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Abstract

We combined routinely reported tuberculosis (TB) patient characteristics with genotyping data and measures of geospatial
concentration to predict which small clusters (i.e., consisting of only 3 TB patients) in the United States were most likely to
become outbreaks of at least 6 TB cases. Of 146 clusters analyzed, 16 (11.0%) grew into outbreaks. Clusters most likely to
become outbreaks were those in which at least 1 of the first 3 patients reported homelessness or excess alcohol or illicit
drug use or was incarcerated at the time of TB diagnosis and in which the cluster grew rapidly (i.e., the third case was
diagnosed within 5.3 months of the first case). Of 17 clusters with these characteristics and therefore considered high risk, 9
(53%) became outbreaks. This retrospective cohort analysis of clusters in the United States suggests that routinely reported
data may identify small clusters that are likely to become outbreaks and which are therefore candidates for intensified
contact investigations.
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Introduction

Centers for Disease Control and Prevention (CDC) guidelines

recommend that close contacts of persons with infectious

tuberculosis (TB) be investigated to identify persons who might

have active TB disease, as well as those who might have TB

infection that has not yet progressed to active disease [1].

Treatment of persons with latent TB infection can prevent the

development of active TB; unsuccessful or incomplete contact

investigations may result in additional cases of TB and further TB

transmission [2],[3],[4]. A review of 27 TB outbreaks investigated

by CDC found that the most common intervention to control an

outbreak was an intensified contact investigation to identify

previously missed contacts of patients and prioritize them for

evaluation and treatment, based on risk for progression to disease

[5]. State and local health departments’ investigation reports also

recommend contact investigations as a response to TB outbreaks

[6],[7],[8].

An intensified contact investigation conducted while the

number of patients is small might be more effective and cost less

than after a large outbreak has developed. Although TB outbreaks

are not common (all 27 outbreaks investigated by CDC occurred

over a 7-year period), they can be labor-intensive and expensive. A

recent outbreak in a homeless shelter reportedly cost an additional

$200,000 above routine health care services [9]. If public health

officials had substantially more resources than are currently

available, they could conduct intensive contact investigations of all

geographically concentrated TB cases. At a time of reduced

resources, however, we propose an approach that uses routinely

collected data to formulate an algorithm that would predict which

clusters of cases are most likely to become outbreaks. To be most

cost effective, early interventions should distinguish between

groups of cases at high risk for becoming outbreaks from groups

at low risk.

Routine genotyping of Mycobacterium tuberculosis from patients in

the United States identifies genotype clusters and provides insights

into the location, timing, and circumstances of TB transmission

[10],[11]. Previous studies have identified factors that predict

growth of TB genotype clusters. New clusters detected in New

York City grew more rapidly if both the first 2 patients had sputum

smears positive for acid-fast bacilli and cavitary lesions on chest

radiographs [12]. In the Netherlands, rapid initial growth (defined

as ,3 months between the diagnosis of the first and the second

cases) was associated with the highest odds for cluster growth;

other significant predictors were age ,35 years, urban residence,

and both patients having been born in sub-Saharan Africa [13].

We analyzed TB genotyping, geospatial, and patient data

routinely reported to CDC to determine factors that best predicted

which small (i.e., only 3 patients) incident clusters were most likely

to become outbreaks.
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Methods

We included TB cases that had valid genotyping data and were

reported by the 50 states and Washington, D.C., to the CDC

National Tuberculosis Surveillance System during 2004–2010

[14], the latest genotyping data available at the time of this

analysis. Genotyping data were obtained from the CDC National

Tuberculosis Genotyping Service by methods described elsewhere

[10]. M. tuberculosis culture isolates were analyzed to determine

spoligotype and 12-locus mycobacterial interspersed repetitive

units-variable number tandem repeats (MIRU-VNTR) pattern.

Two patients were considered to have matching genotypes if their

isolates had indistinguishable spoligotype and MIRU-VNTR

patterns. A genotype cluster was defined as 2 or more TB patients

with matching genotypes in the same geographic area.

The statistical program SaTScan, version 9.1.0, was used to

identify spatially concentrated clusters of TB cases with a specific

genotype during 2006–2010; we used residential zip code as the

geographic unit of measurement [15]. We applied the discrete

Poisson probability model, using all culture-positive TB cases as

the background population. SaTScan uses the spatial scan statistic,

based on the log-likelihood ratio (LLR), to determine spatial

concentration of cases in a cluster. SaTScan identified significant

clusters with the smallest p-value first. Additional cases not yet

assigned to a cluster were evaluated to identify additional clusters.

Parameters were set so that individual cases were allowed

membership into only 1 cluster. Clusters with both significant

(p,0.05) and nonsignificant concentrations were included in the

cohort. We set a cluster’s radius to be no more than 50 kilometers,

as previous analyses demonstrated that setting a maximum of

100 kilometers produces the same clusters, while a 20-kilometer

radius may split clusters [11]. To focus on incident rather than

endemic clusters (i.e., those present over a long period of time)

[16], we restricted our analysis to new clusters, defined as those in

which the initial case occurred during 2006–2008 and was

preceded by a 24-month period of no reported cases. Routine

genotyping was not initiated in all areas at the same time, and in

2006, national genotyping coverage, defined as the proportion of

culture-positive cases with a reported genotype in the National

Tuberculosis Genotyping Service, was 70%. When an area first

begins genotyping, all clusters in the area will appear to be new.

To avoid inclusion of endemic clusters as newly emerging strains

from areas with incomplete genotyping coverage, we excluded

clusters if the county with the most cases had ,75% annual

genotype coverage. If a cluster had the majority of its cases in a

county that did not meet this criterion, the entire cluster, not just

the cases, was excluded.

To ensure that clusters had an equal chance (i.e., an equal time

period) to become outbreaks, we established a standardized

observation period of 24 months after the third case. The 24-

month follow-up period was derived from an analysis of the time

between the third and sixth cases (or the last case, if the cluster did

not reach 6 cases by 2010). The longest time interval observed was

23.9 months (data not shown). This approach identified 148 new

clusters of at least 3 cases that could be observed for 24 months.

Although no standard definition of a TB outbreak exists, for the

purposes of this analysis, we defined an outbreak as a cluster that

grew from 3 to at least 6 cases during the observation period, in

which at least two of the cases could be linked epidemiologically

(i.e., had spent time in the same place when at least one of them

was contagious), and in which the cluster was confirmed to be an

outbreak by local public health officials (usually state as well as

county TB control officers). Time intervals between dates of

diagnoses were calculated based on the earliest of 3 possible dates

(i.e., the date a patient specimen was collected for drug

susceptibility testing, the date TB treatment was initiated, or the

date the patient was counted as a verified TB case). We used the

rate of initial cluster growth as a predictive variable; we considered

the times between diagnosis of the first and second case, between

the first and the third case, and between the second and the third

case. We used SaTScan to determine which clusters were

significantly concentrated (p,0.05) at the time of the third case.

(SaTScan could not define significance for 3 clusters.)

Other predictive variables were based on patient characteristics

reported to the National Tuberculosis Surveillance System,

described elsewhere [14],[17]. The unit of analysis was the cluster.

A cluster was considered ‘‘exposed’’ by a characteristic if any 1 of

the first 3 patients had that characteristic. For brevity in this

report, we refer to patients who reported homelessness or excess

alcohol use or illicit drug use in the 12 months before diagnosis, or

who reported being incarcerated at the time of TB diagnosis as

being ‘‘homeless, incarcerated, or drug or alcohol users.’’ Clusters

with at least 1 of the first 3 patients who reported any of these

conditions are described as ‘‘marginalized’’ in this context.

Socioeconomic measures for crowding, education, and unemploy-

ment were derived from the 2000 U.S. Census; median values

were calculated for all zip codes. A cluster was considered

‘‘exposed’’ if the zip code with the most cases had a value above

the median. For clusters from multiple zip codes with equal

numbers of cases, one zip code was randomly selected. The

influence of genotype lineages was assessed based on spoligotyping

of TB in the United States; lineages include M. bovis as well as the

subgroups of Indo-Oceanic, Euro-American, East Asian, and East-

African Indian [18],[19]. (M. Africanum was not identified in the

cohort.) Univariate analysis was performed to describe a cluster’s

risk for becoming an outbreak. We used SAS 9.2 (SAS, Cary, NC,

USA) to calculate relative risks and 95% confidence intervals (CI).

SAS JMP 9.0.1 was used for the decision-tree analysis, based on

recursive partitioning, to determine which combination of

variables best predicted clusters that became outbreaks. JMP

compares possible binary partitions based on the LogWorth

statistic, which is calculated as -log10 (adjusted p-value), where the

adjusted p-value takes into account the number of different ways

partitions can occur for each variable [20]. JMP determines the

partition that best predicts the outcome of interest for both

continuous and categorical variables. When the decision-tree

analysis identified a partition that resulted in a node with fewer

than 20 clusters, we stopped the partitioning.

Approval by an institutional review board was not required

because data were collected and analyzed for this project as part of

routine TB surveillance, and the project was therefore not

considered research involving human subjects.

Results

Determining which clusters grew to become outbreaks
148 clusters met our inclusion criteria (identified by SaTScan

with an initial case from 2006 through 2008, in which the county

with most cases had .75% annual genotype coverage and a 24-

month observation period followed the 3rd case). Of these, 24

(16.2%) grew to at least 6 cases within 24 months. Local public

health officials reported that 16 (66.7%) of the 24 clusters were

known to be outbreaks, 6 were not, and 2 could not be classified

with certainty. Both clusters with uncertain outcomes were

considered possible outbreaks by local officials, but neither was

investigated intensively at the time the initial cases were reported,

and no epidemiologic links could be verified at the time of our

inquiry; these two clusters were excluded from our univariate and

Predicting TB Outbreaks in the United States
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decision-tree analysis. Our final analytic cohort included 146 new

clusters that were from 26 states distributed across the United

States, began during 2006–2008, contained at least 3 TB cases,

could be observed for 24 months after the third case, and could be

classified as either an outbreak or not an outbreak by the end of

our 24-month observation period (Figure 1, Figure 2).

The two largest outbreaks predominantly involved homeless

persons and had grown to 19 and 20 cases, respectively, by the end

of our observation period. All patients from one outbreak were

black non-Hispanic and born in the United States; for the other,

11 patients were Hispanic and most were born in Mexico. In

another 3 outbreaks, at least half the patients were homeless. Two

outbreaks were centered in correctional institutions. Of the

remaining outbreaks, the predominant characteristics were excess

alcohol use (3 outbreaks), substance abuse (3), and a combination

of excess alcohol and substance use (2). The final outbreak

involved 7 persons born in the U.S.- affiliated Pacific Islands or

with parents born there; none reported homelessness, excess

alcohol use or illicit drug use, or were incarcerated at the time of

TB diagnosis. Of the 16 outbreaks, 14 were known to be outbreaks

by local officials before our inquiry, but 2 clusters were designated

as outbreaks only after investigations conducted as a consequence

of our inquiry. All 16 confirmed outbreaks had a statistically

significant SaTScan result at the end of the 24-month observation

period, meaning cases in these clusters were measurably more

geospatially concentrated than were cases of the same genotype in

the rest of the country.

Relative risks of outbreak predictors
Although homelessness, excess alcohol use, illicit drug use, and

incarceration as individual predictors were each significantly

associated with clusters that became outbreaks, clusters in which at

least 1 of the first 3 patients reported any one of these social risk

factors (i.e., a ‘‘marginalized’’ cluster) had the highest relative risk

for becoming an outbreak (RR = 17.7, 95% CI 2.4, 130.4;

Table 1). We also looked at different combinations of these

characteristics, e.g., homelessness, excess alcohol use, or illicit drug

use without consideration of incarceration status. By far the most

discriminatory factor was if any of the 4 conditions was reported,

followed by whether a patient reported homelessness, excess

alcohol use, or illicit drug use, and then by whether a patient

reported either homelessness or excess alcohol use, or both

(Table 1).

Clusters in which at least 1 of the first 3 patients was born

outside the United States were significantly less likely to become

outbreaks (RR = 0.1, 95% CI 0.05, 0.4). The only other significant

demographic risk factor was the presence of an American Indian

or Alaska Native among the first 3 patients. Each of our 3

measurements of initial cluster growth rate was a significant

predictor, but the optimal measure was if the third case occurred

within 5.3 months of the first patient (RR = 3.2, 95% CI 1.3, 8.0).

Finally, a spatially concentrated cluster (significant SaTScan result

at third patient) was also significantly associated with the cluster

becoming an outbreak (RR = 3.5, 95% CI 1.0, 11.6). Neither

socioeconomic measures based on Census data of residential zip

codes nor genotype lineage was associated with clusters that

became outbreaks (Table 1).

Decision-tree analysis to predict outbreaks
The most discriminatory variable identified by JMP was also the

variable with the highest relative risk—specifically, if the cluster

was marginalized (Figure 3). Sixty-seven (45.9%) of the 146

clusters with known outcomes were marginalized; 15 (22.4%) of

these became outbreaks. Of the other 79 clusters (i.e., clusters with

no social risk factors among the first 3 patients), only 1 (1.3%)

became an outbreak.

Of the 67 marginalized clusters, the most discriminatory

variable for the next partition was rapid initial growth. Available

measures of initial growth included time between diagnoses of the

first and second, first and third, and second and third cases. JMP

determined the optimal partition was 5.3 months between the first

and third case. Of 17 clusters characterized as marginalized and

Figure 1. Distribution of 148 cohort clusters, by number of cases and outcome. Cohort composed of incident tuberculosis genotype
clusters of 3 or more cases identified by SaTScan from 2006 to 2010, meeting inclusion criteria. Clusters with 10 or more cases are grouped into one
bar. Outcome of the cluster could be confirmed as an outbreak, confirmed as not an outbreak, or unable to be confirmed (uncertain).
doi:10.1371/journal.pone.0048754.g001
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with rapid initial growth, 9 (52.9%) became outbreaks. Of the 50

clusters that were marginalized but had slow initial growth (i.e., 5.3

months or more to third patient), 6 (12.0%) became outbreaks.

Our outbreak prediction algorithm, which classified clusters based

on social risk factors among the first 3 patients and rapid initial

growth as being at high risk of becoming outbreaks, had a

sensitivity of 56.3% and a specificity of 93.8%.

Sensitivity analysis of decision-tree results
We analyzed alternative criteria for social risk factor character-

istics among the first 3 patients. In rank order, the most

discriminatory combination was if any of the first 3 patients had

any social risk factor characteristic (LogWorth = 4.9), followed

closely by whether the first or second patient had any social risk

factor characteristic (LogWorth = 4.5), and then by whether the

first patient had any social risk factor characteristic (Log-

Worth = 4.4). Less discriminatory combinations were those in

which 2 of the 3 patients (LogWorth = 3.2) or both the first and

second patients (LogWorth = 1.2) or all 3 patients (Log-

Worth = 0.5) had any social risk factor characteristic. Regardless

of whether the 2 uncertain clusters were reclassified as either

outbreaks or not outbreaks, JMP determined the same predictive

variables (data not shown).

Discussion

Our retrospective cohort analysis of TB genotype clusters

showed that TB patient data and genotyping results routinely

reported to CDC could be used to identify certain small clusters

that were likely to become outbreaks. The two most important

factors that predicted outbreaks were the presence of at least 1

patient who reported homelessness, excess alcohol use, illicit drug

use, or incarceration, and rapid initial cluster growth (i.e., ,5.3

months between diagnosis of the first and third case). These data

suggest that if recent transmission of TB occurs among patients

with the above-described social risk factors, the risk of a TB

outbreak increases.

Univariate analysis produced a table of risk ratios for each

predictor variable considered. Traditionally, multivariate logistic

regression analysis would be used to demonstrate the adjusted

contribution of significant variables toward an outcome. Instead,

we used JMP for decision-tree analysis, which searched for the

most important combinations of predictor variables through

dichotomous splits of the data at each decision node [21]. Rather

than a list of significant predictor variables, JMP determined

which combinations of cluster characteristics best described those

at highest risk of becoming outbreaks and reported the frequency

of outbreaks for the combination of variables. We can interpret

this as the percentage of high-risk outbreaks that might have been

prevented. This information can be readily applied by public

health officials to determine which clusters warrant intensive

contact investigations, while they are still small [22].

Kik et al. also found that initial cluster growth predicted which

small clusters grew to become large clusters [9]. They investigated

time between the first and the second case and found the most

predictive interval was ,3 months. We found time to the third

case to be the most predictive measure, although we also found

that ,4.4 months from the first to the second case was associated

with clusters that became outbreaks (Table 1). We applied the

same methodology described here to clusters of only 2 cases. The

same predictors, notably marginalized clusters and rapid initial

growth, were identified, but only 19.7% (20 of 66 clusters) with

these predictive risk factors became outbreaks (data not shown).

While the number of outbreaks identified at the second case would

be greater, considerably more clusters would have to be

investigated, and the cost per outbreak prevented would be higher.

Figure 2. Higher resolution of Figure 1. Subcohort of 24 clusters of 6 or more cases, without grouping clusters with 10 or more cases into one
bar.
doi:10.1371/journal.pone.0048754.g002
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Table 1. Patient and cluster characteristics of tuberculosis (TB) genotype clusters and associated risk of the cluster becoming an
outbreak within 24 months after diagnosis of the 3rd patient.

Cluster characteristic* (n = 146) Cluster outcomes, n (%)

Relative risk in
predicting confirmed
outbreaks

Patient risk factors
Confirmed outbreak
(n = 16)

Not an outbreak
(n = 130) RR (95% CI)

Homeless or excess alcohol use or illicit drug use or incarceration at diagnosis 15 (93.8) 52 (40.0) 17.7 (2.4, 130.4)

Homeless or excess alcohol use or illicit drug use 14 (87.5) 50 (38.5) 9.0 (2.1, 38.0)

Illicit drug use 12 (75) 35 (26.9) 6.3 (2.2, 18.6)

Excess alcohol use 11 (68.8) 33 (25.4) 5.1 (1.9, 13.8)

Homeless or excess alcohol use 11 (68.8) 39 (30.0) 4.2 (1.6, 11.5)

Homeless and excess alcohol use 6 (37.5) 14 (10.8) 3.8 (1.5, 9.3)

Incarceration 5 (31.3) 12 (9.2) 3.4 (1.4, 8.7)

Homeless 6 (37.5) 20 (15.4) 2.8 (1.1, 6.9)

HIV infection 4 (25.0) 21 (16.2) 1.6 (0.6, 4.6)

Unemployed 12 (75.0) 104 (80.0) 0.8 (0.3, 2.2)

Health care worker 0 (0) 10 (7.7) n/a

Disease factors

Sputum AFB smear + and cavitary lesions1 13 (81.3) 73 (56.2) 3.0 (0.9, 10.2)

Cavitary lesions 13 (81.3) 75 (57.7) 2.9 (0.9, 9.6)

Sputum AFB smear positive 15 (93.8) 117 (90) 1.6 (0.2, 11.2)

Multidrug-resistant TB2 1 (6.3) 5 (3.9) 1.6 (0.2, 9.9)

History of previous TB 1 (6.3) 12 (9.2) 0.7 (0.1, 4.8)

INH drug resistance 1 (6.3) 18 (13.9) 0.5 (0.06, 3.2)

Patient demographics

American Indian or Alaska Native race 2 (12.5) 2 (1.5) 5.1 (1.7, 15.2)

Black, non-Hispanic 9 (56.3) 54 (41.5) 1.7 (0.7, 4.3)

Age,15 years 3 (18.8) 16 (12.3) 1.5 (0.5, 4.9)

White, non-Hispanic 3 (18.8) 25 (19.2) 1.0 (0.3, 3.2)

Hispanic 6 (37.5) 67 (51.5) 0.6 (0.2, 1.6)

Asian, non-Hispanic 1 (6.3) 38 (29.2) 0.2 (0.03, 1.3)

Foreign-Born 5 (31.3) 107 (82.3) 0.1 (0.05, 0.4)

Less than 2 years in US 1 (33.3)) 38 (44.7) 0.6 (0.1, 6.7)

SES3 – crowded household 7 (43.8) 66 (50.8) 0.8 (0.3, 2.0)

SES3 – less than high school education 8 (50.0) 58 (44.6) 1.2 (0.5, 3.1)

SES3 – unemployment 6 (37.5) 62 (47.9) 0.7 (0.3, 1.8)

SES3 – some college education 9 (56.3) 71 (54.6) 1.1 (0.4, 2.7)

Genotype lineage M.bovis 0 (0) 5 (3.9) n/a

Genotype lineage subgroup Indo-Oceanic 0 (0) 15 (11.5) n/a

Genotype lineage subgroup Euro-American 12 (75.0) 86 (66.2) 0.7 (0.2, 2.0)

Genotype lineage subgroup East Asian 4 (25.0) 15 (11.5) 0.4 (0.2, 1.2)

Genotype lineage subgroup East-African Indian 0 (0) 9 (6.9) n/a

Male 16 (100.0) 116 (89.2) n/a

Native Hawaiian or other Pacific Islander race 0 (0) 1 (0.7) n/a

Cluster characteristics

Initial cluster growth rate (time between patients)

1st and 3rd patient ,5.3 months 9 (56.3) 33 (25.4) 3.2 (1.3,8.0)

1st and 2nd patient ,4.4 months 12 (75.0) 59 (45.4) 3.2 (1.1, 9.4)

2nd and 3rd patient ,0.9 months 7 (43.8) 26 (20.0) 2.7 (1.1, 6.6)
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Driver et al. [8] found that acid-fast bacilli smear-positive

disease in the presence of cavitary lesions on chest radiographs was

associated with cluster growth. In our analysis, this combination of

factors had an elevated relative risk (3.0), but was not statistically

significant (Table 1). Smear-positivity, cavitation on chest radio-

graph, and HIV status, which have been commonly associated

with TB transmission and TB disease progression

[23],[24],[25],[26], surprisingly were not found to be predictive

in our decision-tree analysis. We hypothesize this finding may be

due to greater and earlier attention given to these cases, which

may have prevented further transmission. Clusters in which a

foreign-born individual was among the first 3 cases were less likely

to become an outbreak, an interesting finding considering the

larger burden of TB among foreign-born persons within the

United States [27]. Still, this supports other studies documenting

less TB transmission among foreign-born than US-born persons

[28],[29].

Limitations
Several limitations to our analysis should be considered. We

conducted a retrospective cohort analysis, and predictions based

on historical data may not translate into accurate prospective

predictions. Furthermore, our cohort met specific inclusion criteria

that excluded many clusters. Our conclusions assumed that

genotyping results and patient characteristics are known when

cases are diagnosed. In practice, there are delays from when a

patient is suspected of having TB to when data are available for

analysis [30]. Improved timeliness of reporting this information

will improve the impact of outbreak prediction algorithms. Even if

an algorithm can accurately predict which clusters will become

outbreaks, the value of such a prediction is predicated on the

assumption that an early intervention can prevent future TB cases.

The effectiveness and the cost effectiveness of early interventions

remain to be determined.

National TB surveillance data in the United States capture

incarceration only at the time of diagnosis but not past

incarceration. Documented analysis of social risk factor data

quality in California demonstrates .90% concordance with

medical records [31], but self-reporting of social risk factors may

be under disclosed due to social stigma [5]. Furthermore, there is

no national surveillance for TB outbreaks in the United States. In

fact, there is no standard definition for what constitutes a TB

Figure 3. Algorithm based on decision-tree analysis for predicting TB outbreaks. Algorithm based on data available at time the TB cluster
contained 3 cases. Decision-tree analysis categorizes clusters in high-, medium-, or low-risk groups. Clusters in the high-risk group are considered of
greatest priority for early interventions, such as intensive contact investigations. Although clusters in medium- and low-risk groups may not be
considered highest priority when they have 3 cases, they can be re-evaluated should additional cases occur.
doi:10.1371/journal.pone.0048754.g003

Table 1. Cont.

Cluster characteristic* (n = 146) Cluster outcomes, n (%)

Relative risk in
predicting confirmed
outbreaks

Patient risk factors
Confirmed outbreak
(n = 16)

Not an outbreak
(n = 130) RR (95% CI)

Significant log likelihood ratio at 3rd case 13 (81.3) 67 (52.3) 3.5 (1.0, 11.6)

*One or more of 1st three patients had characteristic.
1Patient had acid fast bacilli smear-positive sputum specimens and abnormal chest radiograph results with evidence of cavities.
2Patient had isoniazid (INH) and rifampicin (RIF) drug resistance reported in initial susceptibility drug test.
3Median values for socioeconomic measures were derived from the 2000 U.S. Census for all zip codes. A cluster was considered ‘‘exposed’’ if the zip code with the most
cases had a value above the median.
doi:10.1371/journal.pone.0048754.t001
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outbreak. Our definition of an outbreak as necessarily consisting of

6 patients was arbitrary, and local officials may consider clusters of

5 patients (or even smaller) to be outbreaks. While we can

accurately report the classification of the clusters SaTScan

detected, we have no way of knowing how many outbreaks

SaTScan did not detect.

We were unable to assess the contact investigations that might

have occurred around the initial patients of a cluster or whether an

intensified contact investigation might have been conducted in the

early stages of a cluster, when clustered cases might have been

identified by local public health officials. Early, intensive contact

investigations may have occurred for some of our high-risk

clusters, and in some instances outbreaks might have been

prevented. Such interventions might explain, for example, some

of the 8 clusters in the ‘‘High-Risk Clusters’’ box in Figure 3 that

did not become outbreaks. If so, the proportion of high-risk

clusters that would, without any intervention, become outbreaks

would be higher, increasing the sensitivity of our outbreak

prediction algorithm.

The sensitivity of our prediction model (56.3%; 9 of 16

outbreaks predicted) could underestimate the true value of our

algorithm. Although our algorithm incorrectly classified 7 of 16

outbreaks as not being at high risk for becoming an outbreak when

the cluster had 3 patients, public health officials would have the

chance to reconsider that risk when the cluster grew to 4 patients.

The general approach we have described here could be used in the

future to determine risk factors for clusters of 2, 4, or 5 patients

becoming outbreaks. Finally, our analysis was limited by the

genotyping methodology on which it was based (i.e., spoligotype

and 12-locus MIRU-VNTR). Since 2009, CDC has analyzed all

isolates by spoligotype and an expanded panel of 24 MIRU-

VNTR loci [10]. Because 24-locus MIRU-VNTR, as well as

whole genome sequencing, is more discriminatory than 12-locus

MIRU-VNTR [32],[33], we expect that future outbreak predic-

tion algorithms will have better accuracy. By having sufficient time

to calculate background rates, we also expect that additional data

will allow us to address outbreaks that occur within ‘‘endemic’’

strains.

TB outbreaks are costly, and the bigger they grow, the more

resource-intensive they become. Our outbreak prediction algo-

rithm could be used to identify small clusters that are candidates

for intensive contact investigations to prevent outbreaks. Because

our algorithm is based on data routinely reported to CDC, alerts

can be generated automatically to ensure high-risk clusters are

brought to the attention of public health officials as candidates for

intensive contact investigations. As more data are collected, we

may refine this algorithm and produce risk factors at different sizes

of small clusters, including clusters of 2 cases. Still, this is the first

quantitative measure of early risk factors associated with TB

outbreaks in the United States. Using this information to prioritize

clusters for resource expenditure may improve outbreak interven-

tions.
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