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Abstract

Medicinal chemists’ ‘‘intuition’’ is critical for success in modern drug discovery. Early in the discovery process, chemists select
a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a
discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is
known about the cognitive aspects of chemists’ decision-making when they prioritize compounds. We investigate 1) how
and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with
each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these
decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead
compound from a set of ,4,000 available fragments. Based on each chemist’s selections, computational classifiers were
built to model each chemist’s selection strategy. Results suggest that chemists greatly simplified the problem, typically
using only 1–2 of many possible parameters when making their selections. Although chemists tended to use the same
parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in
compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were
undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically
significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the
problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding
the low consensus between chemists.
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Introduction

A core function of human cognition is to reduce the complexity

of the world to manageable proportions. In everyday life, we

ignore most of the information available in the environment in an

attempt to focus on what is likely to be most important. In some

professional contexts, this process is raised to an art form,

providing a useful context in which to investigate the human

cognitive response to complexity.

For instance, in research departments across the pharmaceutical

industry, medicinal chemists routinely sift through long lists of

compounds with associated data (biochemical activities, physico-

chemical properties, etc.) in order to prioritize some for further

optimization or study, and discard others in the search for new

drug candidates. [1] Although computational tools have been

developed to aid compound prioritization, [2] medicinal chemists

remain intimately involved in compound review. In order to

prioritize compounds, chemists must consider whether they

possess desirable physical chemical properties (e.g., solubility),

how easily they can be synthetically accessed and chemically

manipulated, and whether they can be optimized to bind a desired

target while avoiding undesirable biological properties such as off-

target interactions or mutagenicity. Indeed, guiding compounds

through all the potential pitfalls that lie between an initial

ensemble of hits and a drug candidate is an extremely complex

task, and the selection of the initial chemical starting points for this

endeavor greatly impacts the path that is explored, and the

ultimate success of a drug discovery campaign.

In this paper we examine how chemists tackle this problem as a

way of addressing the more general question of how humans deal

with cognitive complexity. Specifically, we asked chemists to sort

through ,4,000 chemical fragments over several sessions, and to

identify those they deemed attractive for follow-up. (Chemical

fragments are compounds with molecular weight,300, that are

smaller than typical drug-sized compounds. They are used as

starting points for building larger, more drug-like compounds.) We
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built classification models to best characterize which objective

properties of the fragments were most predictive of each individual

chemist’s decisions. In order to ascertain the potentially complex

patterns of features that chemists might find desirable or

undesirable, we applied two orthogonal classification algorithms:

semi-naı̈ve Bayesian (SNB) and Random Forest (RF). While both

methods are capable of identifying important features and

recognizing complex interdependencies between features, SNB is

more readily interpretable. Thus both methods were used to

identify important features, while SNB models were used to

visualize and interpret chemists’ preferences. We also asked

chemists to explain their decision-making. We aim to address three

major questions: 1) How and to what extent do chemists simplify

the problem of identifying promising chemical fragments to move

forward in the discovery process? 2) Do different chemists use the

same criteria for such decisions? 3) Can chemists accurately report

the criteria they use for such decisions? Below we provide a

background for these three questions.

Reducing Complexity
For most decisions we face in the real world based on sampling

available information, the world is much like a superstore – it

offers too much, and most of what’s offered does not meet our

specific requirements. Given this state of perpetual information

overload, people are bound to filter out a great deal of

information. Classic work in cognitive science has been critical

of this strategy, portraying human reasoning as plagued with

biases, based on heuristics that ignore relevant information, and

prone to fallacies. [4,5] This work claims that cognitive limitations

lead people to selectively attend to a subset of available

information and therefore to systematically make non-normative

decisions.

However, recent developments in the study of reasoning

question the idea that ‘‘less’’ always means ‘‘worse.’’ As

Gigerenzer, Todd, and the ABC research group proposed, [6]

the accuracy-effort trade off is not the only reason why people

resort to using incomplete information. In certain environments

(i.e., those characterized by high cue redundancy [a cue can be

thought of as a feature that signals something. For example, shorts

and cleats are cues that someone is a soccer player], low

predictability of outcomes, or with a small amount of evidence

relative to the number of potentially available cues), heuristic-

based reasoning that efficiently ignores some of the available

information and uses simpler computations can in fact lead to

more accurate decisions. [8] In one study, the predictive accuracy

of two relatively simply heuristics–‘‘tallying’’ and ‘‘take-the-best’’–

was compared to multiple regression, a more complex estimation

technique, in 20 scenarios ranging from predicting fish fertility to

fuel consumption. [10] (The tallying heuristic ignores cue weights

and simply counts the number of favoring cues, while take-the-best

searches through cues in order of validity and bases a decision on

the first cue that discriminates between the alternatives. Regression

methods weight the cues differentially, and uses all of them when

making predictions.) Regression was shown to be superior in fitting

the available data, but its flexibility came with the price of

capturing unsystematic patterns in the data, and it was ultimately

outperformed by both heuristic methods when it came to

prediction (see also [11]). Such ‘‘less-is-more’’ effects - where less

information leads to higher accuracy - have been observed in a

variety of settings. For example, expert sports players often make

better decisions under time pressure. [12,13] It appears that for

some kinds of problems and environments, ignoring pieces of

available information can be a signature of expert decision making

rather than faulty reasoning.

Consistent with this view, experts often use only a subset of

available information in decision making. This has been observed

in fields as diverse as medical radiology, [14] medical pathology,

[15] stock trading, [16], clinical psychology, [17] and grain

judging. [18–20] Moreover, experts appear to utilize fewer cues in

realistic decision-making settings than in more controlled exper-

imental settings. [21] For example, judges tended to use all

available information when reaching decisions in a simulated

courtroom setting, but only a small subset in an actual courtroom.

[22] Indeed, experts do not appear to differ from novices in the

amount of information they use, but rather what information they

use, suggesting that experts are more capable of discriminating

what is diagnostic from what is not [23].

In this paper, we address the question of how expert medicinal

chemists approach the problem of selecting promising compounds

from large sets. Do they aim for exhaustive assessment of each

compound, by taking into account all pieces of available

information, or do they simplify the problem by focusing on a

small subset of compound properties?

Consensus among Experts
Another question of interest is the degree to which highly-

trained and experienced medicinal chemists agree with each other

when making decisions about promising chemical fragments. In a

seminal paper, Einhorn argued that consensus among experts is a

mark of expertise, implying that a lack of consensus among experts

demonstrates a lack of expertise. [15] However, evidence from

previous work on expert agreement is mixed. First, consensus

proved to vary with the domain of expertise [24]: for example,

stockbrokers have demonstrated low consensus, [16] while weather

forecasters have demonstrated high consensus. [25] Shanteau

proposed that the degree of consensus among experts may depend

on the properties of the problem space, such as predictability [24,26].

Second, prior work on expert classification suggests that expert

specialization can affect consensus within a common domain of

expertise. For instance, tree experts with different specializations

(maintenance, landscaping, or taxonomy) overall agreed in their

classification of local tree species, but only landscaping experts

showed a distinct tendency to group trees based on their utilitarian

value. [27] Similarly, a comparison of Native American and

majority-culture fisherman in northern Wisconsin showed overall

consensus in their categorization of local freshwater fish species,

but also clear differences with respect to the use of morphological

(majority-culture) and ecological (Native American) dimensions

[28].

Turning to our domain of interest, medicinal chemistry, reports

of consensus between chemists from previous studies have been

varied. When assessing the synthetic accessibility of compounds,

chemists have demonstrated both a considerable amount of

consensus (the correlation coefficient r2 between chemists ranged

from 0.73 to 0.84), [29] and moderate consensus (r2 ranged from

0.50 to 0.63). [30] Lower consensus was observed when chemists

assessed the drug-likeness of compounds (r2 ranged from 0.40 to

0.56). [30] In a study most relevant to the current paper, chemists

asked to remove undesirable compounds from lists of putative

compounds for inventory acquisition showed little consensus. [31]

One difference in the present work is that in our case chemists

were asked to actively select desirable compounds, rather than

reject undesirable compounds. More importantly, we have gone a

step further by analyzing what criteria individual chemists use to

select desirable compounds, revealing why there is an apparent lack

of consensus, and the degree – if any – to which these criteria are

consistent across chemists.

Inside the Mind of a Medicinal Chemist
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Expert Awareness of Decision Criteria
The counsel of experts is often sought on subjects or items

within their field that are too complex for a non-expert to handle –

for example, bloodstock agents are consulted to assess how

promising a yearling thoroughbred horse is prior to purchase, or a

specialized doctor might be sought to diagnose a puzzling

symptom. These assessments are often summarized in verbal or

written reports, which in turn inform decisions. It would seem

almost ludicrous for an expert to make an important recommen-

dation based on their ‘‘gut feeling,’’ yet there seems to be

mounting evidence that the unconscious mind under certain

circumstances in fact outperforms the conscious mind. Research

suggests that the unconscious is especially good at making complex

decisions, [32] and that introspection can actually reduce the

quality of decisions. [33] It has also been reported that humans are

often unaware of the important factors that play a role during

complex problem solving. [34] Furthermore, people seem to be

ultimately less satisfied with choices that were consciously made,

compared to those made unconsciously. [35,36] Importantly,

complex pattern recognition, which is especially relevant to the

current study, can be obtained unconsciously. [37] This invites one

to reconsider the role of the conscious and unconscious mind when

expert chemists prioritize compounds. When faced with the

inherently complex problem of assessing the desirability of a

compound, are chemists aware of the criteria they use when

selecting compounds to carry forward during drug discovery

campaigns?

Results

Reducing Complexity
Chemists (N = 19) were asked to select desirable fragments from

8 batches of 500 fragments each. In order to determine the

number and type of properties that best predicted each chemist’s

decisions, we built semi-naı̈ve Bayesian (SNB) and Random Forest

(RF) classifiers based on individual chemist’s selections. Medicinal

chemistry relevant descriptors were used to train the classifiers, so

that the resulting models could readily be related to what types of

information (or parameters) were important during selections.

As a first step, we assessed the predictive accuracy of the SNB

and RF classifiers compared to benchmark classifiers built with

state of the art descriptors that are not as interpretable (Figure 1).

For the benchmark classifiers, we trained classifiers with extended

connectivity fingerprints (ECFP4) and simple physical properties

(ALogP, Molecular_Weight, Num_H_Donors, Num_H_Accep-

tors, Num_Rotatable_Bonds, and Molecular_FractionalPolarSur-

faceArea). The interpretable SNB and RF models compared

favorably in predictive accuracy, and in many cases outperformed

the corresponding benchmark. The high predictive accuracy of the

majority of the classifiers supports the notion that most of the

chemists evaluate compounds in an internally consistent manner.

For example, for the SNB benchmark, 15/19 models yielded a

ROC score .0.7 (Figure 1A, black).

The types of parameters used by the SNB and RF classifiers are

depicted in Figure 2: we refer to the most important parameter as

primary (stars), and all other parameters used as secondary

(circles). The descriptors that underlie these parameters are

reported in Tables S9 and S10. To our surprise, the majority of

the classifiers only used 1–2 types of information. For example, for

the SNB classifiers, the majority of classifiers used 2 parameters (16

chemists), while only a few used 1 (1 chemist) or 3 (2 chemists)

parameters. The RF classifiers suggest even fewer parameters are

important: the majority of classifiers use 1 (9 chemists) or 2 (9

chemists) parameters, while only 1 classifier uses 3 parameters.

This suggests that medicinal chemists reduce a complicated

problem into a more tractable one by assessing generally just a

1–2 parameters (or types of information) rather than several.

Value preferences of SNB models. One of the advantages

of our approach is that the SNB classifiers built for each chemist

could be visually investigated to bring to light each chemist’s

preferences in detail. It should be noted that two models that use

the same number of parameters can vary immensely in the

complexity or amount of information that they use, although the

type of information is the same. For example, two chemists might

select fragments based on size and polarity. In one case, a complex

strategy where interdependencies of these parameters might be

used (‘‘large and polar’’ or ‘‘small and nonpolar’’ compounds are

desirable), while another chemist might use a simple strategy

where these parameters are considered independently (‘‘large’’ is

desirable, and ‘‘highly polar’’ is desirable). We verified that our

SNB classifiers could represent both of these strategies (See

Methods and Fig. S2).

We found that in some cases when SNB classifiers were applied

to chemists’ decisions, models revealed relatively straightforward

preferences. For instance, compounds above a certain cutoff for a

particular property are favored, while those below it are

disfavored, or vice versa. For chemist 3, size (as measured by the

number of atoms) was the most important parameter (Fig. 2);

indeed larger fragments were more desirable (Fig. 3A–B). In

contrast, modeling revealed polarity to be the primary parameter

for chemist 12 (Fig. 2), who showed a strong preference for

compounds with a molecular polar surface area less than ,70 Å

(Fig. 3C–D).

In contrast to these straightforward preferences, we also

observed models that revealed more complex preferences,

revealing interdependencies between features. For example, the

primary SNB parameter for chemist 1 was identified as functional

groups (Fig. 2). Chemist 1’s selections were based on specific

combinations of these functional groups (Fig. 4). For example,

compounds with hydroxyl groups and tertiary amines were

deemed favorable, but if aromatic heteroatoms were also present,

they were deemed unfavorable. In fact, chemist 1 in general

disfavored compounds containing aromatic heteroatoms. If,

however, fragments containing aromatic heteroatoms also contain

a carboxylic acid, the compound was seen as favorable. This may

be due to the carboxylic acid increasing the attractiveness of the

otherwise unfavorable fragment since it might be seen as an

especially desirable chemical handle. Importantly, these interde-

pendencies would not have been recognized by our SNB classifiers

if the functional groups were considered independently rather than

jointly.

We then investigated how models built with the same parameter

compared between chemists. Seven chemists based their decision

largely on ring topology; Figure 5 depicts a subset of the most

desirable and undesirable values for a descriptor that jointly

measures the number of ring bonds, aromatic bonds, and ring

assemblies present in a fragment. Representative ring systems that

match each descriptor value are depicted. Once again, we see that

interdependencies between features are present in ring system

preferences. For example, for chemist 19, fused aromatic 6

member rings (11_11_1) are desirable, but when they are

connected to an aliphatic 6 member ring (17_11_2), they are

undesirable. We note that the rings are grouped together in a

chemically intuitive way when they are clustered based on the

chemists’ preferences. The chemists were also clustered based on

which descriptor values they preferred, revealing the underpin-

nings of some of the similarities (SMT) observed between chemists

(discussed below). For example, one of the highest similarities

Inside the Mind of a Medicinal Chemist
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observed was between chemist 11 and 19 (SMT = 0.47, Fig. S8),

and for the subset of values from chemists’ models depicted in

Figure 5, they are also the most similar and cluster together first.

The ring topology preferences of chemist 10 and 16, on the other

hand, are in clear contrast with each other. For example, chemist

10 favors 1–2 ring structures that are not fused, while chemist 16

disfavors these (Fig. 5). Furthermore, chemist 16 highly favors

certain fused tricyclic ring structures (17_12_1, 16_11_1, and

16_6_1, Fig. 5) which are disfavored by chemist 10. These

differences explain at least in part the low similarity between

chemist 10 and 16’s overall selections (SMT = 0.19, Fig. S8). Thus,

even if chemists use the same parameter to assess compounds,

their individual preferences can be quite different. We explore the

question of consensus between chemists, which these comparisons

foreshadow, in depth in the next section.

In sum, our models show that medicinal chemists appear to

have approached a complex decision-making problem regarding

the attractiveness of chemical starting points by reducing a

massively multidimensional problem space down to one or two

salient parameters (or types of information). In some cases, these

parameters represent a simple pattern of selections, while in others

more complex patterns have been identified, such as multiple

dimensions being considered jointly.

Consensus among Chemists
The question of consensus among chemists is a complex one;

accordingly we approached it in a number of ways. As a first step,

the agreement in parameters used by each chemist during

selections was examined. We then investigated the fraction of

compounds selected by each chemist. Next, we assessed the

similarity of chemist’s selections with themselves (consistency) and

Figure 1. Predictive accuracy of Semi-Naı̈ve Bayesian (SNB) and Random Forest (RF) classifiers trained on medicinal chemists’
selections. The average ROCS score for a 4-fold cross validation of each classifier is reported. A: SNB classifier built with medicinal chemistry relevant
descriptors (red) is compared to a benchmark Naı̈ve-Bayesian classifier that uses extended connectivity fingerprints and physical chemical properties
as descriptors (black). B: RF classifier built with medicinal chemistry relevant descriptors (blue) is compared to a benchmark RF classifier that uses
extended connectivity fingerprints and physical chemical properties as descriptors (black).
doi:10.1371/journal.pone.0048476.g001
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with each other (consensus). Finally, we investigated the amount of

consensus between chemist selections as a group, and applied the

cultural consensus model to assess to what extent individual

chemists agreed with the group.

Consensus on selection parameters. Because our classifi-

ers revealed which parameters best predicted individual chemists’

responses (Fig. 2), one way in which chemists might show

agreement is by relying on the same parameters to guide decisions.

For the following analysis, we rely on the SNB classifiers, as their

predictive accuracy was on average greater than that of the RF

classifiers.

One-parameter models. While 14 parameters were avail-

able for constructing models, only 9 parameters were actually

observed in the SNB classifiers for each chemist; 5 were observed

Figure 2. The parameters extracted from the SNB (red) and RF (blue) classifiers are compared with parameters designated as
important in chemists’ self-reports (grey). The primary parameters for the classifiers are depicted as stars, and the secondary parameters are
depicted as circles. The one-tailed Fisher exact probability test (p) is reported for each parameter (except chains and charge), indicating that the SNB
and RF parameters show agreement with each other, while the self reported parameters are independent of either of the classifier’s parameters.
doi:10.1371/journal.pone.0048476.g002
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in the one-parameter models. If preference for each parameter is

equally likely, we can take .111 (i.e., 1 out of a possible 9

parameters observed) as a hypothetical random probability of a

given chemist preferring a given parameter, and compare the

observed distribution to this prediction via binomial probability

(i.e., compute whether more chemists prefer a particular model

than expected by chance). Doing so, we observed that eight

chemists’ best one-parameter model utilized ring topology

(p = .0006). Four chemists utilized functional groups, and another

four used hydrogen bond donors/acceptors; these distributions of

parameter preferences did not differ from chance levels (p = 0.153).

Two-parameter models. Similar logic can be used to

examine agreement on two-parameter models; here, with 36

unique binary combinations of nine parameters, probability of

random agreement is .028. One chemists’ decisions could only be

described by a one-parameter model; eleven different two-

parameter models were needed to describe the remaining 18

chemists. Of these, more than expected by chance used ring

topology plus functional groups (N = 5, p = 0.0001). Likewise, more

chemists used ring topology plus hydrogen bond donors/acceptors

than expected by chance (N = 4, p = 0.001). No other two-

parameter model was observed more than expected by chance.

In sum, chemists showed moderate agreement on which

parameters were relevant to the decision process.

Fraction of compounds selected per chemist. One simple

metric of agreement is the fraction of compounds selected by each

chemist per batch. The fraction of compounds deemed suitable to

carry forward varied widely between chemists, ranging from 7% to

97% (average = 45%), though each chemist was relatively consis-

tent from batch to batch (average standard deviation = 7%, Fig.

S6A). This variance between chemists was not related to their ideal

library size (Fig. S7A) nor linearly related to the number of targets

a chemist had previously worked on (R2 = 0.05, Fig. S7B). The

fraction passed could, however, be explained by each chemist’s

reported selection strategy (Fig. S7C). Chemists who reported

selecting only the ‘‘best’’ fragments passed a lower fraction of

compounds (0.1360.07) than chemists that reported excluding

only the ‘‘worst’’ fragments (0.6160.34); those who reported

intermediate strategies passed an intermediate fraction of com-

pounds (0.3960.25).

Figure 3. Examples of selection preferences based on simple physicochemical properties, and the corresponding SNB classifiers. A:
Histogram of number of atoms of fragments selected by chemist 3 as good (green) or bad (red) starting points for drug discovery campaigns.
Frequencies are normalized by the total number of selected or unselected compounds, respectively. B: Bayesian score versus number of atoms for
minimal Bayesian model build for chemist 3. A positive score indicates a favorable number of atoms, while a negative score indicates an unfavorable
number of atoms. C: Histogram of molecular polar surface area of fragments selected by chemist 12 as good (green) or bad (red) starting points for
drug discovery campaigns. Frequencies are normalized by the total number of selected or unselected compounds, respectively. D: Bayesian score
versus molecular polar surface area bins for SNB classifier built for chemist 12.
doi:10.1371/journal.pone.0048476.g003
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Figure 4. The SNB classifier built using a descriptor subsumed by the functional group parameter is illustrated for chemist 1. Keys
that represent the presence (black) or absence (white) of chemical substructures are ordered from negative (bad) on the left to positive (good) values
on the right (A). The worst and best substructure keys are zoomed in on (B). Specific chemical substructures (tertiary amine – blue, aromatic

Inside the Mind of a Medicinal Chemist
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Similarity between chemists’ selections. We next exam-

ined how similar individual chemist’s selections were to themselves

(consistency) and to each other (consensus) when viewing the same

compounds. The modified Tanimoto similarity (STM), [38] which

ranges from 0 (entirely dissimilar) to 1 (identical), was used to assess

the agreement between chemist’s selections. This measure is

symmetrical, and therefore equally sensitive to both agreement in

selections and rejections. It also takes into account the fraction of

selections or rejections for a given comparison; for example, if

there is a low number of selections when comparing two chemists,

agreement in selections will be weighed more heavily than

agreement in rejections. For assessing consistency, a subset of

227 compounds that were present in more than one batch was

used. When chemists were compared to themselves, the similarity

between selections ranged from 0.37–0.82, with an average of 0.52

(Fig. S8A), indicating moderate consistency. To examine consen-

heteroatom – violet, hydroxyl – aqua, and carboxylic acid - orange) are highlighted for one of the worst keys and two of the best keys, and illustrative
examples of fragments that would be described by these keys are depicted (C).
doi:10.1371/journal.pone.0048476.g004

Figure 5. Ring topology SNB classifier comparison between chemists. The most favorable and unfavorable keys for the
RingBonds_AromaticBonds_RingAssemblies (RB_AB_RA ) descriptor model, which measures the number of ring bonds (RB), aromatic bonds (AB),
and ring assemblies (RA) present in a compound, were examined. Representative scaffolds that correspond to these keys are depicted, and are
clustered based on how chemists viewed them. The Bayes score for each models built on individual chemists for each key is reported in a heat map.
The favorable keys receive a positive score, while unfavorable keys receive a negative score.
doi:10.1371/journal.pone.0048476.g005
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sus between chemists, the entire set of 3,685 unique compounds

was used. When chemists selections were compared to each other,

the similarity ranged from 0.05–0.52, with an average similarity of

0.28 (Fig. S8B–D); this indicates substantial disagreement about

particular fragments. In sum, chemists were moderately internally

consistent in their evaluation of compounds, but the consensus

between chemists was low.

Consensus in compound selection or rejection. To

further investigate these patterns, we calculated the percentage

of chemists in agreement on each compound (Fig. S9A). Strikingly,

consensus (defined here as 75% of chemists’ agreeing on

acceptance or rejection) was reached for only 8% of the

compounds reviewed (313 compounds). Moreover, agreement

was asymmetrical; 1% of the compounds are considered good

while 7% of the compounds are considered bad (Fig. S9A). This is

not simply due to a bias in chemists rejecting more compounds

than they accept, since on average chemists accepted nearly half

(45%) of the compounds. Representative examples of the most

undesirable fragments are depicted in Figure S10.

Furthermore, NB models were built on the consensus ($75%

agreement) selections of all chemists (Table S11–12). Separate

models were built to identify consensus ‘‘good’’ compounds and

consensus ‘‘bad.’’ Models were built with extended connectivity

fingerprints (ECFP4). We anticipate that the features identified by

consensus selections of chemists for identifying undesirable

compounds will be particularly useful in removing undesirable

fragments from large collections of compounds, for example,

during compound acquisition or when designing focused in-house

screens of fragments.

Characteristics of high consensus chemists. We then

investigated to what extent individual chemists agreed with the

group as a whole on compounds where there appeared to be

consensus. The cultural consensus model (CCM) is an ideal

method for this purpose since it estimates the knowledge - what we

term estimated consensus - of respondents on a scale of 0–1 based

on the observed agreement between survey answers. [40] (The

cultural consensus theory assumes that high consensus is a sign of

knowledge (expertise), and thus high-consensus individuals are

termed high-knowledge individuals. We use the cultural consensus

model as an atheoretical tool to identify members that agree most

with the group, so we term them ‘‘high estimated consensus’’

individuals, rather than ‘‘high estimated knowledge’’ individuals.)

In this case the survey answers are the fragment selections. As a

prerequisite, a single underlying model explaining respondent’s

decisions must first be demonstrated. The CCM as implemented

in ANTHROPAC 4.0 [41] was used to test for consensus. As

expected, a single underlying model did not fit the entire set of

selections. By preselecting a set of high agreement compounds

(.75% agreement, 313 compounds), a one culture model could be

built, as attested by a large ratio of 6.9 between the first and

second eigenvalue. In general, an eigenvalue ratio greater than 3

to 1 indicates a single pattern of responses across questions. [42]

Importantly, by applying the CCM to the subset of high consensus

compounds, an estimated consensus of each chemist was obtained

which revealed a vast spectrum of agreement with the group,

ranging from 0.07 to 0.66. From this analysis we could also

identify a subset of chemists who agreed most with the group; from

this subset we could further investigate agreement among high

consensus chemists (see below).

We then sought to characterize the selection characteristics of

chemists who agreed most with the group. We found that chemists

with higher estimated consensus tended to select an intermediate

fraction of fragments (,0.2–0.7, Fig. 6). This is not entirely

intuitive, since the majority of compounds that the CCM was built

on were rejected compounds, so we might expect a high rejection

rate for chemists with high estimated consensus. We might also

suspect that chemists with high estimated consensus rely on the

same parameters when making selections. Since the ring topology

metric was the most common primary SNB parameter for

chemists (Fig. 2), it makes sense intuitively that it should be an

important property to chemists with the highest estimated

consensus. Indeed, ring topology was identified as the primary

SNB parameter for the chemists with the highest estimated

consensus (chemist 6, 8, 11, and 19), and as a secondary SNB

parameter for the chemists with the next highest estimated

consensus (chemist 1, 15, and 18). We also noted that a chemist’s

estimated consensus was unrelated to the predictability of the

chemist’s selections (color-coded, Fig. 6).

We next assessed to what extent the consensus between chemists

with high estimated consensus was enhanced compared to the

consensus between the same number of chemists selected

randomly when considering the entire dataset of selections (Fig.

S9B and S9C). The chemists with high estimated consensus

(chemist 1, 6, 8, 11, 15, 18, and 19) showed a significantly greater

agreement in undesirable compounds (Fig. S9B). The agreement

in desirable compounds, however, was no greater than the

agreement between chemists selected randomly (Fig. S9C). This

reinforces the notion that while there seems to be agreement in

what is undesirable, there does not appear to be agreement in

what is desirable.

In sum, the overall consensus between chemists is low, and what

little agreement there is among chemists seems to be regarding

undesirable fragments.

Chemists’ Awareness of Decision Criteria
To assess the extent of chemists’ self-awareness, we compared

the parameters reported by chemists to those identified by our

SNB and RF classifiers (Fig. 2). The average number of

parameters reported by each chemist (8.162.2) was much larger

than the number of parameters identified by the SNB (2.1 6 0.5)

or RF (1.660.6) classifiers for each chemist, which the two-tailed

paired sample t-test indicates as significant (p = 9.1610210and

p = 5.7610210, respectively). Indeed every single chemist reported

properties that were never identified as important by our SNB or

RF classifiers. In addition to the properties reported in Figure 2,

there were simple parameters (chiral centers and rotatable bonds;

included in averages above) and more complex parameters (shape

and complexity); not included in the averages above) that were

reported by chemists though our approach never identified them

as being useful in reproducing selections (Figure S11). Further-

more, Fisher exact probability tests indicated that for each

parameter reported in Figure 2, the SNB parameters or RF

parameters were independent of the self-reported parameters (p-

values range from 0.46–0.74 for SNB or 0.22–0.80 for RF,

excluding the Novelty/IP parameter, Fig. 2), while indicating that

the SNB and RF parameters are consistent with each other (p-

values range from 0.0058–0.11). In addition, for 12/19 chemists,

the primary parameters identified by SNB and RF are in

agreement with each other. In other words, there was no

systematic relation between the parameters reported by the

chemists and those indicated by our modeling, although the

parameters identified by the SNB and RF classifiers were

consistent with each other.

Perhaps one of the more astounding discrepancies from above,

chemist 3 reported that several properties were important, but

failed to report that size played any role during selections. Our

SNB and RF classifiers both revealed that size, an especially

straightforward parameter to assess, was the most important
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feature in distinguished chemist 3’s selections from rejections

(discussed above).

The lack of agreement between the parameters identified as

important by SNB or RF classifiers and self-reported parameters

for many chemists suggests that medicinal chemists are often

unaware of the principal factors that influence their selections.

Discussion

Overview
In this paper we explored how medicinal chemists categorized

chemical fragments as desirable or undesirable starting points for

development into lead compounds. This allowed us to not only

investigate the cognitive basis of this important aspect of drug

discovery, but also to address basic issues in cognitive science. We

focused on three major questions: 1) to what extent, if any, do

chemists simplify the problem of identifying promising chemical

fragments to move forward in the discovery process? 2) Do

chemists agree with each other about the criteria used for such

decisions? 3) Can chemists accurately report the criteria they use

for such decisions?

Reducing Complexity
Our results clearly show that chemists greatly reduced the

complexity of the problem they were solving. Potentially, one

could utilize dozens of parameters (or types of information) to

make decisions about fragment suitability. We specifically queried

14 possible parameters in our modeling, 9 of which were used at

least once by at least 1 chemist according to either the SNB or RF

classifiers. Strikingly, our modeling suggests that the vast majority

of chemists only used 1–2 parameters to categorize compounds. In

other words, chemists transformed a massively complex categori-

zation problem into a tractable one- or two-dimensional problem.

This does not seem to be a bias of our approach since applying our

method to simulated classifiers indicated that we could correctly

identify at least 4 parameters used in categorization. Furthermore,

we used two types of orthogonal classification algorithms to reach

these conclusions. It should also be pointed out that SNB models

using only 1 parameter can capture rather complex preferences, as

in the case of chemist 1’s functional group model. Even so, it is

clear that a one parameter model does not use all of the types of

information that are available. Category formation based on one

dimension, as opposed to many, has been observed in previous

psychology experiments as well, even when subjects were asked to

use all dimensions when categorizing items [43].

Consensus among Chemists
We found evidence of moderate agreement among medicinal

chemists with respect to the parameters that best modeled their

decisions about chemical fragments. For example for the SNB

classifiers, eight chemists’ primary parameter was ring topology,

and out of 36 possible two-parameter models, two accounted for

47% of chemists. However, we found little agreement with respect

to decisions about particular fragments. Only 8% of fragments

were accepted or rejected by more than 75% of chemists, the

similarity among chemists’ decisions was low, and the cultural

consensus model failed to reveal a single underlying model of

chemists decisions for the complete fragment set. In other words,

even if chemists used the same feature to categorize compounds–

which they generally did–they often preferred different values for

these features. Moreover, more agreement among chemists was

observed regarding what constitutes an undesirable fragment.

Figure 6. The selection characteristics of chemists with high estimated consensus. The cultural consensus model was applied to a subset
of fragments (311) with .75% agreement by chemists. The estimated consensus obtained by this method is plotted against the fraction of fragments
passed by chemists for the entire survey. Each shape describes the primary SNB parameter used to reproduce chemists’ selections, and the color
depicts the ROC score of naı̈ve Bayesian classifiers built using ECFP4 as a descriptor for each chemist. A subset of high consensus chemists is above
the dashed grey line.
doi:10.1371/journal.pone.0048476.g006
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We also applied the cultural consensus model to identify

individuals that agreed the most with the group as a whole, and to

assess the amount of agreement between the chemists. Applying

the model to a subset of compounds with high agreement between

chemists ($75%) was necessary in order to obtain a one culture

model. It should be noted that the majority of these compounds

were deemed undesirable (265/313, Fig. S9A). When we looked at

the agreement on desirable and undesirable fragments (for the

entire set of survey compounds) between a subset of chemists with

high estimated consensus versus a subset of randomly selected

chemists, the agreement in the fraction of undesirable compounds

was greater, but there was no difference in the fraction of desirable

compounds (Fig. S9B–C). These results imply that while there is

some agreement regarding undesirable fragments, there does not

seem to be a significant amount of agreement regarding desirable

fragments. This may be an example of negativity bias – ‘‘bad’’

information tends to be processed longer than ‘‘good’’ informa-

tion, and stronger memories are formed of ‘‘bad’’ items. [44,45]

Perhaps chemists have retained more knowledge of chemical

motifs or properties that literature refers to as undesirable, or that

they have had bad personal experiences with, and also paid more

attention to these undesirable motifs or properties while they were

processing the compounds. In some sense this finding also seems to

contradict the notion that chemists tend to recycle privileged

scaffolds that they find attractive, ultimately constraining the

diversity of chemical series and libraries. [46] It suggests that while

individuals have preferences for specific scaffolds, as evidenced by

the highly predictive SNB and RF classifiers that were built, these

biases are not often shared between chemists.

As mentioned in the introduction, a lack of consensus does not

necessarily reflect a lack of expertise, but rather may be a result of

the particular problem space under investigation. [24,26] Three

structural factors that contribute to lack of consensus among

experts are especially relevant to compound prioritization in drug

discovery.

One factor that leads to low consensus is if a single solution does

not exist. [24] This is especially true in drug discovery, as

evidenced by multiple drugs often being developed for a single

target. In light of this, chemists may be playing to their own

strengths. In the same way that a master chess player must

navigate his chess pieces towards victory, and opens a game in a

manner that compliments his own style of play, a medicinal

chemist, in the context of a project team, must navigate the path of

compounds that he selects to work with towards more optimal

properties. The path that one chemist might take likely differs

from another, due to the diversity of knowledge and skill sets that

an individual brings to the table.

A second factor that leads to low consensus is if the basic science

in a field is still evolving. [24] This is particularly true of drug

discovery – for example, some topics that have recently garnered

much attention that are especially relevant to the current paper

are which scaffolds are the most promising in drug discovery, [47]

what are the optimal properties of chemical starting points [48] or

drug candidates, [49,50] what are the actual properties of

compounds explored by medicinal chemists and how have they

varied over time, [51] and how does the subset of chemical

reactions that tend to be employed in drug discovery constrain the

exploration of chemical space. [52,53] These studies bear

testament that there is still a great deal to learn about the basic

science of drug discovery.

A third structural factor that results in low consensus is when

experts work in dynamic situations with evolving constraints. [24]

In drug discovery, the intended targets of therapeutics are

constantly changing, and thus the chemical matter employed to

perturb these targets is constantly evolving as well. Furthermore

the constraints placed on what defines a suitable therapeutic

compound have changed over time. More than ever, researchers

are aware of undesirable on or off-target effects, and in many cases

are able to interrogate them, ultimately raising the bar for target

specificity and minimal toxicity. Indeed, it has been argued that

many historically successful therapeutics such as aspirin and

acetaminophen would not be considered suitable therapeutics in

the current drug discovery environment [54].

Tying Complexity Reduction and Consensus Together:
Goal Derived Categories

One interesting way to frame both the complexity reduction

and consensus results is in terms of goal-derived categories. Goal-

derived categories unite otherwise diverse entities in the service of

a particular goal; for instance, shirts, novels, and toothbrushes are

all things to pack in a suitcase. [55] Like common taxonomic

categories (e.g., dog, tree, car), goal-derived categories have been

shown to exhibit prototype structure (i.e., some exemplars are

more prototypical or ‘‘better’’ members of the category than

others). However, different factors determine prototype structure

for the two types of categories. The best examples of taxonomic

categories tend to be similar to many other members; they

represent the central tendency of the category. In contrast, the best

examples of goal-derived categories tend to be instances that

satisfy specific ideals–i.e., instances that have characteristics that

serve the goal optimally. Another determinant of typicality for

goal-derived categories is frequency of instantiation, or how often

an instance is encountered as a member of the category.

It’s plausible that our chemists are deciding whether or not the

target fragments are members of the goal-derived category

promising fragments for drug discovery follow-up. If so, chemists should

make decisions based on how well fragments satisfy ideals, and

their frequency of instantiation as promising leads. [56] In our

case, ideals are characteristics that fragments should possess if they

are considered desirable for lead development (e.g., synthetic

accessibility, facile derivatization, etc.), whereas the frequency of

instantiation could be thought of as the number of times a chemist

encounters a compound or chemical motif and associates it with

being desirable or undesirable for lead development. Our results

show that although chemists tend to converge on a small subset of

possible parameters for making these decisions, they show little

agreement on the optimal values for these parameters. This lack of

consensus could arise from several sources.

First, the complexity of what constitutes an attractive starting

compound for optimization in the drug-discovery process may

have led to differences in the ideals that chemists sought to

optimize. Second, people often optimize more than one ideal

during categorization, [55] and it is likely that in our case

individual chemists may also weight the importance of multiple

ideals differently. For example, one chemist might place more

emphasis on making sure a fragment can be easily evolved, while

another might place more emphasis on reducing potential toxicity.

Furthermore, chemists may also associate different parameters

with these ideals. For instance, two chemists may both desire a

fragment that specifically interacts with a target, and one chemist

may view shape as an important feature, while another may view

hydrogen bonding interactions as more important.

One reason that chemists might share the same ideals (e.g.,

synthetic ease), while favoring different values for these ideals may

be due to their personal experience (e.g., synthetic transformations

they are most familiar with). In other words, the distribution of

frequencies of instantiation is undoubtedly different for individu-

als, and this may be reflected by different optimal values. If
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chemists have worked in different target areas, they may have been

exposed to different chemotypes or functional groups. [47,57] A

follow-up questionnaire was employed to identify which target

areas survey takers had experience in (Fig. S12). The diversity of

backgrounds that was observed may have lead chemists to view

different motifs that are commonly encountered while working on

specific drug target areas as ‘‘druglike,’’ privileged, or easy to work

with. It is also likely that even if chemists have been exposed to the

same target classes during their professional careers, they may

extract different features from desirable compounds during

learning based on their backgrounds [58,59].

There is likely a complex relationship between a chemist’s ideals

and the parameters that were identified by the SNB and RF

classifiers as indicative of their selections. In specific cases,

however, by visually inspecting the individual SNB classifiers, it

is tempting to extrapolate ideals for individual chemists based on

the ideal’s impression upon optimal values for specific parameters.

For example, in one model (chemist 12), compounds with a polar

surface below a certain threshold are desirable, and those above it

are undesirable. This ideal has been stated in drug design

literature: the polar surface area of a drug-like compound should

not be too high, as it negatively impacts oral bioavailability

[60,61].

Chemists’ Awareness of Decision Criteria
Chemists were largely unaware of the factors that influenced

their decisions about compounds. Chemists reported that they

relied on more parameters than they actually did, according to the

SNB and RF classifiers, and there was little agreement overall

between the properties chemists identified and the parameters that

predicted their decisions. We should point out that for specific

instances parts of the self reports were extremely accurate. For

example, chemist 10 disclosed a list of features largely related to

the ring topology parameter. This list was written down before

evaluating the first set of compounds, and was used as a reminder

throughout the exercise. Although the reported features were

evident in chemist 10’s selections, several other self-reported

parameters were not identified as important. In stark contrast to

chemist 10 is a chemist who reported that sometimes, in addition

to the specific properties they reported, they trusted their ‘‘gut

feeling.’’ Perhaps, since a predictive model could be built for this

chemist, this ‘‘gut feeling’’ is really based on previous unconscious

learning. As discussed in the introduction, such lack of awareness

of the factors affecting decisions is fairly characteristic of human

decision-making in complex situations. Furthermore, experts have

also been described as inarticulate about the process used to make

decisions. [62] In our study, the intuition was clearly rooted in

expertise: a compound is unlikely to ‘‘strike’’ anyone as promising

or unpromising unless one has extensive record of performing such

complex evaluations. This raises an interesting question: would

novice chemists be more or less aware of the parameters they

based their decisions on than experts proved to be? If lack of

expertise makes the compound evaluation a slower, more effortful

process, we can expect novices to be more accurate in reporting

the parameters that influenced their decisions - unless they are put

under time pressure forcing them to rely on their fast (non-expert)

intuitive thinking. Another question is why the participants

overestimated the number of parameters they relied upon.

Perhaps, if the self-reports were based on post hoc rationalization

of already made decisions, the reports were driven by a meta-

expectation about the average number of parameters an expert

should consider in such a situation in order to arrive to a justified

decision. If chemists reading this paper find themselves surprised

at the small number of parameters their colleagues used, their

reaction informally testifies to the existence of that very meta-

expectation.

Implications and Conclusions
We found that chemists tend to exhibit stable decision bias by

consistently considering one or two parameters rather than many.

What does this imply for drug discovery? As discussed by

Gigerenzer & Brighton, [8] stable bias is sometimes preferable

over optimization strategies. Both stable bias and over-fitting the

data with an excessive number of parameters contribute to the

overall amount of predictive error. A simple strategy that avoids

over-fitting by accepting bias can in the end turn out to be more

successful. This principle lays ground for many ‘‘less-is-more’’

effects, where ignoring parts of available information leads to a

more accurate prediction. As Hertwig & Herzog put it, ‘‘the art is

to ignore the right information.’’ [63] What should and shouldn’t

be ignored is determined by the specific problem one is trying to

solve. Under the approach of ecological rationality, [8,64] simple

and complex decision strategies should be compared not in terms

of overall adherence to domain-general principles of logic, but

based on how well they fare in specific environments. This leads

one to question whether drug discovery is a good domain for the

simplified decision strategies that chemists are using. Future studies

aiming to address this might entail associating some measure of

success with compounds, and comparing the ability of chemists

versus potentially more complex computational protocols in

selecting desirable chemical starting points.

As discussed earlier, drug discovery is a multiple solution

problem space, and individual chemists can use their unique

strengths to explore chemical space while optimizing lead

compounds. That being said, a problem arises when a personal

bias does not lead one down a fruitful path. Consequently, our

research has implications for the education of medicinal chemists

and the structure of project teams. When hiring young chemists to

practice medicinal chemistry, pharmaceutical companies tend to

prefer a strong organic synthesis background over all other skill

sets, even over a medicinal chemistry background. [65–68] It is

thought that skills perceived as secondary can be taught on-site,

post-employment. [65–68] Thus, it may be beneficial to expose

medicinal chemists to diverse chemical motifs, and how they have

been advanced in the industry, in order to broaden the toolbox of

interesting chemical starting points for individual medicinal

chemists. Furthermore, project teams should be aware that if

one chemist’s influence is dominating how chemical space is

explored, the chemist’s personal bias may not necessary lead down

a beneficial path, although that path may exist. As such, it may be

advantageous to rely on two to three chemists with different

backgrounds and synthetic strengths in identifying interesting

series of initial compounds to explore, and then ultimately

pursuing the most promising leads once additional knowledge

has been generated.

The chemical space available for exploration by medicinal

chemists in the search for therapeutics is vast. This search process

serves as a real-life example of humans making decisions about the

unknown, based on limited knowledge, which holds huge potential

for reward. Inherent in this search is the reduction of complexity to

a manageable number of dimensions. Here we have revealed in

part how experts have cognitively tackled this daunting problem,

and identified in detail the parameters employed when prioritizing

which compounds to explore during drug discovery. By focusing

on how humans explore, interact, and understand chemical space,

rather than solely viewing drug discovery as a sterile process where

the ‘‘right’’ answer or compound will eventually emerge, it is

hoped that the human biases inherent in drug discovery may be
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leveraged or mitigated to the advantage of the discovery of

therapeutically beneficial chemical matter.

Methods

Overview
We sought to illuminate which molecular features influence the

attractiveness of a compound to a chemist by statistically

interrogating the choices made by individual chemists asked to

review ,4,000 chemical fragments (compounds,300 MW), and

select fragments they would be willing to carry forward in a lead

discovery effort. Fragments are ideal for this purpose as they are

less complex than larger compounds, with fewer potentially

conflicting features, allowing easier interpretation of chemists’

decisions. Furthermore, a survey of a given number of fragments

covers a much greater fraction of the possible fragment chemical

space than a survey of the same number of small molecules would

cover of possible small molecule chemical space, suggesting that

models derived from the study may be more transferable. A study

based on fragment selections is also especially relevant to the

pharmaceutical industry as many companies now use fragment

based screening as a method to identify interesting chemical

scaffolds, [69–71] and the number of hits is often high enough to

warrant prioritization of a subset of fragment hits. [72] We

simplified the selection exercise by not including biochemical

information that might influence selections. In our case, the

selections should solely rely on the structures of the fragments that

are presented, and how chemists assess whether they would want

to explore derivatives of such fragments. Here we describe the

surveys, follow-up questionnaires, SNB and RF classifiers, and

validation of the classifiers.

Fragment Set Preparation
Fragment-sized compounds (MW#300) were selected from the

Novartis archive and filtered based on physicochemical property

cutoffs (ClogP, number of hydrogen bonding groups, etc.) and

undesirable substructures based on in-house and external knowl-

edge (e.g., epoxides). In addition, the number of chemical handles,

diversity, chemical attractiveness (based on in-house Bayesian

models trained on medicinal chemists assessing HTS hit

compounds) were used to select the compounds. The fragments

were further required to have prototypes in the archive. The

identity, purity and solubility of the compounds were determined

by NMR, and additional profiling included binding to a CM5

BiaCore chip. The results from the BiaCore and NMR

experiments were used to filter for acceptable compound quality

control (QC) and solubility, respectively, yielding a set of ,3,700

compounds for further analysis and selection by chemists.

Survey
The ,3,700 molecules above were separated into eight batches.

Previous experience with interactive selection of attractive

fragments by chemists suggested 500 molecules was an optimal

batch size for visual evaluation. 227 molecules were sent more

than once (in different batches), in order to assess consistency in

chemists’ selections when they viewed the same compound on

separate occasions.

The molecule batches were created in the order BiaCore and

NMR profiling proceeded and imported into ICM sessions

(internally modified version of ICM Chemist from MolSoft [73]).

ICM offered a chemically aware spreadsheet that could be toggled

into an interactive structure grid where cells could be selected and

table position navigated with keyboard (in addition to mouse) to

minimize fatigue. The grid could be interactively resized to show

the desired number and size of molecules on different displays. By

default, upon opening a session, the view was in grid mode, with

compound structure, ClogP and number of heavy atoms displayed

(Fig. S1). All molecules were deselected by default. Before starting,

each user was asked to shuffle the molecules into a new random

order via a hyperlink in the session, to reduce order bias (first

molecules receiving more attention than last) in the user group as a

whole. To select a molecule, users needed to press the number 1

key and to undo selection, 0. The session could be saved and work

continued at another time. Upon completion, the user was asked

to upload the session to a shared location.

Chemists were invited to participate in the selection panel via an

e-mail message from senior chemistry management. 19 chemists

evaluated at least 7 out of the 8 batches of compounds. They were

located at 3 Novartis sites: Basel (Switzerland), Cambridge (MA,

USA), and Emeryville (CA, USA). They were all of doctorate-level

training, and had various levels of experience working in industry.

The target areas that the chemists had worked on are reported in

Figure S12. The molecule batches were sent to the panel of

chemists over two months. Participants were asked to pick

molecules they would be willing to follow up if they were hits in

a fragment screening campaign. Participants were purposely given

vague instructions on how they might assess each fragment,

suggesting they might consider things like whether fragments were

sufficiently functionalized so that they could interact with binding

sites, whether they could be grown, and their shape. No guidance

was given about number of molecules to select. Selections from the

uploaded ICM sessions were extracted with an ICM script into

ASCII files and further processed with Pipeline Pilot 8.0 [74].

Follow-up Questionnaire
After completing the fragment surveys, chemists were asked to

complete a web-based follow-up questionnaire that consisted of

both open-ended and closed-ended questions. A number of items

on the questionnaire were based on preliminary findings from our

classification models, although we did not share any of our results

with the participating chemists.

Simulated Classifiers
It has been demonstrated that great care must be taken when

attributing meaning to features used by classification algorithms.

[75] Thus, simulated classifiers with known selection preferences

were built to validate that classification models would be able to

correctly extract what parameters were used during compound

selection, prior to deriving classification models based on each of

the chemists’ selections. The simulated classifiers categorize

fragments as desirable or undesirable fragments, and those

category labels are then used to build classification models (SNB

or RF) that would hopefully recapitulate the criteria used to build

the fragment sets. The simulated classifiers assessed the same

fragment set as the chemists, and selected desirable and

undesirable compounds based on predefined criteria. For each

compound, the classifier first assessed whether the compound fell

into the desired chemical space (i.e., passing specific physical

chemical property cutoffs, not possessing undesirable substruc-

tures, etc.), and then classified the compound as good or bad. To

build noise into the classification to more realistically represent

human decisions, desirable and undesirable compounds were

misclassified 5% of the time.

The first set of simulated classifiers selected compounds based

on 1–4 parameters (Table S1). The purpose of these classifiers was

to assess how accurately SNB and RF classifiers could identify the

type and number of parameters being used by the simulated

classifier.
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A second set of simulated classifiers was designed in order to

assess the ability of SNB classifiers to correctly classify compounds

when there are interdependencies between attributes. The

simulated classifiers selected fragments as good or bad based on

1–2 attributes, with selection patterns varying from simple to

complex. The two attributes of the compounds that were used by

the simulated classifiers were number of atoms (size parameter)

and molecular polar surface area (MPSA, polarity parameter).

Four selection criteria for desirable fragments were assessed

(depicted from left to right in Fig. S2A) using the following

pseudocode:

1) number of atoms$15

2) MPSA,60

3) number of atoms$15 AND MPSA,60

4) (number of atoms$15 AND MPSA$60) OR (number of

atoms,15 AND MPSA,60)

The last selection strategy is an example of the classical XOR

(exclusive ‘or’) nonlinear problem [76].

A third set of simulated classifiers which selected fragments as

good or bad randomly was used to ensure that the SNB or RF

classifiers identified legitimate parameters used during selections.

We tested three different cutoffs for the random classifiers to use

for the fraction of fragments to select (0.1, 0.5, 0.9).

Classification Models
Pipeline Pilot 8.0 [74] was used to build all classification models

based on either simulated classifier or chemists’ selections. A 4-fold

cross validation was carried out for all classifiers as follows. The

survey responses were divided into 4 training and test sets (Table

S2), and after training a model, the average area under the

receiver operating characteristic curve (ROC score) for the test sets

was used to assess a given model’s predictability (for example,

Fig. 1).

Descriptors and parameters. 72 medicinal chemistry-

relevant descriptors (Table S3) were assessed or developed in

order to more readily elucidate what properties (e.g., number of

chemical handles, ring topology, number of hydrogen bond

donors or acceptors, etc) needed to be included as descriptors in

order to build accurate classification models for each individual

chemist. Many of these descriptors were directly calculated with

standard components available in Pipeline Pilot 8.0. A number of

these descriptors, however, were either obtained by combining

values calculated by Pipeline Pilot into a fingerprint, so that they

were considered jointly, calculated by a stand alone program, or

calculated with an in-house Pipeline Pilot protocol. Some of the

less straightforward descriptors are described in Tables S4

(chemical handles) and S5 (functional groups).

For semi-naı̈ve Bayesian (SNB) classifiers, it was necessary to

consider a number of descriptors jointly by combining individual

values into a fingerprint (for example ring bonds, aromatic bonds,

and ring assemblies: RB_AB_RA, illustrated in Fig. 5), in order to

model interdependencies. This is not necessary for random forest

(RF) classifiers, since interdependencies are encoded in the

structure and splits of each tree. Thus, while RF classifiers used

the same descriptors, they only needed to be used independently

when training the RF. Continuous descriptors were binned into

,5 bins prior to training the RF classifier.

In order to identify what type of information was used to classify

compounds, each descriptor is mapped to one or more general

parameters. For example, both molecular weight and number of

atoms map to the parameter ‘‘size.’’ In this way, descriptors

identified as important by a classification model can then be

converted to parameters that they relate to, elucidating the type of

information used during classification by a medicinal chemist. A

total of 14 parameter classes were defined, namely ring topology,

functional groups, h-bonding groups, size, polarity, lipophilicity,

synthetic accessibility, novelty/IP, chains, charge, chiral centers,

complexity, rotatable bonds, and shape.

For the accuracy benchmark models for both SNB and RF,

extended connectivity fingerprints with diameter 4 (ECFP4) were

used in combination with simple physical properties (ALogP,

Molecular_Weight, Num_H_Donors, Num_H_Acceptors, Num_-

Rotatable_Bonds, and Molecular_FractionalPolarSurfaceArea) as

descriptors to train a naı̈ve Bayesian (NB) or RF classifier,

respectively. The ECFP descriptor takes into account all

substructures of a compound, and has been well established as

input to classification models in accurately separating classes of

compounds. [77] While the ECFP descriptor lends itself to

accurate model construction, the resulting models are not readily

interpretable in terms of what general parameters might be

important. Thus, classifiers constructed with ECFPs stand as

excellent accuracy benchmarks that other more interpretable

models might achieve.

Semi-naı̈ve Bayesian (SNB) classifiers. SNB classifiers

were developed in order to generate models that are easily

interpretable like their progenitor, naı̈ve Bayesian models, but also

capture interdependencies of attributes that naı̈ve Bayesian models

cannot. [76] Our classifiers are semi-naı̈ve in the sense that

features are often considered jointly rather than independently,

and we perform a feature subset selection on the descriptors that

are used by the classifiers in order to remove redundant descriptors

that will lower overall model accuracy, [78] and to remove

features that do not contribute to selections.

In all, 192 classifiers were first built for each chemist using one

or more medicinal chemistry relevant descriptors. It would not be

feasible to test all descriptors in all possible combinations, so a

number of avenues were used for focusing on the most relevant

models to build. In some cases all combinations of a few

uncorrelated descriptors were considered. In addition, a number

of classifiers were designed by combining descriptors that 1)

showed some enrichment in desirable or undesirable fragments for

at least one chemist and 2) were not correlated with each other.

The enrichment of a particular descriptor could readily be assessed

by the magnitude of a ROCS score for a model based on that

descriptor; all descriptors that resulted in ROCS scores .0.6 for at

least one chemist were tested in combination with other

descriptors. To assess for correlation between descriptors, we used

a PCA analysis of the descriptors, various correlation statistics, and

expert knowledge. Thus, two descriptors that are known to

measure similar properties (say number of atoms, and molecular

weight), were not paired together. This was not done in a rigorous

way, however, because even if two descriptors that are somewhat

related to each other are paired together, if the information that

they provide is redundant rather than complementary, then the

resulting model’s predictive accuracy will likely be the same or

lower than that of a model that uses only one of the said

descriptors, and the model with redundant descriptors would not

be selected during feature subset selection (see below).

In order to identify the most important parameters for each chemist,

we developed a feature subset selection method that identifies the SNB

classifier that only uses essential descriptors (Fig. S3). As mentioned

before, each descriptor is mapped to a more general parameter. Thus

each model can also be thought of as built from one or more

parameters. In the first step of selection, the best 1 parameter model is

selected (N = 1) from all possible 1 parameter models, as assessed by the

average ROCS score from the 4-fold cross validation of each classifier.
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It is then compared to the best 2 parameter model (N+1). If the best 2

parameter model is significantly more accurate, as indicated by the

ROC score increasing by .0.009, then N is incremented (N = 2), and

the current N parameter model is compared to the N+1 parameter

model. A cutoff of 0.009 was used as it resulted in the selection of SNB

classifiers with parameters that were known to be important for the

simulated classifiers, while not selecting SNB classifiers that contained

parameters that did not relate to the simulated classifier. This process is

continued until the predictive accuracy of the N+1 parameter model

does not increase more than 0.009. The parameter identified for the

N = 1 SNB classifier is termed the primary parameter. All other

parameters (if any) are termed secondary.

We also note that we took into account the possibility of local

minimum when selecting features to include in the SNB classifier.

For example, a local minimum might be found if a 2 parameter

model is not significantly more accurate than a 1 parameter

model, but a 3 parameter model is. In order to avoid local minima,

the accuracies of all models were computed regardless of the

number of parameters in the model for each chemist, and the

accuracy of the selected SNB classifier was compared to that of the

most accurate classifier. In most cases, when a local minimum was

obtained, SNB models with an intermediate number of parameters

were missing, and these models were added to the analysis.

Prior to applying this method to chemists’ selections, it was first

validated on simulated classifiers, which separated compounds

based on known parameter preferences. The first set of classifiers

tested whether the classifiers could identify the correct type of

information being used by the simulated classifier, and what

number of parameters classifiers could identify. The predictive

accuracy of the classifiers trained with the medicinal chemistry

relevant descriptors compared well with benchmark classifiers (Fig.

S4) trained with ECFP4 descriptors and simple physical properties

(ALogP, Molecular_Weight, Num_H_Donors, Num_H_Accep-

tors, Num_Rotatable_Bonds, and Molecular_FractionalPolarSur-

faceArea). The number and types of parameters identified as

important by the SNB classifiers (Fig. S5) were in good agreement

with the criteria used by each of the simulated classifiers to select

compounds (Table S1). The descriptors that underlie the

parameters are reported in Table S7. This study demonstrated

that our method could correctly identify up to 4 parameters (or

types of information) used to separate compounds. As we show

below, this was more than enough to recapitulate the chemists’

selections.

We used a second set of simulated classifiers to assess the ability

of the SNB classifiers to correctly classify compounds when

interdependencies were present between attributes. Four different

SNB classifiers were trained on the simulated classifiers’ selections.

Two of the SNB classifiers assessed consisted of one attribute

(Atoms Fig. S2B, or MPSA Fig. S2C). Another SNB classifier

included both Atoms and MPSA (Fig. S2D). A final SNB classifier,

considered Atoms and MPSA jointly (Fig. S2E). For each of the

simulated selection strategies, the SNB classifier that would be

selected by our feature subset selection method is boxed (Fig. S2).

For the simple selection strategies based solely on one attribute

(Atoms or MPSA), the classifier trained using only that attribute is

selected. In the third scenario, where fragments with $ 15 atoms

and MPSA,60 are considered desirable, the classifier that uses

both Atoms and MPSA (independently) is selected. In the fourth

scenario, the XOR case, the classifier that considers both number

of atoms and MPSA jointly is selected.

This study reveals that when attributes are considered jointly,

SNB classifiers can recapitulate complex patterns that might result

from dependencies between attributes. Indeed, these types of

patterns are investigated in the Results section for other attributes

that were considered jointly, and turned out to be important in

chemists’ selections (see ‘‘Value Preferences of SNB Models’’, as

well as Figures 4 and 5).

A third set of simulated classifiers tested how SNB classifiers

behaved when fragments were selected randomly. When SNB

classifiers were applied to the random simulated selections, no

ROC score was obtained that was greater than 0.55 (Table S6).

This sets a threshold for ROC scores that we can consider better

than random. Indeed, all of the models built on the chemists

selections were higher in accuracy, suggesting that our method is

indeed robust, and that ROC scores.0.55 will only be obtained

when selections are not randomly made.

Bayesian models have been discussed in detail elsewhere, so we

will only highlight important equations for our work. The

Bayesian Score for a given feature is:

BayesianScoreFeature(i)

~ ln P featureiDdesirableð Þ=P featureið Þð Þ
ð1Þ

and the total Bayesian score over all features is:

TotalBayesianScore

~
X

ln P featureiDdesirableð Þ=P featureið Þð Þ
ð2Þ

In our case, the Bayesian score for a feature is positive if a feature

or bin is desirable and negative if it is undesirable. When a

compound is being classified by a SNB classifier, if the total

Bayesian score is positive than it is scored as desirable, and if it is

negative it is scored as undesirable. The Bayesian scores for

specific features or bins in SNB models were useful in interpreting

and visualizing specific models (Fig. 3, 4, 5).

Random forest (RF) classifiers. In order to independently

validate the results from the SNB classifiers, we employed RF

classifiers as an orthogonal classification method. The Learn RP

Forest model component was used in Pipeline Pilot 8.0 [74] to

generate the RF classifiers. The descriptors used were the

medicinal chemistry relevant descriptors (mentioned above),

except continuous descriptors were binned into 5 bins, and joint

descriptors were not used (since dependencies can be encoded by

the tree structure and splitting patterns). The model used is termed

a balanced forest of random trees. [39,80] For each tree, a

minimum of 10 samples were allowed per node, the maximum

tree depth was 20, the Gini index was used to choose the split for

each node, [7] and the weighting method was uniform. In each

Forest, there were 500 trees, bagging was used, [3] the class sizes

were equalized, [9] and the number of descriptor properties to

consider for use as a split criterion within each tree was set to the

square root of the total number of descriptors. [9] Three trials

(with 3 random seeds) were used for each of the 4 sets of training

and test sets.

For the RF classifiers, the percent selection frequency of each

descriptor was used as a measure of that descriptor’s importance.

This was averaged over the 3 trials for each of the 4 training sets,

and the average percent selection frequency was converted to a z-

score for each model. A cutoff was then determined to ascertain

which descriptors were important. This cutoff was established by

using simulated classifiers which selected compounds based on

known parameter preferences, and then observing at which value

the parameters of importance lied above the cutoff, and

parameters not used by the simulated classifier lied below the
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cutoff. We found that a cutoff of 2.1 worked well to separate

important descriptors from unimportant descriptors for the

simulated classifiers (see below), and subsequently used this cutoff

to identify important descriptors for RF classifiers trained on the

chemists’ selections as well. The parameter corresponding to the

descriptor with the highest z-score is termed the primary RF

parameter, and all other parameters above the 2.1 cutoff (if any)

are termed secondary.

In all cases, the parameters that relate to the types of criteria

used by the simulated classifiers to categorize fragments as

desirable or undesirable were identified. In some cases, however,

unlike the SNB classifiers, additional parameters were deemed

important as well. The selection of these parameters could be

rationalized, however, when the descriptors underlying these

parameters were investigated. For example, in the case of the

Molecular_PolarSurfaceArea and Atoms_MPSA simulated classi-

fiers, the Functional Groups parameter was incorrectly identified

by the RF classifier. The descriptor that mapped to the Functional

Groups parameter in this case was the sulfonamide descriptor

(Table S8, which counts the number of sulfonamides present).

Although sulfonamides were not specifically selected by the

simulated classifiers, their presence correlates somewhat with

polar surface area (the more sulfonamides, the greater the polar

surface area), so their selection makes some sense. Similarly, for

the Substruct_FG simulated classifier, the Ring Topology classifier

was incorrectly identified as important. The descriptor that was

used in this case was Num_AromaticRings (Table S8, which

counts the number of aromatic rings present). This makes sense

because the simulated classifier deemed aromatic amines in 5-

membered rings as undesirable, so the number of aromatic rings

present will be roughly related to this. In summary, while the RF

classifiers identify the correct parameters, they also sometimes

identify additional parameters due to descriptors that correlate

somewhat with properties that were used during selections. This

was not observed with the SNB classifiers.

Supporting Information

Figure S1 Simulated fragment selection session.

(BMP)

Figure S2 A: Simulated classifiers selected fragments as
good (green) or bad (red) based on thresholds for
molecular polar surface area (MPSA) or number of
atoms. The Bayes score of different bins for Naı̈ve Bayesian

models built using atoms (B), molecular polar surface area (C),

atoms and molecular polar surface area independently (D), or

atoms and molecular polar surface area jointly (E) are depicted.

For the exclusive or (XOR) case (fourth panel in all rows), only the

semi-naı̈ve Bayesian model can correctly represent the simulated

classifiers pattern. The ROCS score for each of the models is

reported in corresponding panel for that model. The panel of the

classification model that would be selected by the feature subset

selection method that was employed is boxed with a black square.

(PDF)

Figure S3 Feature subset selection for SNB classifiers.
N is set to 1, and the best N parameter model is selected. It is then

compared to the best N+1 parameter model. If the ROC score of

the best N+1 parameter model is significantly more accurate than

the current best N parameter model (difference.0.009), then N is

incremented, and the process is repeated. If not (differ-

ence,0.009), then the current best N parameter model is selected.

(PDF)

Figure S4 Predictive accuracies for SNB and RF classi-
fiers when trained on selections made by simulated
classifiers.

(PDF)

Figure S5 The parameters extracted from the SNB (red)
and RF (blue) classifiers for selections made by
simulated classifiers. The primary parameters for the

classifiers are depicted as stars, and the secondary parameters

are depicted as circles.

(PDF)

Figure S6 The fraction of compounds selected as
desirable by each chemist. A: The fraction of compounds

selected per batch by each chemist. The average fraction pass is

0.45 and the average standard deviation is 0.07. B: Histogram of

the number of chemists that passed a specified fraction of

fragments per batch.

(PNG)

Figure S7 Relating the fraction of compounds selected
as desirable to various factors. A: The average fraction of

compounds passed per batch for chemists with different ideal

fragment library sizes. B: The fraction of compounds passed versus

the number of targets a chemist had worked on. C: The average

fraction of compounds passed per batch for chemists with different

selection strategies. Self-reports were used to obtain the ideal

fragment size, number of past targets, and selection strategies.

(PNG)

Figure S8 The similarity of selections when comparing
chemists’ selections to themselves and to each other. A

histogram of the modified Tanimoto similarities (SMT) comparing

chemists to themselves (A). Similarities between chemists depicted

as a heat map (B) and in table form (C). A histogram of modified

Tanimoto similarities obtained between chemists (D). Two clusters

formed by chemists using a modified Tanimoto similarity cutoff of

$0.44 (E).

(PNG)

Figure S9 A comparison of consensus in desirable or
undesirable fragments. A: The fraction of consensus good

(green) or bad (red) compounds that pass when a given threshold

for consensus is used. At all thresholds, there are more consensus

good than consensus bad compounds. B: The fraction of

consensus bad compounds for seven chemists with high estimated

knowledge (red) versus seven randomly selected chemists (black) C:

The fraction of consensus good compounds for seven chemists

with high estimated knowledge (green) versus seven randomly

selected chemists (black).

(PNG)

Figure S10 A selection of the fragments deemed worst
by the group. The number of yes and no votes is below each

structure.

(TIF)

Figure S11 Parameters that were included in self-
reports but not identified as important by SNB or RF
models for each chemist. Note, ‘‘Diversity’’ and ‘‘Metabolic

Stability’’ were self-reported, but attempts were not made to model

these parameters.

(PDF)

Figure S12 The types of targets chemists have previ-
ously worked on, as self-reported in the follow-up
questionnaire.

(TIF)
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Table S1 Simulated classifiers with 1–4 rules for
identifying good fragments are listed.

(DOC)

Table S2 Training and Test sets for 4-fold cross
validation. The eight batches of compounds that were surveyed

were jackknifed as follows to yield 4 training and test sets.

(DOC)

Table S3 Descriptors (72) used for building minimal
Bayesian models. The parameter(s) that the descriptor is

subsumed by is reported, as well as whether it was calculated using

Pipeline Pilot (PP) or RDKit. Some descriptors were derived from

combining or mathematically manipulating metrics previously

calculated by Pipeline Pilot or RDKit (Custom).

(DOC)

Table S4 Chemical handles. For the chemical_handles

descriptor, chemical handles that a chemist might manipulate

were counted. Specific types of substructures were only considered

chemical handles if they were located on the core, on an R-group,

or both.

(DOC)

Table S5 Functional groups included in functional
group key. A fingerprint of medicinal chemistry relevant

functional groups (smarts_fp) was developed to characterize the

functional groups present or absent in a compound. SMARTS

substructures were used to identify the presence of substructures,

and these were combined into a functional group key. If the

functional group is present in the fragment, the value for it in the

key is 1, while if it is absent the value is 0. This is the descriptor

used in the model illustrated for chemist 1 in Figure 4.

(DOC)

Table S6 ROC Scores obtained for random simulated
classifiers that passed different fractions of compounds.

(DOC)

Table S7 Descriptors identified as important by the
SNB classifiers for selections made by the simulated
classifiers. The best 1 parameter model is designated 1_para-

mater (this corresponds to the descriptor that underlies the

primary parameter), and the final SNB model is designated

N_parameters.

(XLSX)

Table S8 Descriptors identified as important by the RF
classifiers for selections made by the simulated classi-
fiers.
(XLSX)

Table S9 Descriptors identified as important by the
SNB classifiers for selections made by chemists. The best

1 parameter model is designated 1_paramater (this corresponds to

the descriptor that underlies the primary parameter), and the final

SNB model is designated N_parameters.

(XLSX)

Table S10 Descriptors identified as important by the
RF classifiers for selections made by the chemists.
(XLSX)

Table S11 ECFP4 features extracted from NB models
built using consensus voting (.75% agreement) for
desirable features. Compounds selected by .75% of the

chemists were categorized as desirable, and all others were

categorized as undesirable. The 50 features most indicative of the

desirable category that were present at least 2 times are reported in

SMILES format.

(XLS)

Table S12 ECFP4 features extracted from NB models
built using consensus voting (.75% agreement) for
undesirable features. Compounds unselected by .75% of

the chemists were categorized as undesirable, and all others were

categorized as desirable. The 50 features most indicative of the

undesirable category that were present at least 2 times are reported

in SMILES format.

(XLS)
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