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Abstract

Vascular endothelial growth factor A (VEGF-A) binds to the VEGFR2 receptor tyrosine kinase, regulating endothelial function,
vascular physiology and angiogenesis. However, the mechanism underlying VEGFR2 turnover and degradation in this
response is unclear. Here, we tested a role for heat-shock proteins in regulating the presentation of VEGFR2 to a degradative
pathway. Pharmacological inhibition of HSP90 stimulated VEGFR2 degradation in primary endothelial cells and blocked
VEGF-A-stimulated intracellular signaling via VEGFR2. HSP90 inhibition stimulated the formation of a VEGFR2-HSP70
complex. Clathrin-mediated VEGFR2 endocytosis is required for this HSP-linked degradative pathway for targeting VEGFR2
to the endosome-lysosome system. HSP90 perturbation selectively inhibited VEGF-A-stimulated human endothelial cell
migration in vitro. A mouse femoral artery model showed that HSP90 inhibition also blocked blood vessel repair in vivo
consistent with decreased endothelial regeneration. Depletion of either HSP70 or HSP90 caused defects in blood vessel
formation in a transgenic zebrafish model. We conclude that perturbation of the HSP70-HSP90 heat-shock protein axis
stimulates degradation of endothelial VEGFR2 and modulates VEGF-A-stimulated intracellular signaling, endothelial cell
migration, blood vessel development and repair.
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Introduction

Vascular endothelial growth factors (VEGFs) are a family of

cytokines that bind cell surface receptors and regulate key steps in

both physiological and pathological angiogenesis [1,2]. Under

conditions of hypoxia, e.g. during tumor growth, synthesis of the

VEGF-A isoform is increased, stimulating tumor neovasculariza-

tion and enrichment of its oxygen and nutrient supply [1]. The

VEGF-A gene gives rise to multiple splice variants with distinct

functional properties: VEGF-A165 (designated as VEGF-A herein)

is the most abundant and physiologically active variant, playing

a central role in pathophysiological states such as cancer and

macular degeneration [3]. VEGF-A binds two structurally-related

receptor tyrosine kinases on vascular endothelial cells: VEGF

receptor 1 (VEGFR1, Flt-1) and 2 (VEGFR2, KDR, Flk-1).

Despite similarities, VEGFR2 largely mediates VEGF-A-induced

pro-angiogenic signaling whereas VEGFR1 acts as a ‘decoy’

receptor that sequesters VEGF-A. Ligand binding to VEGFR2

promotes receptor dimerization and tyrosine kinase activation.

This stimulates downstream signaling including activation of the c-

Raf/MEK/ERK and PI3K/Akt pathways leading to increased

cell proliferation, migration and survival [2].

A family of benzoquinone ansamycins that have weak

antibiotic activity include the potential anti-cancer drug

geldanamycin [4]. This compound and related analogs are

inhibitors of the heat-shock protein of 90 kDa (HSP90) and

activate a degradative pathway involving the cytosolic 26S

proteasome [5–7]. ‘Client’ proteins recognized by this pathway

include ErbB2, eNOS, Akt and mutant p53 [4–6]. Geldana-

mycin stimulates proteolysis of the ErbB2 receptor tyrosine

kinase via endosome-lysosome trafficking, thus modulating

epithelial cell proliferation, tumor progression and metastasis

[8,9]. Geldanamycin has been implicated previously as an

inhibitor of tumor angiogenesis [10,11]. Endothelial VEGFR2 is

a receptor tyrosine kinase which is a key regulator of

vasculogenesis and angiogenesis [12]. Ligand-stimulated

VEGFR2 undergoes proteolysis involving lysosome- and protea-

some-linked activities [13,14] raising the possibility that heat-

shock proteins (HSPs) regulate this process. In this study, we

investigated the role played by HSPs in regulating the stability

and turnover of VEGFR2 and subsequent VEGF-A-regulated

responses: intracellular signaling, endothelial cell migration and

blood vessel repair.
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Methods

Ethics Statement
Human umbilical cords used for isolation and culture of

primary endothelial cells were provided by written informed

consent and under ethical approval (reference CA03/020) by the

Leeds NHS Hospitals Local Ethics Committee (UK). Mouse and

zebrafish studies were carried carried out in accordance with local

and national regulations under an animal project licence approved

by the UK Home Office.

Materials and Cell Culture
Primary human umbilical vein endothelial cells (HUVECs) were

isolated and prepared as previously described [14,15]. The

geldanamycin analog 17-(allylamino)-17-demethoxygeldanamycin

(17-DMAG) was from LC Labs (Woburn, USA) and radicicol was

from Alomone Labs (Jerusalem, Israel). Recombinant cytokines

used included VEGF-A (Genentech Inc., San Francisco, USA) and

basic FGF (R&D Systems, Minneapolis, USA). The lentiviral

expression plasmid pSINCSHWd/NotI was a gift from Y. Ikeda

(Mayo Clinic, Minnesota, USA). Endothelial cell growth medium

was from PromoCell (Heidelberg, Germany). All other materials

and reagents were from Sigma-Aldrich (Poole, UK) unless

otherwise stated.

Immunoblotting and Quantification
HUVEC lysate preparation and immunoblot analysis were

performed as described previously [13,16]. The following anti-

bodies were used in the present study: anti-VEGFR1, anti-

VEGFR2 (R&D Systems), anti-Akt, anti-phospho-Akt (Ser473),

anti-ERK1/2, anti-phospho-ERK1/2 (Thr202/Tyr204), anti-phos-

pho-VEGFR2 (Tyr1175), anti-phospho-PLCc1 (Tyr783), anti-CHIP

(Cell Signaling Technology), anti-a-tubulin (Sigma-Aldrich), anti-

HSP90a, anti-HSP90b, anti-HSP70 (Enzo Life Sciences, Exeter,

UK), anti-HSC70, anti-transferrin receptor (TfR), anti-PLCc1
(Santa Cruz Biotechnology, USA), anti-FLAG M2 (Sigma-

Aldrich), anti-GFP (Acris Antibodies, Germany) and X22 mono-

clonal anti-clathrin heavy chain (from A. Jackson, Cambridge,

UK). Immunoreactive bands were visualised using an enhanced

chemiluminescence detection kit (Geneflow, Nottingham, UK).

Anti-a-tubulin or anti-transferrin receptor antibodies were used as

an internal control for normalizing the loaded samples.

Immunoprecipitation and Cell Surface Biotinylation
Immunoprecipitations were performed for 2 h at 4uC using

protein G-Sepharose (Millipore, Durham, UK), 0.5 mg of antibody
and 500 mg of total protein in lysis buffer (0.5% (w/v) digitonin,

100 mM KCl, 20 mM Hepes pH 7.4, 80 mM sucrose, 1 mM

MgCl2, 10 mM potassium acetate, 1 mM sodium vanadate,

50 mM sodium fluoride, and protease inhibitors). Samples

(25 mg of protein or total bead volume) were analyzed by SDS-

PAGE and immunoblotting as previously described. For analysis

of cell surface protein levels, cells were treated as appropriate and

labeled with EZ-Link Sulfo NHS-LC biotin (ThermoFisher

Scientific) in PBS containing divalent cations on ice for 45 min

with gentle agitation. Cells were washed and lysed as above

followed by immunoprecipitation of VEGFR2 and transferrin

receptor (control) as described above. Beads were washed

thoroughly in lysis buffer and proteins eluted in SDS-PAGE

sample buffer prior to electrophoresis alongside whole cell lysate

samples and immunoblotting using streptavidin-HRP.

RNA Interference (RNAi )
HUVECs were transfected with either no siRNA (small

interfering RNA) (control), 10 nM control siRNA (mock; 59-

UAGCGACUAAACACAUCAA-39), or 10 nM annealed HSP70

‘a’ siRNA (59-UGACGAAAGACAACAAUCU-39), HSP70 ‘b’

siRNA (59-CCAAGGUGCAGGUGAGCUA-39), CHC17 siRNA

(59-GGGUGCCAGAUUAUCAAUU-39) or CHIP siRNA (59-

CGCAUUCAUCUCUGAGAAU-39) using RNAiMAX transfec-

tion reagent (Invitrogen, Amsterdam, Netherlands) according to

the manufacturer’s instructions. Cells were recovered for 48–72 h

prior to lysis and immunoblot analysis as described previously

[13,17].

Lentiviral Transduction
For protein overexpression human HSP70-FLAG was generat-

ed by PCR and subcloned into the lentiviral expression plasmid

pSINCSHWd/NotI. Lentiviral particles carrying HSP70-FLAG

were generated using previously described protocols [18].

Recombinant lentiviruses carrying the HSP70-FLAG transgene

were used to transduce HUVECs. Cells were processed for

microscopy 48 h after viral transduction.

Cell Migration Assay
For cell migration assay, HUVECs were trypsinized and seeded

at 56104 cells per ml into a 24-well plate with 8 mm pore size

Transwell inserts (Becton-Dickinson, Oxford, UK) with the

specified concentration of geldanamycin in the upper chamber

and 25 ng/ml of recombinant VEGF-A or basic FGF in the lower

chamber [13]. After 16 h, filters were fixed, stained with

hematoxylin-eosin and excised for microscopy. Random fields

from each image were counted for calculation of % number of

cells migrated onto filter underside versus non-treated control.

Immunofluorescence Microscopy
Cells were processed as described previously [14]. Endogenous

VEGFR2 and overexpressed HSP70-FLAG were detected with

antibodies against VEGFR2 and the FLAG-epitope respectively

and visualized with AlexaFluor488- and AlexaFluor594-conjugat-

ed antibodies respectively. DAPI (49,69-diamidino-2-pheylindole)

was used to visualise nuclear DNA. Images were captured using

a confocal microscope. Quantification of co-localized pixels were

performed using NIH Image J.

Mouse Femoral Artery Injury Model
C57Bl/6 mice were injected daily with 0.1 ml of control

(DMSO vehicle) or geldanamycin (5 mg/kg) for 1 week. During

this time, mice (n = 5 per group) were subjected to femoral artery

injury operation and closure using previously described procedures

[19]. After 5 days the animals were sacrificed, femoral arteries

removed by dissection and subjected to Evans Blue staining. Dye

penetration and staining of the femoral arteries were assessed using

Image ProPlus (Media Cybernetics, Bethesda, USA). Endothelial

regeneration in the injured femoral artery was compared to

control uninjured femoral artery derived from the other limb.

Transgenic Zebrafish Manipulation and Analysis
Transgenic Fli1-GFP zebrafish embryos were injected with:

HSP70 morpholino: 59TAGCGATTCCTTTTGGAGAAGA-

CAT39; Hsp90bmorpholino: 59CTTCTTGGCGCATTTCTT-

CAGGCAT39 or control morpholino: 59CCTCTTACCTCAGT-

TACAATTTATA 39 (Gene Tools, Philomath, USA) and left to

develop for 48 h. 24 h after the injections, the embryos were

transferred to fish water containing 1-phenyl 2-thiourea (PTU) in

HSP70-HSP90 Regulation of Angiogenesis

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e48539



order to improve signal detection by confocal microscopy and

expression of GFP. Embryos were fixed overnight in 4% (w/v)

PFA at 4uC and then transferred to PBS. Pictures of the zebrafish

embryos were obtained under bright-field using a NIKON

SMZ1500 stereomicroscope (Nikon, Kingston-Upon-Thames,

UK). Embryos were stained with a rabbit anti-GFP antibody to

visualize the vascular system. For immunoblotting analysis, yolk

sacs were removed, lysed and sonicated in RIPA buffer (30 mM

Tris-HCl, pH 7.4, 150 mM NaCl, 1% (v/v) NP-40, 0.5% (w/v)

deoxycholate, 2 mM ETDA plus protease inhibitors), subjected to

SDS-PAGE and antibody staining.

Statistical Analysis
Statistical analysis was performed using either one-way analysis

of variance (ANOVA) followed by Tukey’s post hoc-test analysis for

multiple comparisons or Student’s t-test using GraphPad Prism

software. Statistical significances are provided in further detail in

figure legends. Unless otherwise stated in figure legends, three

independent experiments were used for quantification.

Results

HSP90 Activity is Required for VEGFR2 Stability and
Intracellular Signaling
Endothelial VEGFR2 is subject to ubiquitination and degrada-

tion but the exact mechanism is unclear [13,20–22]. It has been

reported that heat-shock proteins are implicated in regulating

VEGFR2 function and downstream signalling [23–27]. To test

whether heat-shock protein inhibition affected VEGFR2 status, we

used a geldanamycin analog to block HSP90 activity in primary

human endothelial cells (Figure 1). HSP90 inhibition caused

a time-dependent decrease in VEGFR2 levels (Figure 1A).

Although HSP90b levels were relatively unaffected, HSP70 levels

were elevated in a time-dependent manner (Figure 1A). Prolonged

inhibition of HSP90 activity for 10 h showed a ,90% decrease in

VEGFR2 levels (Figure 1B). A structurally unrelated HSP90

inhibitor, radicicol, stimulated degradation of endothelial

VEGFR2 in a similar manner (Figure S1A).

To test whether HSP90 inhibition affected VEGFR2-regulated

intracellular signaling, we combined HSP90 inhibition for 4 h with

a brief 5 min pulse with VEGF-A (Figure 1C). Ligand binding

stimulated VEGFR2 activation and phosphorylation of residue

Y1175 but this was completely blocked by HSP90 inhibition

(Figure 1C, 1D). Importantly, quantification of downstream

signaling events including phospholipase Cc1 (PLCc1) and

ERK1/2 phosphorylation revealed .10-fold reduction in phos-

pho-PLCc1 and phospho-ERK1/2 levels (Figure S1B and S1C).

In contrast, the levels of transferrin receptor were not significantly

affected by either HSP90 inhibition or VEGF-A stimulation

(Figure S1D). Given these effects on signal transduction, we

hypothesized that HSP90 activity regulates mature VEGFR2

levels at the plasma membrane. To address this point we used a cell

surface biotinylation approach in HUVECs (Figure 1E). HSP90

was inhibited using geldanamycin followed by biotinylation of the

cell surface and immunoisolation of VEGFR2 or transferrin

receptor (TfR) (see Methods). The cell surface VEGFR2 pool was

analyzed by staining with streptavidin-HRP, a high-affinity

binding partner of biotin (Figure 1E). Quantification of strepta-

vidin-HRP levels showed that HSP90 inhibition stimulated ,2-

fold decrease in mature VEGFR2 levels at the plasma membrane

(Figure 1F). Immunoblotting for VEGFR2 was also used to

confirm a reduction in total VEGFR2 levels during geldanamycin

treatment (Figure 1E). Levels of a TfR control were unaltered by

the same treatment (Figure 1E).

HSP70 is Recruited to a VEGFR2 Complex to Modulate
Receptor Trafficking and Proteolysis
Inhibition of HSP90 activity modulates endothelial responses

[26,27]. One hypothesis to explain this effect is that one or more

HSPs bind VEGFR2 and present it to a degradative pathway. To

test whether HSPs could bind VEGFR2 we lysed primary

endothelial cells, immunoisolated VEGFR2 complexes and tested

for the presence of HSP90b and HSP70 using immunoblotting

(Figure 2A). Surprisingly, endothelial cells with inhibited HSP90

showed increased HSP70 association with VEGFR2 compared to

controls (Figure 2A, 2B). Importantly, HSP90b association with

VEGFR2 was negligible under either control or HSP90-inhibited

conditions (Figure 2A, 2B).

To further examine a role for HSP70 in VEGFR2 down-

regulation or degradation, we used two different small interfering

RNA (siRNA) duplexes (‘a’ or ‘b’) to deplete HSP70 protein levels

using RNA interference (Figure 3). HSP70 silencing by siRNA ‘a’

was evident in comparison to controls (Figure 3A). Intriguingly,

simultaneous HSP90 inhibition and HSP70 depletion using

siRNA ‘a’ caused ,50% elevation in steady-state VEGFR2 levels

compared to HSP90 inhibition alone (Figure 3B). One character-

istic of inhibition of HSP90 activity is increased cellular stress

response(s) which in turn elevate HSP70 levels. To consolidate

this, we checked whether knockdown of HSP70 levels using either

of two different siRNA duplexes ‘a’ or ‘b’ specific for HSP70 could

produce similar effects on VEGFR2 stability (Figure 3C). Knock-

down of HSP70 levels using either siRNA did indeed inhibit the

VEGFR2 degradation caused by HSP90 inhibition (Fig. 3D),

confirming this result. An important question was whether the

block in VEGF-A-stimulated and VEGFR2-regulated intracellular

signaling caused by HSP90 inhibition could be rescued by HSP70

depletion. Analysis of primary endothelial cells inhibited for

HSP90 and stimulated with VEGF-A showed a small but

significant rescue of downstream ERK1/2 phosphorylation

(Figure 3E) and PLCc1 phosphorylation (Figure 3F) upon

HSP70 knockdown.

Another approach was to assess the intracellular distribution of

HSP70 relative to VEGFR2 (Figure 4). Lentiviral transduced

endothelial cells revealed that HSP70-FLAG co-distributes with

VEGFR2 in punctate structures resembling late endosomes or

lysosomes (Figure 4A). Quantification of these microscopy data

showed a high degree of overlap between the two proteins

(Figure 4B). Co-expression of both human VEGFR2 and HSP70-

FLAG in non-endothelial HEK-293T cells also suggested in-

creased proteolysis (Figure 4C). A key component of the HSP90-

regulated degradative pathway is the E3 ubiquitin ligase CHIP

[28,29]. This was neither present in VEGFR2 complexes

(Figure 4D) nor had RNAi-mediated knockdown of CHIP any

discernible effects upon mature VEGFR2 levels after HSP90

inhibition (Figure 4E).

Clathrin-mediated Endocytosis is Required for HSP-
regulated VEGFR2 Degradation
Endosome-associated 26S proteasome and lysosome-mediated

degradation are implicated in VEGFR2 proteolysis [13,14]. One

question was whether plasma membrane endocytosis and trans-

port to the endosome-lysosome pathway are required for this

HSP-regulated VEGFR2 degradation. To answer this, we de-

pleted clathrin heavy chain (CHC17), a protein required for

plasma membrane receptor endocytosis via clathrin-coated pits

and vesicles. CHC17 knockdown caused .70% decrease in

protein levels in either control or HSP90-inhibited endothelial cells

(Figure 5A and S2A). In control endothelial cells, VEGFR2 levels

HSP70-HSP90 Regulation of Angiogenesis
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were elevated by ,30% upon CHC17 depletion, whereas HSP90

inhibition caused ,50% decrease in VEGFR2 levels (Figure 5B).

However, upon simultaneous HSP90 inhibition and CHC17

knockdown, VEGFR2 were levels were reduced by only ,20%

(Figure 5B), suggesting receptor-mediated endocytosis is required

for this phenomenon. In contrast, transferrin receptor levels were

not significantly affected by either HSP90 inhibition, CHC17

knockdown or a combination of both (Figure S2B).

Figure 1. HSP90 inhibition stimulates mature VEGFR2 degradation and blocks intracellular signaling in primary endothelial cells.
(A) HUVECs were subjected to geldanamycin (17-DMAG) treatment for indicated times, lysed and processed for immunoblotting (IB) to analyze
indicated protein levels. Arrowhead indicates mature VEGFR2; TfR, transferrin receptor. (B) Quantification of mature VEGFR2 levels in control and
geldanamycin-treated endothelial cells; data shown is representative of 3 independent experiments. (C) HUVECs were treated with dimethyl sulfoxide
(DMSO; control) or geldanamycin (4 h) and stimulated with VEGF-A (5 min) followed by immunoblotting (IB) of phosphorylated and total levels of
intracellular signaling enzymes. PLCc1, phospholipase Cc1; ERK1/2, extracellular signal-regulated kinase 1/2. (D) Immunoblot data from panel C were
quantified for phosphorylated and activated VEGFR2-pY1175; error bars denote 6SEM (n$3), ***p,0.005 using one-way ANOVA. (E) HUVECs were
treated with geldanamycin (4 h) and the cell surface labeled with biotin on ice. VEGFR2 and transferrin receptor (TfR) were immunoprecipitated (IP)
and analyzed by immunoblotting (IB) alongside whole cell lysates using streptavidin-HRP (Strept HRP; streptavidin-horsereadish peroxidase). HSC70,
heat shock cognate protein chaperone. (F) Immunoblot data from panel E were quantified for mature VEGFR2; error bars denote 6SEM (n$3),
**p,0.01; ***p,0.005 using one-way ANOVA.
doi:10.1371/journal.pone.0048539.g001
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HSP90 Activity is Required for Endothelial Cell Migration,
Arterial Regeneration and Blood Vessel Development
Does HSP90 inhibition perturb physiological responses such as

blood vessel repair or endothelial cell migration? To test this, we

used a mouse hind limb femoral artery injury model that evaluates

endothelial regeneration after mechanical insult (Figure 6) [19,30].

Control mice injected with vehicle alone showed a characteristic

‘injured’ arterial area denuded of endothelial cells with increased

Evans Blue staining of the underlying extracellular matrix

(Figure 6A). However, in mice subjected to treatment with the

HSP90 inhibitor, a larger arterial area in the injured blood vessel

was stained with Evans Blue suggesting that repair and re-

generation of the arterial endothelium had been impaired

(Figure 6B). Quantification showed a ,2-fold reduction in arterial

regeneration upon HSP90 inhibition (Figure 6C).

To assess the effects of HSP90 inhibition on endothelial cell

migration, we used an assay where endothelial cells moved

towards an increased concentration of pro-angiogenic growth

factor i.e. VEGF-A or basic FGF. We titrated increasing HSP90

inhibitor concentrations under known concentrations of VEGF-A

or basic FGF that stimulated primary endothelial cell migration

(Figure 6D). There was a clear and preferential inhibition of

VEGF-A-stimulated response inhibition in comparison to basic

FGF stimulation in the presence of HSP90 inhibitor (Figure 6D).

Are HSP70 and HSP90 required for blood vessel development?

To test this in vivo, morpholino-mediated knockdown of these

HSPs were carried out in transgenic Fli1-GFP zebrafish embryos

where the vascular endothelium expresses GFP. Confocal micros-

copy on the GFP-stained vasculature revealed significant defects in

embryonic vascularization in the HSP70 and HSP90 morphants

compared to control (Figure S3A). The dorsal longitudinal

anastomotic vessels (DLAVs) of HSP70 and HSP90 morphants

were not properly anastomosed (Figure S3A, red arrows), the

intersegmental vessels (Se) were not appropriately orientated and

spaced, and the tip cells of several Se split prematurely in two

before reaching the dorsal side of the embryo (Figure S3A, white

arrows). This gave a serrated appearance to the DLVAs compared

to the control morphants. Moreover, in the caudal region of the

HSP70 and HSP90 morphants, it was also difficult to distinguish

the caudal vein and artery from the caudal vessel network (Figure

S3A). Immunoblot analysis showed clear reduction in HSP70

(Figure S3B) or HSP90 (Figure S3C) levels in these experiments.

Discussion

VEGF-A regulates different aspects of vascular physiology in

healthy and diseased states. Herein, we describe a novel mech-

anism involving the HSP70-HSP90 complex that targets VEGFR2

for degradation (Figure 7). The HSP90-specific pharmacological

inhibitor, geldanamycin, triggered degradation of mature plasma

membrane VEGFR2 in primary endothelial cells and caused

a profound block in VEGF-A-stimulated intracellular signaling.

Importantly, HSP90 inhibition stimulated increased VEGFR2-

HSP70 complex formation that correlated with increased

VEGFR2 degradation. Depletion of HSP70 could partially rescue

this HSP-mediated degradative effect. The location of this HSP-

regulated VEGFR2 degradation event is likely to occur in the

endosome-lysosome system, as clathrin-mediated endocytosis is

Figure 2. Inhibition of HSP90 stimulates HSP70-VEGFR2 interaction. (A) HUVECs pre-treated with geldanamycin for 4 h were lysed and
control protein (goat IgG) or VEGFR2 immuno-isolated complexes (IP) were analyzed by immunoblotting (IB) for HSP70 or HSP90b. Arrowhead
indicates mature VEGFR2. (B) Quantification of HSP70 and HSP90b association with VEGFR2 under control conditions without (2) or with (+)
geldanamycin; error bars denote 6SEM (n= 6), ***p,0.005 using one-way ANOVA.
doi:10.1371/journal.pone.0048539.g002
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required. This HSP-mediated phenomenon was more specific for

the VEGF-A-stimulated response, rather than the basic FGF-

stimulated response evident by analysis of endothelial cell

migration. Finally, there is a significant requirement for this

HSP90-linked function in endothelial regeneration and blood

vessel development, as HSP90 inhibition caused a 2-fold decrease

in femoral artery repair in a mouse model and impaired vessel

formation in transgenic zebrafish embryos.

What is the mechanism linking HSP activity to VEGF-A-

regulated endothelial function? HSP90 and HSP70 are implicated

in both protein stabilization and presentation to degradative

pathways [7]. The uncoupling of a HSP70/HSP90 complex by

the use of geldanamycin as an inhibitor of HSP90 activity could

stimulate the recruitment of HSP70 to ‘client’ proteins linked to

increased VEGFR2 ubiquitination and proteolysis by the 26S

proteasome [31]. We thus postulate that inhibition of HSP90

Figure 3. HSP70 requirement for geldanamycin-stimulated VEGFR2 degradation. (A) HUVECs pre-treated with siRNA duplex ‘a’ to HSP70
alone or with geldanamycin (4 h) were analyzed by immunoblotting (IB) for proteins as indicated. Arrowhead indicates mature VEGFR2. (B)
Quantification of mature VEGFR2 levels under conditions in panel A. (C) Quantification of HSP70 levels in HUVECs pre-treated with either of two
different synthetic siRNA duplexes ‘a’ or ‘b’ to HSP706geldanamycin. (D) Quantification of VEGFR2 levels in HSP70-depleted HUVECs (duplex ‘a’ or ‘b’)
6geldanamycin (4 h). Error bars denote 6SEM (n$3), *p,0.05; **p,0.01; ***p,0.005 using one-way ANOVA. (E) HUVECs pre-treated with siRNA
duplexes for HSP70 or control siRNA were treated 6geldanamycin (4 h) 6VEGF-A (5 min) and analyzed for signaling events by immunoblotting. (F)
Quantification of phospho-PLCc1 levels from panel E. Error bars denote 6SEM (n$3), *p,0.05 using one-way ANOVA.
doi:10.1371/journal.pone.0048539.g003

HSP70-HSP90 Regulation of Angiogenesis
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activity stimulates HSP70 recruitment to VEGFR2 and increasess

degradation by such a pathway. In this context, we have found

increased VEGFR2 ubiquitination upon HSP90 inhibition

(A.F.B., unpublished findings). Such a finding is consistent with

postulation for recruitment of ubiquitin-linked machinery such an

E3 ubiquitin ligase to the VEGFR2 cytoplasmic domain to

Figure 4. HSP70 overexpression and co-distribution with VEGFR2. (A) Lentiviral transduced HUVECs expressing human HSP70-FLAG were
labeled for VEGFR2 (green) and HSP70-FLAG (red), which were detected using labeled secondary antibodies and co-distribution shown (yellow). Bar,
10 mm. (B) Quantification of VEGFR2 co-distribution with HSP70-FLAG under control or HSP70 overexpression conditions. Error bars denote 6SEM
(n = 15), ***p,0.005 using Student’s t-test. (C) HEK-293T cells were transfected with VEGFR2 and/or HSP70-FLAG and processed for immunoblotting
(IB) using anti-VEGFR2 antibody. Arrowhead denotes mature transfected VEGFR2. (D) HUVECs were treated 6geldanamycin (4 h) and
immunoprecipitation (IP) carried out for control protein (Goat IgG) and VEGFR2 as per Figure 2. Isolated protein complexes were processed for
immunoblotting (IB) using anti-VEGFR2 and anti-CHIP antibodies. Arrrowhead denotes mature VEGFR2. (E) HUVECs were treated with either control
siRNA or siRNA duplex targeted against CHIP and treated6geldanamycin (4 h). Cells were lysed and processed for imunoblotting (IB). Representative
immunoblots shown. CHIP, carboxy terminus of HSP70-interacting protein.
doi:10.1371/journal.pone.0048539.g004

Figure 5. Clathrin-regulated endocytosis is a requirement for geldanamycin-stimulated VEGFR2 degradation. (A) HUVECs subjected to
CHC17 knockdown were followed by geldanamycin treatment (4 h) and immunoblot analysis (IB) of indicated proteins. (B) Quantification of mature
VEGFR2 levels from the experiments shown in panel A. Error bars denote 6SEM (n$3), *p,0.05 using one-way ANOVA. CHC17, clathrin heavy chain.
doi:10.1371/journal.pone.0048539.g005

HSP70-HSP90 Regulation of Angiogenesis

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48539



mediate ubiquitin attachment followed by subsequent recognition

by sorting machinery in the endosome and/or proteolysis by the

cytosolic 26S proteasome (Figure 7). Multiple roles for HSP90 in

endothelial function have been postulated [24,26,27,32,33] and

various members of the VEGF-A-regulated signaling pathway in

endothelial cells are HSP90 client proteins, including VEGFR2,

Akt and eNOS [11,23,24,26,32,34]. Importantly in the present

study, pharmacological inhibition of HSP90 activity revealed

Figure 6. HSP90 inhibition perturbs mouse arterial repair and endothelial cell migration. (A) A representative view of femoral artery re-
endothelialization in control mice (DMSO treated). (B) A representative view of femoral artery re-endothelialization in geldanamycin-treated mice. (C)
Quantification of arterial re-endothelialization (blood vessel repair) using Evans Blue staining. Error bars denote 6SEM (n = 5), **p,0.01 using
Student’s t-test. (D) Quantification of HUVEC migration across a growth factor gradient in the presence of either VEGF-A or basic FGF. Error bars
denote 6SEM (n= 3), **p,0.01 using one-way ANOVA.
doi:10.1371/journal.pone.0048539.g006

Figure 7. A model for HSP-mediated regulation of VEGFR2 proteolysis. Abbreviations: CHC17, clathrin heavy chain; E3 ligase, E3 ubiquitin
ligase; HSP70, heat shock protein of 70 kDa; HSP90, heat-shock protein of 90 kDa, RNAi, RNA interference; Ub, mono/polyubiquitin modification(s);
VEGFR2, vascular endothelial growth factor receptor 2.
doi:10.1371/journal.pone.0048539.g007
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increased HSP70 recruitment to a VEGFR2 complex but HSP90b
binding was not evident. Whilst previous findings suggest a re-

quirement for a HSC70/HSP70 complex in VEGF-A-mediated

signaling [35] and a HSP70/HSP90 complex in pro-angiogenic

endothelial responses [36], our results contradict studies showing

that HSP90 directly binds to VEGFR2 [25,37–39]: a HSP90/

VEGFR2 complex exists in unstimulated endothelial cells [38], an

interaction which is increased upon stimulation with VEGF-A and

decreased by treatment with geldanamycin [25,38]. Moreover, this

interaction is required for assembly of a RhoA-ROCK complex,

subsequent phosphorylation of focal adhesion kinase (FAK)

[25,37,38] and recruitment of vinculin to VEGFR2 during focal

adhesion assembly [38]. Another study reported class II histone

deacetylases (HDACs) as co-ordinators of HSP-mediated VEGFR

regulation; interestingly, treatment of cancer cell lines with

a HDAC inhibitor decreased HSP90 binding, but increased

HSP70 binding to VEGFR2 [39].

One explanation for the effects on VEGFR2 observed upon

HSP90 inhibition and HSP70 recruitment is a partial unfolding of

the cytoplasmic tyrosine kinase domain. For example, HSP90

inhibition can cause partial unfolding of the ErbB2 kinase domain

followed by sequential recruitment of HSC70/HSP70 and E3

ubiquitin ligases such as Cullin5 or CHIP [28,29,40]. HSP70

depletion partly rescued VEGFR2 levels in HSP90-inhibited

endothelial cells and overexpressed HSP70 co-localized with

VEGFR2. Depletion of HSP70 only partly restored VEGFR2-

mediated signaling. There are several possible explanations for this

incomplete rescue besides the partial unfolding of the VEGFR2

tyrosine kinase domain: firstly, the knockdown of HSP70 is not

complete. This may in part be due to a stress response in primary

cells elicited by the foreign siRNA or transfection procedure,

leading to up-regulation of heat shock proteins [41–43]. Secondly,

treatment with geldanamycin could lead to enhanced internaliza-

tion of VEGFR2 prior to conjugation onto HSP70 and

consequently receptor degradation. Finally, combined inhibition

of HSP90 and depletion of HSP70 may have a negative influence

on the activity and/or expression of components of the VEGF-A-

mediated signaling cascade, as both heat shock proteins have been

purported to modulate multiple arms of this pathway [25,35].

Our findings of increased ubiquitination within geldanamycin-

treated VEGFR2 protein complexes (A.F.B, unpublished findings)

suggest recruitment of a specific E3 ubiquitin ligase. Various E3

ligases have been postulated to mediate VEGFR2 ubiquitination

including c-Cbl and bTrcP2 but this still remains contentious

[13,20,21]. VEGFR2 also did not display association with the E3

ubiquitin ligase CHIP that is associated with HSP70-HSP90

complexes [5]. Thus it is likely there is an as yet unidentified E3

ubiquitin ligase that targets VEGFR2 (Figure 7). Clearly, E3

ubiquitin ligase activity can be co-ordinated by HSP90 activity to

target another receptor tyrosine kinase, ErbB2 [40].

How does intracellular trafficking regulate VEGFR2 turnover?

New biosynthetic VEGFR2 is transported relatively slowly

through the secretory pathway to the plasma membrane. This

mature VEGFR2 exhibits significant turnover (t1/2 ,90–120 min)

even in the absence of VEGF-A stimulation [13]. HSP90

inhibition promotes slow but sustained VEGFR2 degradation

linked to endosomes (A.F.B., unpublished findings). Blocking

receptor-mediated endocytosis via clathrin heavy chain (CHC17)

depletion elevated VEGFR2 levels, indicating that plasma

membrane internalization and delivery to the endosome-lysosome

system precedes degradation. Ligand-stimulated and activated

VEGFR2 also requires transport to early endosomes before

proteasome-regulated removal of the cytosolic domain which

modulates downstream intracellular signaling and endothelial cell

migration [13]. VEGFR2 also undergoes endocytosis and

recycling via early endosomes back to the plasma membrane

[14,44]. One likelihood is that HSP90 inhibition stimulates an

existing endosome-linked pathway for proteolysis by the cytosolic

26S proteasome. Interestingly, HSP90 inhibition also stimulates

proteolysis of the ErbB2 receptor tyrosine kinase associated with

breast cancer tumor metastasis [4,6]. In this context, ErbB2

endocytosis and localization to the endosome-lysosome pathway

correlates with proteasome- and lysosome-mediated degradation

[45]. Our model now identifies an existing route involving HSP90

and HSP70 in promoting receptor tyrosine kinase proteolysis in

the endosome-lysosome pathway.

This HSP activity is indeed required for physiological responses

such as endothelial cell migration and blood vessel repair. Firstly,

VEGF-A-regulated cell migration is preferentially targeted in

comparison to basic FGF in the presence of geldanamycin.

Secondly, mouse femoral artery injury and regeneration was

impaired ,2-fold by geldanamycin, suggesting that re-endothe-

lialization is dependent on a functional HSP70-HSP90 axis. In

addition, HSP70 and HSP90 are also required for blood vessel

development and sprouting in zebrafish (C.P.M. and P.F.,

unpublished findings). HSP90 inhibition by geldanamycin can

block tumour angiogenesis [46,47], possibly by lowering VEGF-A

production by tumor cells, reducing expression of VEGFRs in

endothelial and lymphatic tissue [11] or modulating expression of

master signaling regulators Akt and c-Raf [10] and subsequent

nitric oxide production [34,48]. However, it has been difficult to

assess the separate effects of this drug on tumor cell growth versus

endothelial physiology [10,25,33,46–49]. Here, we suggest that

HSP90 inhibition could alter the endothelial response by

stimulating VEGFR2 proteolysis, thus further validating the use

of geldanamycin (and other HSP90 inhibitors) as agents to block

tumor angiogenesis and highlighting differential pharmacological

effects in vascular physiology versus tumor progression.

Supporting Information

Figure S1 HSP90 inhibition triggers VEGFR2 proteoly-
sis and blocks VEGF-A-stimulated intracellular signal-
ing. (A) Radicicol treatment of endothelial cells also stimulates

VEGFR2 degradation. VEGFR2 levels were detected using

immunoblotting as previously shown. Immunoblot data were

quantified and error bars denote 6SEM (n$3), **p,0.01 using

Student’s t-test. (B–C) HUVEC control (DMSO) or pre-treated

with 1 mM geldanamycin (4 h) were combined with VEGF-A

stimulation (5 min) followed by immunoblotting (IB) of whole cell

lysates for intracellular signaling enzymes (B) phospho-pLCc1 and

(C) phospho-ERK1/2 (p42/44MAPK). Immunoblot data were

quantified and error bars denote 6SEM (n$3), ***p,0.005 using

one-way ANOVA. (D) Transferrin receptor (TfR) levels are not

perturbed by geldanamycin treatment. Cells treated with DMSO

vehicle alone (control) or geldanamycin were subjected to

immunoblotting as previously described and protein levels

analyzed.

(TIF)

Figure S2 Clathrin heavy chain CHC17 knockdown and
effects on VEGFR2 trafficking and proteolysis. (A)

Knockdown of clathrin heavy chain CHC17 followed without or

with geldanamycin and effects on VEGFR2 levels. Immunoblot

data were quantified and error bars denote 6SEM (n$3),

**p,0.01 using one-way ANOVA. (B) Quantification of trans-

ferrin receptor (TfR) levels upon knockdown of clathrin heavy

chain CHC17 without or with geldanamycin.

(TIF)
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Figure S3 Requirement for HSP70 or HSP90 in zebra-
fish blood vessel development. (A) Fli1-GFP zebrafish

embryos injected with control morpholinos or with morpholinos

specific for HSP70 or HSP90b followed by vasculature staining for

GFP. The results shown are representative of two experiments in

each of which at least 100 embryos were injected with each

morpholino. CA, Caudal Artery; CV, Caudal Vein; DLAV,

Dorsal Longitudinal Anastomotic Vessel; Se, Intersegmental

Vessel; DA, Dorsal Aorta; PCV, Posterior Cardinal Vein. (B)

HSP70 or (C) HSP90b protein levels determined by immunoblot

analysis; tubulin served as a control.

(TIF)
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