outflow which go in either direction. We can achieve this by

doubling the amount of enzyme relative to what was used to

establish the target values, and setting the half-saturation point for

inhibitor binding to the target value for molecule 1. Thus when

molecule 1 is at its target value, half the enzyme sites will be

bound. With twice as much enzyme, but half of it inhibited, the

activity of the enzyme will be the same as it was when the target

values were established, and deviations of molecule 1 concentra-

tion in either direction will produce the desired regulatory effect.

Under these circumstances a high Hill coefficient (i.e. sharp

inhibitor binding curve) leads to a new steady state minimizing the

deviation of molecule 1 from its target value. The curves in fig. 2 B

illustrate this. Molecule 1’s concentration starts out at the target

value shown by the dashed line. When the outflow is reduced,

molecule 1’s concentration starts to increase. As this happens we

slide down the inhibition curve until the flow through the reaction

matches the new outflow and we are at steady state. As can be seen

from the figure, a steeper curve allows us to arrive at steady state

while minimizing molecule 1’s deviation from target. In the case of

increased outflow, a steeper curve is also beneficial, by a similar

argument.

A systematic examination of the relationship between metabolic

homeostasis and Hill coefficient in this network is consistent with

our expectation. For a given Hill value we can calculate the

deviation of molecule 1 from its target in all environments. We

define fitness as the negative of the average of the absolute values

of these deviations. The larger the fitness, the better the

homeostasis. We examined fitness for Hill coefficients from 0.25

to 3.98 for this simple network, and the results are shown in Fig. 2

C. As expected, fitness is highest with the maximum possible Hill.

Figure 2. A simple example network with regulation. A. The
network consists of two molecules connected by one reaction. The
reaction is inhibited by the product molecule 1. There are fixed rate
outflow reactions from molecule 1. These take on different levels in
different environments, as illustrated by the arrows. B. Plot of the
activity of the enzyme vs. concentration of the inhibitor (molecule 1).
The two curves have half-saturation at molecule 1’s target value, and
illustrate the shape with two different Hill coefficients. C. A plot
showing how fitness varies with Hill coefficient for this network, given
that the half-saturation is set to molecule 1’s target. Fitness (see text for
definition) reflects the deviation of molecule 1 from its target and thus
is in units of concentration.
doi:10.1371/journal.pone.0048920.g002

Figure 1. Positive and negative cooperativity in inhibitor
binding an enzyme.
doi:10.1371/journal.pone.0048920.g001
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The Hill coefficient and branching pathways
We next consider a variation on this situation where the

maximum possible Hill does not give the fittest solution. Like our

first example, the network shown in fig. 3 A begins with a

precursor molecule 0 whose concentration is fixed by external

factors. However in this case molecule 1 is not the product, but

rather represents a branch point in the network. It has reactions

with molecules 2, 3 and 4 which are themselves the products of the

pathway. Each of these products is attached to a constant rate

outflow reaction. The outflow through molecules 3 and 4 always

has the same level, however the outflow through 2 can take on

three different levels, corresponding to three different environ-

ments.

We are once again interested in finding a way to regulate this

network to maintain metabolic homeostasis. We now have

multiple molecules and we will consider homeostasis to involve

minimizing the deviation of all of them from their targets. Thus

fitness will be defined as follows. We determine the deviations of all

molecules from their targets, considered across all environments.

The negative of the average of the absolute values of these

deviations is the fitness.

Fig. 3 A shows a regulatory scheme for this network. Molecule

2, which can be subject to different rates of outflow, acts as

inhibitor to two reactions, x and y, a so-called nested pattern [9].

We examined the optimal inhibitor binding characteristics under

this scheme using an evolutionary approach. A particular solution

to this network consists of Hill coefficients and a half-saturations

for inhibitor binding for each of reactions x and y. We evolved

populations of solutions to this problem, subject to mutation and

selection, over a period of generations (details in the Methods). For

this network we performed 32 independent runs, all of which

yielded essentially the same best solution in the final generation:

the Hill and half-saturation values for all 32 best solutions were

within 3.7% of each other. The half-saturation values were at the

target value for molecule 2. The Hill coefficient for reaction y was

3.98, and for reaction x was 1.81 (the possible range of Hills was

0.25 and 3.98).

The relationship between Hill coefficients and fitness is shown

by the fitness landscape in fig. 3 B. We set the half-saturation

values to the target for molecule 2, and then systematically varied

the Hill coefficient for reactions x and y over 374 values between

0.25 and 3.98. For each combination we calculated the fitness. In

fig. 3 B, fitness is represented along the z axis, and Hill values for

the two reactions along the x and y axes. The figure shows clearly

that the highest fitness values occur when Hill for reaction y is at

the maximum, but the Hill for reaction x is less than the

maximum.

To understand why it is advantageous to have the reaction x

Hill less than the maximum, consider the plot in fig. 3 C. We have

the inhibitor after the branch in black, and the one before in blue.

Like we did above, lets consider what happens when we’re in an

environment where the flow out of this top branch has dropped.

For the inhibition in black, the maximum possible Hill coefficient

will be best for the reasons found above. This will not be the case

for the reaction before the branch. We also want to inhibit this

reaction, since we’ll be needing less material moving through it

due to the drop in outflow on the tip. The key point is that the

percentage change of activity on this pre-branch enzyme should be

less than the percentage change after the branch. This is because

the pre-branch enzyme also has material going into the other

branches, and the outflow through these has not changed. So we

want to change the activity of the pre branch enzyme by a smaller

proportion. Given that they both have half-saturations set at the

target, the only way to achieve this is to have a less steep curve.

We looked for this pheonomenon over a range of conditions,

varying enzyme amount and the magnitude of the baseline outflow

over an order of magnitude. We find that for a wide range of

parameter values, the best Hill value is less than the maximum

possible. The size of the effect is dependent on the magnitude of

the net flow through reaction x relative to the magnitude of the

back reaction through x. The effect is most robust if the flow is

greater than or equal to about
3

4
of the back reaction (in the base

environment).

The Hill coefficient and long pathways
Lets next consider what happens when we extend the simple

pathway in fig. 2 to include one or two intermediate molecules.

This is shown in fig. 4 A. As was the case in the last example,

homeostasis here will involve minimizing the deviation of all

molecules from their targets.

We again used an evolutionary approach to search for the

optimal combination of Hill coefficients and half-saturations for

these networks. For our example set of parameters (see Methods)

for all three pathway lengths the best solutions involved half-

saturations set to target values. Optimal Hill’s for the 2, 3 and 4

Figure 3. A branching network where the best fitness is not
given by the maximum Hill coefficient. A. Illustration of the
network. Molecules 3 and 4 have constant rate outflows which do not
vary in different environments, shown with black arrows. B. A fitness
landscape for this network. The x and y axes give Hill coefficient for
inhibition of the x and y reactions. The z axis is fitness, which reflects the
deviations of molecules from their targets and is in units of
concentration (see text for definition). C. Plot of the activity of the
enzyme vs. concentration of the inhibitor (molecule 2).
doi:10.1371/journal.pone.0048920.g003
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molecule cases were 3.98, 3.59, 2.81 respectively. So the optimal

Hill declines as the pathway becomes longer. We illustrate this in

fig. 4 B, where we have calculated fitness for a range of Hill values

for the three networks, setting half-saturation at target.

These longer networks are very similar to what was considered

by Hofmeyr and Cornish-Bowden [10]. Those authors found that

the higher the Hill coefficient the better. The difference between

their results and ours lies in the definition of homeostasis. Hofmeyr

and Cornish-Bowden were only considering homeostasis for the

final product molecule, whereas we imagine homeostasis acting on

all the molecules in the pathway, a situation which has been

argued to be more realistic [11,18]. Fig. 4 C shows fitness by Hill if

we only have homeostasis acting on the tip molecule as in ref [10].

The reason for the drop in optimal Hill for longer pathways is

that there is a delay in concentrations equilibrating in the long

branch. Let us consider what happens in the 4 molecule network

when we test with the lower outflow environment. Imagine that

the Hill coefficient is at the maximum possible value. The inhibitor

concentration (molecule 3 in this case) begins to increase. We slide

down the inhibition curve, and at some point inhibition causes the

rate of flow through the inhibited reaction to equal the new rate of

outflow from the product molecule. But the system is not yet at

steady state because the two internal reactions do not yet have the

same rate as the new outflow. The first reaction can reach that

level quickly through inhibition. But the other two will need to do

so through mass action, which takes longer. Their equilibration

will cause the concentration of molecule 3 to continue to increase,

leading to overinhibition, and the system eventually settling in a

steady state that undershoots the final target concentrations. In this

situation, fitness can be optimized by having a less steep inhibition

curve which does not constrict entry into the pathway as quickly.

We systematically explored parameter space for this system, to

try to understand the conditions under which the optimal Hill

coefficient drops when we go from two to three molecules in our

pathway. Using the range of Hill coefficients used above (0.25–

3.98), we found that roughly 20% of parameter combinations

produced this effect. In another 50% of the cases the optimal Hill

for both two and three was at the maximum of 3.98, but if we

allowed ourselves to go to Hills above this value we found that the

effect was still present (i.e optimal Hill for three was less than that

for two).

Because this effect depends on the gradient of concentrations

that is established in a pathway with flow going through it, the

relative energies of the molecules in that pathway will impact it.

We found that running our examples in energetically unfavorable

pathways tends to make our effect stronger (i.e. less-than-

maximum Hill coefficients are more useful in longer pathways),

and running them in energetically favorable pathways tends to

reduce the magnitude of the the effect.

An example with negative cooperativity
Our goal is to identify advantages of negative cooperativity in

metabolic systems. So far we have described two phenomena

which result in less-than-maximum Hill values, but not negative

cooperativity. Using relatively extreme parameter values (e.g. a

branching network with 12 branches) we found that we could get

negative cooperativity to be advantageous. However we would like

to find less extreme cases where this is so. We next discuss a small

network which exhibits negative cooperativity in inhibitor binding

(fig. 5 A). This network is similar to the branching network

discussed above, except the branch with multiple levels of outflow

has been extended by two additional reactions. This network thus

combines the two properties discussed above, branching and

having a pathway with one or more intermediates.

We again used an evolutionary approach to explore the optimal

solutions for this network. In this case, we decided to not only vary

the Hill and half-saturation on reactions x and y, but to also allow

the identity of their inhibitors to vary. This made the parameter

space we explored larger, but also gives us more confidence that

we are finding the global optimum solution for the network.

Figure 4. Several longer pathways where the best fitness is not given with the maximum Hill coefficient. A. Pathways with 2, 3 and 4
molecules. B. Plots of fitness vs. Hill coefficient of inhibitor binding given homeostasis on all molecules. C. Fitness vs. Hill coefficient given
homeostasis acting only on the tip molecule. Fitness reflects the deviations of molecules from their targets and is in units of concentration (see text
for definition).
doi:10.1371/journal.pone.0048920.g004
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We did 32 independent runs, and the best solution in each of

these followed the same general pattern. They all involved

molecule 4 inhibiting both reaction x and y, half-saturations for

both reactions set around molecule 4’s target value, and negative

cooperativity (Hillv1) in inhibitor binding for reaction x. The

ranges of parameter values from the best organisms in these 32

runs are shown in table 1.

This network provides an illustration of how negative

cooperativity can arise in a metabolic network. It combines the

two phenomena we have discussed above. First it is a branching

network with nested end-product inhibition. Second the pathway

producing this end-product has several intermediates. Our results

show that acting together, these two phenomena are capable of

producing negative cooperativity, at least under certain sets of

parameters.

Before concluding, we would like to address one objection

which could be made to our approach. We have used the Hill

equation to model inhibitor binding on the basis that it provides a

good empirical fit to ligand binding data [14]. One might object

that it would be preferable to use an equation which is based on an

explicit physical model. It is attractive to use equations based on

explicit models, however the great disadvantage here is their

complexity. To have cooperativity values over a sufficiently large

range, we would need to use models with more than two

interacting subunits. The resulting equations would have huge

numbers of terms. Given that our chief interest is in understanding

metabolic regulation at the network level, we feel it is justified, and

indeed strongly preferable to use simpler empirically based

equations to represent inhibitor binding. The Hill equation does

this, fitting binding data well, including in negatively cooperative

systems [15–17]. We note that other workers have made similar

choices [19].

Conclusions

We have suggested two factors to explain the evolution of

negative cooperativity in metabolic regulation. First, in branching

networks with nested end-product inhibition, it is advantageous for

the inhibitor to bind the enzyme before the branch with a smaller

Hill coefficient than it binds the one after. This is because the

branch point enzyme needs to be modulated less strongly than

enzymes after the branch. If both are inhibited by the same end

product, then it is optimal for the branch point enzyme to have a

less sharp response to inhibitor. The second factor occurs in linear,

unbranching pathways with end-product inhibition. It is due to a

difference in the time scale between inhibition on the one hand,

and mass action on the other. An important condition for this

second factor is that metabolic homeostasis be acting on

intermediates as well as products of the pathway, a situation

which is likely to be common in nature [11,18].

We have used simple models to demonstrate that these two

factors occur over a range of parameter values, and that in

combination they can lead to negative cooperativity. A natural

extension would be identify pathways which are known to exhibit

end product inhibition with negative cooperativity in nature

[20,21], and model them in greater detail.

Our theoretical results are a step toward understanding the role

of negative cooperativity in metabolic regulation. Beyond its

intrinsic interest, this has the potential to aid biotechnology as

humans seek to design and modify metabolic pathways for our

own purposes.

Methods

Our numerical simulations of chemical reactions were written in

python using the scipy package’s odeint function. Our code can be

downloaded from our website at http://proconsul.bio.hmc.edu/

lp/.

We used a two-step reversible Michaelis-Menten mechanism for

our reactions:

EzS'ES'EzP

Our simple model of inhibition allows for one or more non-

competitive and cooperatively binding inhibitors to bind an

enzyme and inactivate it. We treat the process of inhibitor binding

as being rapid compared to substrate binding, and use the Hill

equation to determine the proportion of enzyme which is unbound

and therefore active.

This gives us the following rate equations:

No inhibitor:

v~
kSE0S{kPE0P

1z
S

KmS

z
P

KmP

:

Figure 5. Example of a network with negative cooperativity of
inhibitor binding (A). B. A fitness landscape for this network. The x
and y axes give Hill coefficient for inhibition of the x and y reactions.
The z axis is fitness, which reflects the deviations of molecules from
their targets and is in units of concentration (see text for definition).
doi:10.1371/journal.pone.0048920.g005

Table 1. Evolved solutions for the network in fig. 5 A.

reaction x Hill 0.34–0.51

reaction y Hill 1.59–3.32

reaction x half-saturation 5:26:10{5–5:72:10{5

reaction y half-saturation 5:37:10{5–5:86:10{5

Range of Hills and half-saturations for best organisms from 32 runs on the
network in fig. 5 A. Note that the target for molecule 4 is 5:61:10{5 M.
doi:10.1371/journal.pone.0048920.t001
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n independently acting non-competitive and cooperatively binding

inhibitors:

v~
kSE0S{kPE0P

1z
S

KmS

z
P

KmP

: P
n

i~1

kai
hi

kai
hizIi

hi
:

Here v~ reaction rate; E0~ total enzyme concentration; S~
reactant concentration; P~ product concentration; I~ inhibitor

concentration; h~ Hill coefficient of inhibitor binding; ka~ half-

saturation point of inhibitor binding; kS~
k1k2

k{1zk2
;

kP~
k{1k{2

k{1zk2
; KmS~

k{1zk2

k1
; and KmP~

k{1zk2

k{2
.

We obtained the various rate constants (e.g. k{1 etc.) using the

Arrhenius equation, with temperature 298 K, pre-exponential

factor of 1010, and the activation energies for binding and the

main reaction at 10 and 30 kJ/mol respectively. All enzymes

shared these parameters.

The network in fig. 2 A was constructed with the following

parameters. The source molecule 0 had its concentration fixed at

5:10{4 M, the enzymes had a concentration of 2:75:10{6 M, and

the baseline rate of outflow from molecule 1 was 2:10{5 M/s. We

varied the rate of outflow by a factor of 1.18 in the different

environments, and all molecules had the same energy. The

networks in fig. 4 A had the same parameters. And those in fig. 3 A

and fig. 5 A differed only in having different concentrations of

enzyme, 3:5:10{6 and 5:10{6 M respectively.

We systematically explored the space of parameters for several

of our networks (fig. 3 A and fig. 4 A for the 2 and 3 molecule

cases). For these runs we varied enzyme amount between

1:10{6 M and 1:10{5 M using a step size of 1:10{7 M. We

varied the baseline rate of outflow between 6:10{6 M/s and

6:10{5 M/s with a step of 1:10{7 M/s. We varied the Hill

coefficients between 0.25 and 3.98 with a step of 0.1. Half-

saturations were set to the target values for the inhibitor, and other

parameters were as above.

Our evolutionary simulations involved mutation and selection

without recombination. The simulation for fig. 3 used a population

size of 200 of which the 60 most fit were selected in every

generation. 32 replications were each run out for 1000 genera-

tions. The simulations for fig. 4 also had 32 replications, but were

run for 500 generations. With the simulations for fig. 5, because of

the larger parameter space to explore, we found it useful to use

significantly larger population sizes. These had a population size of

3200 of which 1600 were selected every generation. Again 32

replications were run for 1000 generations.
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