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Abstract

Natural number arithmetic is a simple, powerful and important symbolic system. Despite intense focus on learning in
cognitive development and educational research many adults have weak knowledge of the system. In current study
participants learn arithmetic principles via an implicit learning paradigm. Participants learn not by solving arithmetic
equations, but through viewing and evaluating example equations, similar to the implicit learning of artificial grammars. We
expand this to the symbolic arithmetic system. Specifically we find that exposure to principle-inconsistent examples
facilitates the acquisition of arithmetic principle knowledge if the equations are presented to the learning in a temporally
proximate fashion. The results expand on research of the implicit learning of regularities and suggest that contrasting cases,
show to facilitate explicit arithmetic learning, is also relevant to implicit learning of arithmetic.
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Introduction

In many learning domains behavioral researchers have sought

to characterize the knowledge that separates the novices from the

experts, and to describe how that knowledge is acquired. Learners

have been shown to use principles in a variety of domains.

Principles are defined as regularities or general rules within a

particular learning domain. Research of learners principle

knowledge includes areas such as counting [1], proportional

reasoning [2], artificial grammar learning [3,4], physics [5] and

language acquisition [6]. In arithmetic the relation between

operands in simple equations is such a principle. For addition

equations with natural numbers (A+B = C) the sum (C) must be

greater that either operands, A and B. In the domain of arithmetic

the majority of research concentrates on determining which

principles learners know at particular points in development [7–

14]. This type knowledge inventory is both useful and necessary.

However, it leaves a crucial questions unanswered: what types of

experiences facilitate learning? Only recently have studies begun

to address the learning of arithmetic principles [15–20]. Prior

research [18] has suggested that children can learn arithmetic

principle knowledge through exposure to a mix of principle-

consistent and principle-inconsistent equations. The current study

expands on these initial investigations of arithmetic principle

acquisition, drawing on what is known from psychological

research about the implicit learning of regularities. Specifically,

we evaluate the effect of temporal proximity in contrasting

equation examples of different types. Though prior work focuses

on child participants in a classroom setting, in the current study we

evaluate adult participants in a lab setting. This enables us to

evaluate how similarly arithmetic principles may be implicitly

learned in comparison to the expansive literature on implicit

learning of artificial grammars.

Implicit learning of regularities
Though the current research focuses on arithmetic principles,

findings regarding principle learning in other domains (e.g.,

language acquisition, counting) are informative. Research on

implicit learning of artificial grammars is particularly relevant as

researchers often examine participants’ learning of regularities

[21]. In a typical artificial grammar learning study, participants

are given a large amount of exposure to examples that correspond

to a particular grammar [3,4,22–24]. These grammars are

generally strings of letters of varying length, such as ABFE or

ABBQW, that correspond to a predetermined finite state

grammar. The participant may be instructed to memorize the

examples or otherwise pay attention to them, and is not told that

there are any regularities in the stimuli to learn. After the initial

exposure, participants are told that regularity was present, and

their knowledge of the regularity is assessed via their evaluation of

novel examples that either violate or are consistent with the

regularity. The general consensus of this line of research is that

participants are often able to learn complex regularities. Thus,

participants may be able to learn regularities in a domain through exposure to

examples.

These findings suggest that it may be effective to investigate the

learning of arithmetic principles through the manipulation of the

types of example arithmetic equations to which learners are

exposed. It is certainly the case that arithmetic learners see many

examples of arithmetic equations inside and outside of formal

education settings. Thus determining whether arithmetic princi-

ples may be learned in this way would be particularly useful. The

current study addresses two factors, exposure to principle-
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inconsistent examples and the temporal proximity of said

examples.

Experience with principle-inconsistent

examples. Learning of principles in artificial grammar and

language studies generally involves learning by positive examples

only [3,25]. Participants in these studies generally only view

examples that are consistent with the principle during training.

The current study considers a mix of principle-consistent and

principle-inconsistent examples. The idea is that a mix of

principle-consistent and principle-inconsistent equations will

highlight the relevant regularities for the learner. Prior research

of arithmetic knowledge suggests that contrast between principle-

consistent and principle-inconsistent examples may highlight

regularities across examples within a domain [26,27]. These

results suggest that a training task that includes both principle-

consistent and principle-inconsistent examples may facilitate

acquisition of arithmetic principles.

Temporal proximity of principle-inconsistent

examples. Principle learning may be facilitated by input that

highlights the regularity repeatedly within a small amount of time.

Prior work suggests that in order to learn arithmetic principles, the

learner needs to have the relevant regularity highlighted repeat-

edly within a short time span [14,16,20]. Thus examples presented

to participants are most effective when blocked together. Once a

particular regularity is highlighted sufficiently, the learner

integrates that regularity into their representation of the domain.

Repeated temporally proximal examples that highlight a specific arithmetic

principle should lead to the acquisition of that principle by the learner. These

findings suggest that input that highlights a particular regularity

must be presented to the learner in a particular sequence in order

to be effective. Prior work of arithmetic principle learning that

suggests temporal proximity is effective unfortunately does not

control for the number of stimuli presented. Thus it is impossible

to determine to what degree learning is due to the blocked nature

of the stimulus presentation as opposed to the amount of stimuli

presented to the learner. The current study will disentangle these

factors and determine the degree to which the temporal proximity

of example presentation affects learning.

What are the correlates of principle knowledge?
A secondary goal this study is to characterize the correlates of

arithmetic principle knowledge acquisition. Knowledge of arith-

metic principles may correlate with learning processing of

arithmetic equations and their performance in arithmetic.

Associations between principle knowledge and equation

encoding. Prior research has attributed changes in learners’

knowledge to changes in their encoding (or representation) of the

problem domain [16,18,28–31]. Encoding refers to the fact that

for a given stimulus, whether it is a simple arithmetic equation, a

chessboard scene or a physics problem, there are certain

characteristics that can be attended to. Consider the example of

a simple equation, 8+3 = 11. There are many characteristics that

could be noted: the color of the numerals, the order of the

numbers, the type of operation, the value of the operands, relative

spacing of the digits, the relative magnitude of the operands. This

study will address the hypothesis that increased principle

knowledge will be associated with change in equation encoding.

Consider learners’ encoding of simple arithmetic equations. The

learner may note characteristics of the equation such as the values

of the operands, the operation, the order of the operands, specific

characteristics of the operands such as evenness or oddness, and so

forth. The learner’s encoding of the equation involves noting and

prioritizing a set of characteristics. Some characteristics may be

deemed very important while others are virtually ignored.

Association between principle knowledge and arithmetic

skill. What the learner attends to can have consequences for

performance, for example the relative spacing of digits can

influence performance on arithmetic tasks [32]. For example,

children have been shown to have difficulty solving equations in

the form A+B+C = A+__. Learners who had difficulty solving these

types of equations also showed poor encoding of the equations

[30]. A learner’s representation of a particular problem may draw,

not only on information encoded from the given problem, but also

on other sources of knowledge from long-term memory, such as

prior knowledge of common problem schemas [33].

Past research suggests that principle knowledge contributes to

expertise in a domain [5,34]. Previous work [19] has shown

connections between learners’ problem representation and their

principle knowledge. These types of connections have been

explored on occasion in the literature, largely using correlational

designs [10,13,35,36]. This study will investigate connections

between principle knowledge and arithmetic problem solving. A

key difference between this research and prior work is that we will

test a more causal connection between principle knowledge and

problem solving by manipulating principle knowledge and

examining effects on problem solving. Thus, this research will

seek to show that acquiring arithmetic principles leads to improved

problem solving, supporting the oft-held claim that principle

knowledge is a crucial aspect of arithmetic knowledge.

Methods

The current study focuses on the Relationship to Operands principle

(Dixon et al., 2001). Generally stated, this principle describes the

relationships between the operands and the result in a given

arithmetic equation. The exact relationship varies depending on

the operation. For natural numbers in simple addition equations

(A+B = C), the sum (C) must be greater than the two addends (A

and B). In simple subtraction equations (A–B = C), the difference

(C) must be less than the subtrahend (A), however it may have any

relationship with the minuend (B). In simple multiplication

equations (A6B = C), the product (C) must be greater than both

operands (A and B). In simple division equations (A4B = C), the

quotient (C) must be smaller than the dividend (A), however it may

have any relationship with the divisor (B). These are all considered

examples of the Relationship to Operands principle, though the details

for each operation differ slightly.

In the case of the relationship to operands principle, the

characteristic of the arithmetic equation that may be crucial to

encode is the relative magnitude of the operands and the result.

Learners whose encoding prioritizes the relative magnitude of the

operands and result will demonstrate principle knowledge. A

learner who does not prioritize the relative magnitudes of the

operands and result is unlikely to show knowledge of relationship

to operands.

Ethics Statement
The research procedures described below were completed in

accordance with approval from the Institutional Review Board at

the University of Wisconsin – Madison. Written consent was

obtained from all participants prior to testing.

Participants
Adult participants (n = 119) were recruited through the Univer-

sity of Wisconsin-Madison introductory psychology participant

pool. Participants received extra credit for their participation.

Participants were randomly assigned to the experimental condi-

tions.

Implicit Learning of Arithmetic Regularities
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Apparatus
Experimental stimuli were presented either on paper or via

computer, depending on the task. Computer presentations used

the PsyScope 1.2.5 interactive graphic system for experimental

design and control [37].

Procedure
Assessments of principle knowledge. The experiment

used a multifaceted approach to characterizing principle knowl-

edge [38,39]. The tasks used for knowledge assessment give

learners several ways to display principle knowledge. The overall

procedure included 1) initial completion of two principle

knowledge assessments, the Equation Evaluation task and the

Equation Verification task, 2) a training task, 3) a second

completion of the Equation Evaluation and Equation Verification

tasks, 4) assessments of equation encoding and 5) arithmetic

problem solving. Both the Equation Evaluation and Equation

Verification tasks are completed twice by each participant, using

different stimulus sets.

Equation Evaluation task. In this type of assessment the

learner is given the opportunity to differentiate between examples

that violate a principle and those that do not. Participants may

indicate that equations that violate a principle are ‘‘worse’’ or

‘‘more wrong’’ than equations that do not. The evaluation task

was based on a task used in prior research [12] to assess knowledge

of principles. Participants viewed sets of solved division equations,

presented one at a time on sheets of paper. Each set consisted of

eight equations presented in a matrix. Participants were told that

each set had been solved by ‘‘a hypothetical student who is

learning arithmetic’’ (see Appendix). Participants were also told

that though all of the equations were incorrect, they might believe

that some students made better attempts at arithmetic than others.

Participants were asked to rate each attempt on a scale from 1 to 7,

with 1 indicating very bad and 7 indicating pretty good. This task

was not timed.

Sets of equations were constructed in pairs. Each pair contained

the same operands for each of the eight equations but varied in the

answers. Answers were controlled for so that the average deviation

from the correct answer was the same across both sets, and so that

one set contained one principle principle-inconsistent, while the

other contained no principle-inconsistent equations. Since the

average deviation from the correct answer was controlled for

participants could not differentiate equation sets based solely on

answer plausibility. Participants were inferred to have knowledge

of the principle if they rated principle-inconsistent sets lower than

principle-consistent sets.

Equation Verification task. Participants viewed solved

arithmetic equations (80 total) presented serially on a computer

monitor, and were asked to judge whether each equation was

correct (e.g., ‘‘5446 = 9’’) or incorrect (e.g., ‘‘1545 = 2’’). Partic-

ipants were asked to respond as quickly and accurately as they

could. Both speed and accuracy were recorded. The task can be

performed by calculating the answer to each equation and

comparing it to the presented answer. Participants likely used this

strategy on many trials. However, a subset of trials can be solved

via a ‘‘short cut’’. Any equation that violates a principle can be

verified as incorrect without calculation. For example,

225415 = 345 can be quickly dismissed by noting that 345.225

(in contrast, try 225415 = 13). Equations were selected to control

for deviation from the correct answer. We took as an indication of

participants’ principle knowledge if they used significantly less time

to reject violation equations as compared to principle-inconsistent

equations.

Though both the equation evaluation task and verification task

were designed to assess principle knowledge they use different

types of evidence. The verification task is based on the application

of procedures while the evaluation task is based on evaluation of

examples. These two types of knowledge assessments do not

necessarily yield similar results [18,38].

Training task. Participants’ experience was manipulated

using a training task similar to the methods in typical artificial

grammar learning experiments [21]. Training conditions differed

based on the proportion of principle principle-inconsistent

equations used and in the temporal proximity of their presenta-

tion. Comparisons between the pre-to-post gain scores of

participants across conditions indicate whether experience with

principle consistent and principle-inconsistent equations affects

learning.

The training task involved serial presentation of arithmetic

equations on a computer screen. Participants were instructed that

they were to view a display of equations solved by two students and

to decide which student understood arithmetic better. Each

equation was presented for 2000 ms. Equations’ solutions were

marked by color as correct (green) or incorrect (red). There were a

total of 120 equations split between the two students. Equations

were presented in blocks of 30 alternating by student.

Equation sets included a mix of correct, incorrect principle-

consistent and incorrect principle-inconsistent equations. The

proportion and placement of the principle-inconsistent equations

depended on the condition to which the participant was assigned.

The exact set of equations viewed by participants varied by

condition. There were two factors manipulated in a 262 factorial

design: number of principle-inconsistent equations (high, low) and

temporal proximity of principle-inconsistent equations (blocked,

interleaved). Thus the four conditions were as follows: high-

blocked( n = 22), high-interleaved (n = 23), low-blocked (n = 21),

and low-interleaved (n = 21).

In the high principle-inconsistent conditions there were 12

principle-inconsistent, 10 correct and 8 principle-consistent

equations (40% principle-inconsistent) for each block. In the low

there were 6 principle-inconsistent, 10 correct and 14 principle-

consistent equations (20% principle-inconsistent) for each block. In

both conditions violation equations are blocked such that they all

appear in succession in the middle of the presentation. For high

and low interleaved conditions the proportion of equations types is

the same as previously stated. However, for interleaved conditions

violation equations never appeared in succession, instead a

principle-inconsistent or correct equation always followed.

In addition to these conditions, there was also group of

participants (n = 32) who viewed no principle-inconsistent equa-

tions at all. In this condition, all of the equations in the training

stimuli were consistent with the arithmetic principle; this included

10 correct and 20 incorrect principle-consistent equations. Thus,

the full design was a 262 factorial design, with one additional

control condition.

Equation encoding task. To address the possibility that

improvements in equation encoding lead to principle knowledge, a

task was devised to characterize learners’ equation encoding.

Assessments of equation encoding have been used in other

research that investigates arithmetic knowledge [30]. This includes

a reconstruction task in which learners needed to recreate

equations from memory. Learners who fail to encode a particular

aspect of an equation, or who encode it poorly, will tend to

reproduce that aspect incorrectly. This study employs a similar

logic in assessing encoding.

Participants viewed equations presented briefly (990 ms) on a

computer screen. After each equation the participant saw a series

Implicit Learning of Arithmetic Regularities
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of four letters. The participant was then asked to answer a question

about the letters (e.g., Was the first letter a z?) and then to answer a

question about the equation. Questions about the equation were of

four types: (a) identity (e.g., Was the first number 27?), (b) relationship

(e.g., Was the first number bigger than the third?), (c) operation (e.g., Was

the operation division?) or (d) parity (e.g., Was the third number odd?). The

question types were mixed throughout the trials; thus, for any

given trial the participant did not know which type of question

would be presented.

Word problem task. Prior research suggests that arithmetic

principle knowledge may correlate with word problem skills [19].

In order to investigate the possible consequences of arithmetic

principle knowledge we used a word problem task. Participants

viewed story scenario problems such as ‘‘Alayna is collecting CDs. She

picked out 5 CDs of the same price. All the CDs were on sale for 7 dollars off.

Alayna paid 14 dollars for each CD. How much would she have spent

altogether, if the CDs had not been on sale?’’ In each case participants

selected from several options an equation that represented the

given scenario, and that could be solved for the unknown (see

Appendix). This task included 5 problems that involved division

and 5 that involved multiplication.

Results

Did participants’ principle knowledge change with
training? If so, what factors affect learning?

To compare principle knowledge before and after the training

task, a ‘‘learning’’ score was calculated for each participant. This

was done by comparing the difference in ratings of principle-

consistent and principle-inconsistent sets in the evaluation task pre

and post training. For example, if a participant rated principle-

consistent equations higher than principle-inconsistent equations

by 0.05 on the pre-training evaluation task and by 0.70 on the

post-training evaluation task, that participant’s learning score

would be 0.65. The data analysis compares learning scores across

conditions.

Recall that participants viewed input that varied along two

factors, number of principle-inconsistent equations (high vs. low),

and proximity (blocked, interleaved). we conducted a 2 (number of

principle-inconsistent equations: high or low) x 2 (proximity:

blocked or interleaved) ANOVA with learning scores as the

dependent measure. The data are presented in Figure 1. A

significant effect of proximity was found, F(1, 83) = 4.21, p = .04,

g2 = 0.046. Participants in the blocked conditions had higher

learning scores (M = .269) than participants in the interleaved

conditions (M = 20.052). Number of principle-inconsistent equa-

tions did not significantly affect improvement scores, F(1, 83)

= .919, p = 0.34. Participants in the high-number conditions did

not have significantly different learning scores from participants in

the low-number conditions (Ms = 0.032 and 0.186, respectively).

The interaction of the two factors was also not significant, F(1, 83)

= 1.04, p = 0.31. In sum, improvement on the evaluation task was dependent

on the temporal proximity of the principle-inconsistent equation, not the number

of principle-inconsistent equations.

To examine whether principle-inconsistent equations facilitated

learning more than principle-consistent examples, we performed a

planned comparison between the blocked principle-inconsistent

group and the bocked principle-consistent group. This comparison

was marginally significant, t(73) = 1.89, p = .061, d = 0.39.

We also examined whether number of principle-inconsistent

equations affected learning within the blocked conditions. The

difference in learning scores between the high-blocked and low-

blocked conditions was not significant, t(41) = 1.26, p = 0.21.

The verification task was also used as a measure of principle

knowledge. For this task there were two analyses done, reaction

time and accuracy. For each dependent measure, reaction time

and accuracy, we conducted a 2 (number of principle-inconsistent

equations: high or low) x 2 (proximity: blocked or interleaved)

ANOVA. For both analyses there were no significant effects of

amount, proximity or their interaction; reaction times, number F

(1, 83) = 1.35, p = .24, proximity F (1, 83) = 0.36, p = 0.54,

number by proximity interaction F (1, 83) = 1.98, p = 0.16;

accuracy, number F (1, 83) = 2.38, p = .12, proximity F (1, 83)

= 0.20, p = 0.65, number by proximity interaction F ( 1, 83)

= 1.72, p = 0.19.

Were there correlates to having principle knowledge?
Equation Encoding task. The most relevant comparison is

between learners’ post-training principle knowledge and their

encoding scores. Encoding scores were calculated for each of the

four types of questions in the encoding task: relationship, identity,

parity and operation. Scores were based on the number of trials

answered correctly.

Based on participants’ post-training principle knowledge scores,

participants were divided into three equal size groups, with high,

medium and low principle knowledge. For these groups, mean

scores on the post-training evaluation task were 1.14, 0.32, and

20.29, respectively. For each of the four encoding question types,

we ran a one-way ANOVA and conducted post hoc comparisons.

For both relationship and identity encoding scores, the overall

ANOVA was significant, F(1, 116) = 3.66, p = .03, g2 = 0.059 and

F(1, 116) = 5.94, p = .003, g2 = 0.093, respectively. For both

relationship and identity encoding scores, participants in the low

principle knowledge group performed significantly more poorly

than participants in the medium or high knowledge groups. For

relationship encoding scores, the low knowledge group (M = 0.71)

scored significantly lower than the medium group (M = 0.81,

p = .023, d = 0.586), though not significantly lower than the high

group (M = 0.78, p = .21). For identity encoding scores, the low

knowledge group (M = 0.63) scored significantly lower than both

the medium group (M = 0.73 p = .05, d = 0.472) and the high

group (M = 0.78, p = .003, d = 0.842). It is worth noting that if the

identity of the numbers is accurately encoded, the relative

magnitude of the operands and the result can be inferred. Thus,

it is not surprising that the question types yielded similar results.

Neither parity nor operation encoding scores yielded significant

results, F(1, 116) = 0.384, p = 0.68 and F(1, 116) = 0.087,

p = 0.91. Thus, there were no significant differences between the

principle knowledge groups in encoding the parity of the numbers

or the operations used in the equations. Note that the parity of the

numbers is not relevant to the relationship to operands principle.

Further, regardless of which operation is involved, the relative

magnitudes of the operands and result are crucial to encode; thus,

variations in encoding operation as a function of principle

knowledge were also not expected.

These results of this task suggest that learners with greater

arithmetic principle knowledge encode specifically the relative

magnitudes and the identities of the numbers in arithmetic

equations better than learners with less principle knowledge.

Word problem task. Because the training was in division

only, we examined participants’ performance on the division items

on the word problem task. We conducted a 2 (number of

principle-inconsistent) x 2 (proximity) ANOVA with division sub-

scores as the dependent measure. Neither factor was significant,

nor was the interaction, proximity F(1, 83) = 2.39, p = 0.12,

number of principle-inconsistent equations F(1,83) = 0.37,

p = 0.54, number by proximity interaction F (1, 83) = .34,

Implicit Learning of Arithmetic Regularities
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p = .55. Participants in the blocked conditions were correct on

78% of the division items while participants in the interleaved

condition were correct on 71% of the items.

Discussion

The current results demonstrate that increases in arithmetic

principle knowledge are related to exposure to temporally

proximal principle-inconsistent equations in addition to principle

consistent equations. This result is unexpected based on much of

the implicit learning literature, which generally focuses on learning

via principle-consistent examples only. This suggests that the

learning of arithmetic principles may occur via a different

mechanism. Since exposure that includes multiple types of

examples seems to work best, it is possible that it is the action of

contrasting between the types that facilitate learning of principles.

Previous work in arithmetic learning suggest that contrasting cases

is beneficial to mathematical conceptual and procedural knowl-

edge [26,40].

The results of this study also suggest that learners with relatively

low principle knowledge were also poor at encoding the relative

magnitudes of the numbers in the equations and the identity of the

numbers in the equations. Although accurate equation encoding

may be required for knowledge of the principle, it does not seem to

be the case that accurate encoding automatically leads to principle

knowledge. This is suggested by the fact that high principle

knowledge participants did not encode the problems significantly

more accurately than the medium principle knowledge group.

Consistent with prior [18] work results suggest that accurate

encoding is necessary but not sufficient, for principle knowledge.

Conclusions
This research investigated how learners acquire knowledge of

arithmetic principles though structured input. We addressed both

the possible mechanism of change in encoding and the types of

experience that may facilitate that change. The results of this study

suggest that equation encoding is indeed related to arithmetic

principle knowledge. We initially hypothesized a direct relation-

ship between encoding of relative magnitudes and knowledge of

relationship to operands. The results suggest that this relationship

may not be as straightforward as originally hypothesized; there

may be other mediating factors.

Finally, the results suggest that structuring the types of examples

so as to give the learner an opportunity for contrast may facilitate

learning of arithmetic principles; specifically, a mix of correct,

principle-consistent and principle-inconsistent equations seems

beneficial. This result may have some application to formal

educational settings. While it is certainly the case than explicit

instruction can play a role in formal education, learners have

much more experience and opportunity for implicit leaning than

explicit formal instruction. Prior research in contrasting cases

[26,40] suggests that this strategy may be useful in increasing

children’s knowledge of mathematics.
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