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Abstract

Genome-wide association studies have been able to identify disease associations with many common variants; however
most of the estimated genetic contribution explained by these variants appears to be very modest. Rare variants are
thought to have larger effect sizes compared to common SNPs but effects of rare variants cannot be tested in the GWAS
setting. Here we propose a novel method to test for association of rare variants obtained by sequencing in family-based
samples by collapsing the standard family-based association test (FBAT) statistic over a region of interest. We also propose a
suitable weighting scheme so that low frequency SNPs that may be enriched in functional variants can be upweighted
compared to common variants. Using simulations we show that the family-based methods perform at par with the
population-based methods under no population stratification. By construction, family-based tests are completely robust to
population stratification; we show that our proposed methods remain valid even when population stratification is present.
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Introduction

It is now widely accepted that many diseases are caused by a

complex interplay between multiple genes and other non-genetic

factors, and that different genetic susceptibility factors may be

responsible for disease risks in different individuals. Genome-wide

association studies have been able to identify many variants

associated with complex diseases that are common in the

population. However most of the estimated genetic contribution

explained by these common variants appears to be very modest.

On the other hand, rare variants are thought to have a larger

effect size compared to common SNPs [1]. Availability of

sequencing data from specific candidate genes and functional

genomic regions such as exons for a large number of individuals

and from whole genome for a smaller set of individuals [2], has

made it possible to gain a wealth of information about the

potential effect of multiple rare variants on complex phenotypes.

Conventional statistical methods for common variants have low

power for low frequency SNPs, particularly when the power relies

on the linkage disequilibrium (LD) between the causal variants and

the observed markers.

To overcome the problem of poor power of the single SNP

strategy, the strategy of collapsing rare variants over a gene and

collective analyses of their association has been adopted.

Morgenthaler et al [3] devised the CAST (cohort alleleic sum

test) which collapses over the rare variants and then compares the

total rare variant frequency between cases and controls. Li and

Leal [4] extended the CAST method to come up with CMC

(combined multivariate and collapsing) method where collapsing is

done within different subgroups defined by allele frequencies and

combined using a multivariate distance-based statistic. All these

methods use a fixed threshold for specifying rare variants i.e. the

user must define a value for allele frequency to distinguish between

rare and common variants.

Madsen and Browning [5] proposed a method whereby variants

of any frequency can be included, but the variants are weighted

according to their frequencies - thus allowing rare variants to

contribute more to the test statistic than they do in the unweighted

case. Price et al [6] proposed a variable threshold approach,

designed to eliminate the need of choosing a fixed threshold to

include variants and showed that this method can be more

powerful compared to the fixed threshold approach. Moreover

they also proposed ways to include information about functional

impact of the variants. Hoffmann et al [7] introduces weights

which can incorporate allele frequency, direction (deleterious or

protective) and threshold all in a single analysis. More recently Lin

and Tang [8] proposed a general framework based on appropriate

regression methods to cover a wide range of study designs.

More recent methods deal with some of the more complex

issues of pooled rare variant analysis. Zhu et al [9] uses a

haplotype-based method to identify relevant rare haplotypes

associated with the disease. Hoffmann et al [7] uses a ‘step-up’

approach similar to forward selection to identify an optimal

grouping of rare variants. Ionita-Laza et al [10] suggests a

replication-based weighted-sum statistic which is applied separate-

ly to potential risk variants (those with observed higher frequency

in cases compared with controls) and potential protective variants,

and Neale et al [11] tailored the C-alpha [12] score test to test for

rare variants association - both of the two methods can address the

case where variants have different direction of effects on the same

genetic region. Lin and Tang [8] introduce a general score-based

test for population-based samples, that unifies many of these

approaches.

Even though there is a considerable sum of literature on

methods for rare variant analysis, few discuss family-based designs.

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e48495



Family-based analysis for single SNP association uses information

about transmission of genetic factors within families and has been

shown to potentially have more power than the population-based

design for rare diseases [13]. Moreover the family-based design is

robust to any bias induced by population substructure. For rare

variants this issue of population stratification is even more acute as

rare variants may include young mutations that are more

population-specific [2,14]. In this paper we propose a novel

method to test for association of rare variants in family-based

design by extending the traditional single SNP Family-Based

Association Test. To include both common and rare variants in

our analysis, we introduce suitable weighting schemes to upweight

rarer variants and downweight the more common variants. We

also evaluate the analysis using a fixed threshold value to identify

the rare variants. Finally we compare performance of these

methods under different settings against the fixed threshold version

of the population-based score statistic by Lin and Tang [8] and the

population-based weighted sum statistic by Madsen and Browning

[5].

Our approach builds on the FBAT multimarker test [15], which

is a ‘gene-based test’ designed for testing multiple SNPs from a

GWAS or candidate gene strictly. The proposed test is also similar

to FBAT-LC statistic, [16] which was designed for powerful and

efficient multimarker testing for measured phenotypes. Relation-

ship among these statistics are discussed in the subsequent section.

Methods

Family-based Association Test
We first consider a sample of n trios - one offspring with

information on both parents available and review the single

variant setting. The general FBAT statistic is a covariance between

the offspring genotype and trait. Let Xi and Yi denote the

genotype for the variant and the trait, respectively, for the ith

offspring. In the general case, Yi can be both measured or

dichotomous, and we can use an offset m to appropriately center

the trait [17]. For family samples with dichotomous traits such as

affected trios or discordant sibpairs, m is often taken to be zero;

with measured outcomes, mean of the outcome is usually chosen

for offset. For the additive model, Xi is the number of copies of

minor alleles for the locus of interest. We define

U~
Xn

i~1

(Yi{m)(Xi{E(Xi DPi)) ð1Þ

E(Xi DPi) in (1) is computed using Mendel’s laws under the null

hypothesis of no association and conditional on the trait as well as

the parental genotypes (denoted as Pi for the i-th family). Under

the same conditional distribution, we can compute Var(Xi DPi); the

large sample FBAT statistic is defined as

Z~U=
ffiffiffiffi
V
p

ð2Þ

where V~Var(U)~
Pn

i~1 (Yi{m)2 Var(Xi DPi). Under the null

hypothesis of no association Z is approximately N(0,1). The

formula extends easily where multiple offspring are sampled in a

family for testing the null hypothesis of no association and no

linkage.

The FBAT Multi-Marker test is a multivariate extension of the

univariate FBAT test designed to simultaneously test a set of

markers in a defined region, such as a gene. It belongs to the

general class of ‘gene-based tests’ since a set of M univariate tests

in a gene are replaced by a single multivariate test. Let Us and Zs

denote the statistics in equation 1 and 2, defined for the sth marker.

Assuming large samples to obtain sufficient heterozygote parents,

each Zs is approximately N(0,1), but the M markers may be

correlated because of linkage disequilibrium in the region.

Provided we have an estimate of the correlation matrix, we can

obtain a M degree of freedom test of the null hypothesis of no

association between any of the M variants and the disease, versus

the alternative that at least one marker is in LD with a disease

locus.

Rakovski et al [15] estimate the correlation matrix empirically

as follows: Let UMM~(U1, . . . ,UM ) be the vector of FBAT

statistics, which forms the basis of the multimarker test. Let VE ,

the empirical variance estimator, be the M|M matrix with

elements

epq~
Xn

i~1

(Yi{m)2(Xip{E(XipDPip))(Xiq{E(XiqDPiq)),p,q

~1 . . . M

and D be the diagonal matrix with elements equal to the Var(Us)’s

where Var(Us)~
Pn

i~1 (Yi{m)2 Var(XisDPis). The correspond-

ing adjusted variance matrix VA is defined by

VA~D1=2½Diag(VE){1=2VE Diag(VE){1=2�D1=2:

Note that VE is a variance-covariance matrix, with all elements

estimated empirically. However the diagonal elements of VE can

be calculated directly provided there is no linkage between any

marker and the true disease locus. VA is an ‘adjusted’ variance

covariance matrix which replaces the empirical variances with the

exact ones. The multi-marker test is then defined as

T~UMM
T VA

{1UMM :

In large samples, T will be approximately x2 distributed with

degrees of freedom equal to the rank of VA. The asymptotic

normality relies on the asymptotic normality of each marker test

Us, and may not be valid in the rare variant setting.

Several papers have noted that tests of multiple markers can be

greatly improved upon by taking optimal linear combinations of

the individual tests [8,16,18,19], but a major issue is determining

the optimal weights, since the optimal weights depend upon the

unknown effect of each marker. Xu et al [16] proposed a method

to handle this problem by using that portion of the family data that

is not used in constructing the FBAT statistics, e.g. the

noninformative families [13,20]. The approach is designed for

measured outcomes, or at least cases where both affected and

unaffected offspring are sampled. The approach can be extended

in principle to the setting where we have only affected trios [21],

but this is beyond the scope of this paper. An additional feature of

the FBAT-LC approach is that estimation of the weights can be

invalidated by population substructure.

Collapsing Method for Rare Variants
We extend the general FBAT statistic to test for rare variants by

using the approach of collapsing over a gene or a particular

genetic region. We assume that any variants associated with the

trait have effects in the same direction. Let Us be the FBAT

Rare Variant Analysis for Family-Based Design

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e48495



statistic corresponding to the sth variant and M be the total

number of variants in the region. We define

Us~
Xn

i~1

(Yi{m)(Xis{E(XisDPis))

where Xis is the number of copies of sth variant in ith offspring.

Then the unweighted FBAT statistic for rare variants can be

defined as

W~
XM
s~1

Us~
XM
s~1

Xn

i~1

(Yi{m)(Xis{E(XisDPis)) ð3Þ

If we change the order of the summations we can express the test

statistic as

W~
Xn

i~1

(Yi{m)
XM
s~1

(Xis{E(XisDPis))

" #

which is essentially a covariance between the trait and total

number of copies of all variants in a region. The variance of W can

be expressed as

Var(W )

~
Xn

i~1

(Yi{m)2
XM
s~1

V (XisDPis)z
X
s=s
0
Cov(Xis,Xis

0 DPis,Pis
0 )

2
4

3
5:

The V (XisDPis)’s are the variances of each of the M SNPs

conditional on the trait and the parental genotypes; they can be

computed under the null hypothesis of no association simply using

Mendel’s laws as applied to the transmission probabilities.

As previously discussed, Cov(Xis,Xis
0 DPis,Pis

0 ) can be estimated

empirically using the variance estimator for multimarker FBAT

statistic. One advantage of using this method is that it avoids

haplotype reconstruction. As W can be expressed as 1T UMM , a

suitable estimate for Var(W) is 1T VA1 = the sum of all elements in

VA (as computed for the multimarker statistic). The standardized

test statistic

Z~W=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(W )

p
is approximately N(0,1) in large samples under the null hypothesis

of no association. Note that asymptotic normality here only relies

on the normality of W, which should hold in the rare variant

setting provided the number of variants in the tested region is not

small.

Extension of the test statistic for other nuclear family structures

is straightforward. For a large multi-generation pedigree, the

simplest strategy would be to break the pedigree into nuclear

families and combine the contribution from all those nuclear

families. For example, the general FBAT statistic for the sth variant

for a family with multiple offspring can be defined as

Us~
X

i

X
j

(Yij{m)(Xijs{E(XijsDPis))

where the summand corresponds to the jth offspring of the ith

family. We can use this statistic to get the collapsed statistic

W~
PM

s~1 Us. When partial or no information is available on the

parental genotype, E(Xijs) and Var(Xijs) are computed conditional

on the trait values as well as the sufficient statistics for parental

genotypes. Note that the computation of variance in such cases

follows directly from computation of the variance estimator for

multimarker FBAT statistic. In this paper we will consider the

analysis for two common family designs - trios and discordant

sibpairs (DSP).

Weighting Scheme
When the region of interest contains both common and rare

variants, improvement in the performance of the statistic in

detecting effects of very low frequency variants will require

choosing a suitable weighting scheme that would upweight the

variants with lower frequencies. If the sth variant is assigned the

weight ws, the weighted FBAT statistic for rare variants can be

defined as

W (w)~
XM
s~1

wsUs ð4Þ

For our purpose we use two sets of weights : 1) ws = (# of

informative families for sth variant){1, where informative families

for trios are defined as families with at least one of the parents

being heterozygous at the locus, and 2) ws~(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nps(1{ps)

p
){1

where n is the total number of nuclear families and ps is the allele

frequency for sth variant estimated from the sample. The latter

weighting method is similar to the weighting scheme used by

Madsen and Browning [5] where they estimate the allele

frequencies from the control population. As argued in context of

their method, the weight of a variant is inversely proportional to

the estimated standard deviation of the number of alleles of the

corresponding marker in a random sample selected from the

population under the null distribution of no association. In this

case, for trios, allele frequencies are estimated from parents, and

for discordant sibpairs, allele frequencies are estimated from all

siblings. The weights in both cases are independent of the

transmissions used in the test statistic since they depend only on

parental genotypes, or the sufficient statistics for parental

genotypes in the case of discordant sibpairs [22]. Implicitly these

weights assume all markers have effects of the same sign, and that

the magnitude of the effect increases as corresponding allele

frequency decreases.

Weighting schemes other than these two options can also be

used if external information is available about the SNPs. Price et al

[6] suggested using functional predictions about the SNPs using

Polyphen-2 [23] scores to weight the SNPs. Similarly SIFT [24] or

other functional prediction scores can also be incorporated to

compute weights.

As discussed previously, Xu et al [16] also proposed a

weighted linear combination of FBAT statistics (FBAT-LC) in

the context of finding an optimal test for associating a set of

SNPs with a quantitative trait. This is similar to what Lin and

Tang [8] propose for estimating the effect of each SNP, except

the weights are estimated independently of the test statistics by

regressing the trait on the expected marker score using the

conditional mean model [13]. FBAT-LC is not available for

trios with affected only, but would make an attractive extension

Rare Variant Analysis for Family-Based Design
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for the setting where the effects of disease SNPs vary sign as

well as magnitude.

Fixed Threshold Approach
When the region of consideration contains both rare and

common variants, instead of weighting the variants differently

based on their allele frequencies, we can also use a user-defined

threshold value based on allele frequencies to identify a subset of

variants as rare and consider analysing only that subset. The fixed

threshold collapsed sum FBAT statistic is defined as

W (t)~
X

s[Y(t)

Us~
X

s[Y(t)

Xn

i~1

XLi

j~1

(Yij{m)(Xijs{E(XijsDPis)) ð5Þ

where Y(t) is the subset of SNPs that have allele frequencies less

than the threshold value t. Conventional values of t, used to define

rare variants, are 1% and 5%. In this case, we assume that only

rare variants are associated with the trait - however the analysis

depends on a suitable choice of threshold value.

Simulation
The simulations are based on the assumption that variants in

the region of interest are under weak purifying selection and

Wright’s distribution is used to sample frequency for each variant

f (p)~cpB1{1(1{p)B2{1es(1{p)

where B1,B2 are scaled mutation rates and s is the selection rate.

We take B1~0:001,B2~B1=3 and s~12 as in Madsen and

Browning [5]. We fix the number of variants in the region to be 50

and we randomly select the DSVs out of the variants that have

frequency less than 1%. We choose the number of DSVs to be 10

or 20.

We generate the binary trait using a relative risk model for the

DSVs. We assume

P(Yi~1DXis,s~1 . . . q)~e
b0z

Pq
s~1

bsXis ð6Þ

where Xis is the number of copies of sth variant in ith individual

and q is the number of DSVs. We examine two set-ups - in the first

set-up all variants have equal bs’s. In the second set-up we vary the

effect of the DSVs within a range of values exponentially such that

a lower frequency DSV is associated with a higher effect - we use

the formula bs~azbps for a value of a and b (v0), where ps is

the s-th variant frequency.

We generate samples from the trio design as well as sibpairs. We

generate parental haplotypes using the frequencies for the variants

assuming the variants to be independent. Once the parental

haplotypes are generated offspring haplotypes are generated from

the parental haplotype assuming no recombination between the

variants. Once offspring haplotypes are generated we only use the

genotypic data for simulating the disease status as well as for the

analysis. For the trio design we use offset m~0 i.e. only affected

offspring are used in our analysis and the total number of affected

offspring is fixed (n~500,1000). Similarly for sibpairs we only use

discordant sibpairs in the analysis, fixing the total number of

discordant sibpairs (n~500,1000). For the case-control design, we

use the affected offspring (generated for the trio design) as cases

and select an equal number of controls from the unaffected

offspring (from different families).

For analysis we use both the fixed threshold approach and the

no threshold approach. In this paper we use 0.5%, 1% and 5% as

cutoff values for fixed threshold analysis where the true DSVs have

frequencies less than 1%. Performance of the FBAT-multimarker

(FBAT-MM) is also evaluated as a fixed threshold test for these

threshold values. Note that since FBAT-MM is a multivariate test,

it’s not straightforward to construct a weighted version of the test

statistic. For the no threshold approach, we analyze all variants in

the region of interest. We evaluate performance of our method

under the trio design as well as the sibpair design and compare the

method against the fixed threshold method by Lin and Tang [8]

and a modified version of the weighted-sum statistic by Madsen

and Browning [5] for the case-control design. For both the case-

control methods, frequency of the variants is estimated using both

cases and controls based on recommendation by Lin and Tang [8]

- it should be noted that this method of estimating frequency is

different from traditional way used in Madsen and Browning [5]

which uses only controls to estimate allele frequency. We compare

both type-1 error as well as power under different settings.

Moreover we also investigate the effect of population stratifi-

cation which is potentially a problem for rare variants analysis. To

introduce stratification, first we simulate two subpopulations with

different distribution for the risk variants - for the first

subpopulation DSV allele frequencies are generated from the

Wright’s distribution above and for the second population

corresponding frequencies for DSVs are generated using the

Balding-Nichols model, [25] ensuring that the expected value of

the fixation index (FST) of the population is 0.01 or 0.05 - only the

results related to FST = 0.01 is shown here as FST = 0.05 is a more

extreme case of population stratification. Next, different values for

the baseline risk or eb0 = 0.05 or 0.01 are used for the two

subpopulations.

Results

Among the two weighting schemes, weighting by allele

frequency estimates performs substantially better than weighting

by number of informative families, so we only display results

related to the former. Table 1 contains descriptive statistics for

estimates of prevalence (P(Y = 1)) and total population attributable

rate (PAR) for all 50 variants, computed from 500 simulations

using 500 cases and 500 controls. Note that we use the affected

offspring (generated for the trio design) as cases and select an equal

number of controls from the unaffected offspring (from different

families). Total PAR for the genetic region is defined as the sum of

PARs over all DSVs, where

PAR(variant)~
P(variant in cases) - P(variant in controls)

1-P(variant in controls)
:

It can be seen that the overall prevalence is very close to 0.05,

the baseline risk value used in the simulation and the estimated

average PAR is between the range 0–0.05.

Table 2 compares the type-1 error for the family-based methods

for fixed threshold (unweighted) and no threshold (weighted by

allele frequencies) with the corresponding case-control based

methods (Lin and Tang [8] method and the modified version of

Madsen-Browning [5] respectively) and the FBAT-MM test. At

the 5% and 1% level with no population stratification all the tests

controlled the type-1 error well. The Q-Q plots (not shown here)

suggested that type-1 error was controlled at lower levels as well.

However when population stratification was introduced, all the

population-based statistic had a significantly high false positive

rate. For family-based tests, the p-values were well-controlled. The

type-1 errors were also well controlled under the sibpair design

Rare Variant Analysis for Family-Based Design
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(not shown here). FBAT-MM is very conservative; at alpha of

0.05, the degree of conservativeness increases as the threshold

lowers.

Figure 1 displays relative performance of the methods when no

population stratification is present and effects of all the DSVs are

equal. The number of affected subjects in these simulations is 500.

For the fixed threshold method, using a lower threshold value

(0.5%) in contrast to using the true threshold for DSV (1%) incurred

lower power in all settings for the unweighted method. Analysis

using a higher threshold value (5%) performed at par with and in

some setting better than analysis using the true threshold value (1%).

FBAT-MM method performed slightly better compared to the

proposed family-based methods when magnitude of the effect was

higher. Performance of the proposed family-based methods were

similar to the case-control method for the fixed threshold approach

and better than the case-control method when weighted methods

were used. Under admixture, the power of the case-control methods

increase due to the anti-conservativeness, but the power of the

family-based methods is unchanged (Figure S1).

Figure 2 shows the power in the case where the effect size of an

allele is inversely related to it’s frequency. The results are generally

unchanged, and the higher power of the 5% threshold is clearly

present for both family and case-control designs. Figure 3 shows

the results for 1000 trios and 1000 cases. The power is higher as

expected, and the general trends seen for 500 trios or cases are the

same, except that the difference between the 1% and 5%

thresholds are now much smaller. The 0.5% threshold continues

to have low power. This suggests that the higher power for the 5%

threshold is due to sampling error in the estimation of allele

frequency; the threshold is compared to the estimated sample

frequency. Under H0, the probability that an allele frequency of

1% would be estimated as greater than 1% with 500 trios is quite

low, but will increase under selection of cases only when the

alternative hypothesis is true, especially for higher effect sizes. In

general, the power of the threshold approaches depend strongly on

the selected threshold, the no threshold weighted methods were at

a par with the best of the threshold approaches, and the family and

case-control designs showed little difference in power. The results

for the sib-ship design (Figures S4, S5) show that it has

considerably lower power than the trio design, as we might expect

from previous comparisons in the case of common DSVs [13].

Discussion

In this paper we present a family-based method designed

specifically for rare variants. Family-based design are robust from

bias due to population substructure and is particularly useful for

rare variant analysis since the issue of population stratification is

more prominent for rare variants. Moreover since genotyping

error rates are still substantially high for sequencing technologies,

family-based design provides the additional advantage of checking

for Mendelian error [26,27]. Power simulations show that the

proposed methods perform reasonably well compared to existing

population-based methods. Both the weighted and the unweighted

methods for family-based design preserves the type 1 error when

population stratification is present.

Analysis of rare variants can be approached as a separate

problem from analysis of common variants i.e. after analysis of all

common variants in a genetic region, only rare variants can be

analyzed to look for an association signal. In this paper the

performance of unweighted method using a fixed threshold

approach illustrates the situation where a select group of rare

variants are analyzed. However the performance of the fixed

threshold approach is highly dependent on the choice of the

Table 1. Mean and standard deviation of estimates of
prevalence and population attributable fraction(PAR) from
500 simulations for different values of the true relative risk
(RR) associated with a variant, # of cases = 500 and no
population stratification.

DSV RR(X:s)( = ebbs )
Prevalence
[Mean (SD)] PAR [Mean(SD)]

10 1 0.050(0.002) & 0(0.005)

2 0.051(0.002) 0.012(0.010)

3 0.052 (0.003) 0.024 (0.016)

20 1 0.050(0.002) &0(0.007)

2 0.052(0.003) 0.026(0.015)

3 0.055(0.003) 0.050(0.023)

doi:10.1371/journal.pone.0048495.t001

Table 2. Type-1 error using normal cut-off at 0.05 and 0.01 level for 500 trios.

b0~ log (0:05)No population stratification,

a Fixed threshold Family-based* Fixed threshold FBAT-MM* Fixed threshold Case-control*
No threshold
Family-based

No threshold
Case-control

0.005 0.01 0.05 0.005 0.01 0.05 0.005 0.01 0.05

0.05 0.050 0.046 0.046 0.014 0.020 0.030 0.048 0.052 0.054 0.050 0.028

0.01 0.006 0.010 0.010 0.002 0.002 0.002 0.008 0.004 0.010 0.006 0.008

Population stratification, b0,Pop1~ log (0:05),b0,Pop2~ log (0:01), FST = 0.01

a Fixed threshold Family-based* Fixed threshold FBAT-MM* Fixed threshold Case-control*
No threshold
Family-based

No threshold
Case-control

0.005 0.01 0.05 0.005 0.01 0.05 0.005 0.01 0.05

0.05 0.048 0.042 0.048 0.018 0.037 0.033 0.260 0.220 0.106 0.048 0.092

0.01 0.014 0.008 0.020 0 0.002 0 0.100 0.086 0.036 0.008 0.034

*Threshold values 0.005, 0.01 and 0.05 were used for the fixed threshold methods.
doi:10.1371/journal.pone.0048495.t002
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threshold value and such dependence remains even when a

weighting scheme is applied along with the fixed threshold (not

shown here). Choice of a threshold value which is lower than the

true threshold value (i.e. the cutoff for the true DSVs) incurs

substantially low power in almost all settings. The choice of the

optimal threshold depends upon the unknown allele frequency and

effect size of the DSLs, as well as the sample. The weighted no

threshold approach avoids such choice problem. Moreover when a

suitable weighting scheme is used, the no threshold approach

performs at par with and sometimes better than the best

performing fixed threshold approach, especially when the variants

have unequal effects. This approach always outperformed the

corresponding no threshold case-control method i.e. the modified

Madsen-Browning approach. Hence we recommend using a

weighted approach with no threshold in the absence of any prior

knowledge about the frequency of the DSVs.

In this paper we have used a weighting scheme based on allele

frequency but other weighting schemes based on functional

information can also be used. It should be noted that, even

though in this paper we suggest a few different weighting schemes,

Figure 1. Power at 0.05 level for trios and case-control design - No population stratification is present and b0~ log (0:05). # of
cases = 500. DSV’s have frequency less than 0.01 and equal effects. FT.fam - trios with fixed threshold method using threshold 0.005, 0.01 and 0.05,
FT.MM - FBAT-MM test using threshold 0.005, 0.01 and 0.05, FT.CC - case-control with unweighted method using threshold 0.005, 0.01 and 0.05,
NT.fam - trios with weighted method using no threshold, NT.CC - case-control with Madsen and Browning method.
doi:10.1371/journal.pone.0048495.g001
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the optimal weighting scheme is unknown and dependent on the

underlying disease model. The user can possibly use an omnibus

test, where p-values are minimized over different choices of

weighting schemes. Another alternative to the fixed threshold

method can be using the variable threshold method suggested by

Price et al [6] but this would involve a permutation-based test

which can be complicated for ascertained family-based samples.

As noted earlier, our method uses similar components as the

FBAT multimarker test but there are a few key differences. FBAT-

MM was designed to analyze GWAS data or a fixed region such as

candidate genes. Since the degree of freedom in FBAT-MM test is

the number of markers being analyzed, power of this test may be

adversely affected when applied on sequence data with high

number of variants. In addition, the multimarker test statistic

requires a stricter assumption of normality compared to our

proposed method and seemed to be quite conservative in terms of

type-1 error under low threshold values. Despite these caveats,

FBAT-MM performed very well in the fixed threshold setting. An

attractive extension would be to develop a weighted method for

the no threshold approach. This should work especially well in the

setting where the DSL’s have both positive and negative effects.

A major issue associated with any collapsing based method is

the issue of variants in a region having different direction of effect

on the trait. This paper focuses only on the situation where all the

variants have effect in the same direction. However, if there are

variants with opposite direction (a mix of deleterious and

protective variants) the collapsing method can lead to lower

power. It should be noted that this particular case might have less

impact on the power of FBAT-MM. One way of improving upon

the proposed family-based statistic could be to construct two

different statistic for the two different direction of variants based

on the sign of their estimated effects, following the strategy used by

Ionita-Laza et al [10]. This issue has not been addressed within

the scope of this paper however it warrants further investigation.

Most rare variant association analyses are largely motivated by

the idea that variants under 1–5% allele frequency have a higher

proportion of functional variants [28]. Hence we assume that the

disease suseptibility variants have allele frequency less than 1%.

This is, however, an extreme case of alleleic heterogeneity and in

more realistic situation common variants can also be DSV’s.

Performance of the method has been illustrated in this paper for

binary traits only - however we can easily extend the method for

quantitative traits. For this setting permutation testing strategies

are also available which is beyond the scope of this paper.

Moreover in this paper, we have not discussed any existing

methods for correcting bias due to population stratification for

population-based methods. Most of these methods (e.g. principal

component correction) have been originally developed for

genome-wide association studies and could be extended to

sequence data in principle. But feasibility of these methods for

small genetic region has not been studied in detail. Moreover a

recent study [29] suggests that for rare variants these existing

method show suboptimal performance in correcting for population

stratification.

In this paper we only analyze nuclear families and we

estimate variance of the test statistic using empirical estimates

for covariance between markers summing the contributions

from the nuclear families. This estimation method can be

inefficient when the method is being used for a multi-generation

pedigree [30] or distant set of relatives. Secondly, we have used

an additive model for SNPs for the analysis - other models

(dominant or recessive) need to be investigated as well. Since for

rare variants dominant and additive models tend to be very

similar, we suspect the trends to be similar as well. For recessive

models, we suspect the power of all the methods to be smaller,

except when the true disease model is recessive. Thirdly, our

results show that the trio design is more powerful than a

balanced case-control design with equal number of cases but the

discordant sibpair design is far less powerful. This will incur a

higher genotyping cost for nuclear families compared to

population-based methods to achieve comparable power.

Figure 2. Power at 0.05 level for trios and case-control design - No population stratification is present and b0~ log (0:05). # of
cases = 500. DSVs have frequency less than 0.01 and varying effects. FT.fam - trios with fixed threshold method using threshold 0.005, 0.01 and 0.05,
FT.CC - case-control with unweighted method using threshold 0.005, 0.01 and 0.05, NT.fam - trios with weighted method using no threshold, NT.CC -
case-control with Madsen and Browning method.
doi:10.1371/journal.pone.0048495.g002
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Both the unweighted and weighted method for rare variants are

included as options in the FBAT package. It is currently available

as beta release and will be officially released soon in the future.

Supporting Information

Figure S1 Power at 0.05 level for trios and case-control
design - Mixture of two subpopulations,
b0,Pop1~log(0:05), b0,Pop2~log(0:01), FST = 0.01. # of cas-

es = 500. DSV’s have frequency less than 0.01 and equal effects.

FT.fam - trios with fixed threshold method using threshold 0.005,

0.01 and 0.05, FT.CC - case-control with unweighted method

using threshold 0.005, 0.01 and 0.05, NT.fam - trios with weighted

method using no threshold, NT.CC - case-control with Madsen

and Browning method. It should be noted that the inflated power

for case-control methods are also associated with inflated type-1

error under population stratification.

(DOC)

Figure S2 Power at 0.05 level for trios and case-control
design - Mixture of two subpopulations,
b0,Pop1~log(0:05), b0,Pop2~log(0:01), FST = 0.01. # of cas-

Figure 3. Power at 0.05 level for trios and case-control design - No population stratification is present and b0~ log (0:05). # of
cases = 1000. DSV’s have frequency less than 0.01 and equal effects. FT.fam - trios with fixed threshold method using threshold 0.005, 0.01 and 0.05,
FT.CC - case-control with unweighted method using threshold 0.005, 0.01 and 0.05, NT.fam - trios with weighted method using no threshold, NT.CC -
case-control with Madsen and Browning method.
doi:10.1371/journal.pone.0048495.g003
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es = 500. DSVs have frequency less than 0.01 and varying effects.

FT.fam - trios with fixed threshold method using threshold 0.005,

0.01 and 0.05, FT.CC - case-control with unweighted method

using threshold 0.005, 0.01 and 0.05, NT.fam - trios with weighted

method using no threshold, NT.CC - case-control with Madsen

and Browning method. It should be noted that the inflated power

for case-control methods are also associated with inflated type-1

error under population stratification.

(DOC)

Figure S3 Power at 0.05 level for trios and case-control
design - Mixture of two subpopulations,
b0,Pop1~log(0:05), b0,Pop2~log(0:01), FST = 0.01. # of cas-

es = 1000. DSV’s have frequency less than 0.01 and equal effects.

FT.fam - trios with fixed threshold method using threshold 0.005,

0.01 and 0.05, FT.CC - case-control with unweighted method

using threshold 0.005, 0.01 and 0.05, NT.fam - trios with weighted

method using no threshold, NT.CC - case-control with Madsen

and Browning method. It should be noted that the inflated power

for case-control methods are also associated with inflated type-1

error under population stratification.

(DOC)

Figure S4 Power at 0.05 level for discordant sibpairs -
No population stratification is present and b0~log(0:05).
# of cases = 500. DSV’s have frequency less than 0.01 and equal

effects. FT.fam - sibs with fixed threshold method using threshold

0.005, 0.01 and 0.05, NT.fam - sibs with weighted method using

no threshold.

(DOC)

Figure S5 Power at 0.05 level for discordant sibpairs -
Mixture of two subpopulations, b0,Pop1~log(0:05),
b0,Pop2~log(0:01), FST = 0.01. # of cases = 500. DSV’s have

frequency less than 0.01 and equal effects. FT.fam - sibs with fixed

threshold method using threshold 0.005, 0.01 and 0.05, NT.fam -

sibs with weighted method using no threshold.

(DOC)
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