
Extreme Levels of Noise Constitute a Key Neuromuscular
Deficit in the Elderly
Navrag B. Singh1, Niklas König1, Adamantios Arampatzis2, Markus O. Heller1, William R. Taylor1*

1 Julius Wolff Institute, Center for Sports Science and Sports Medicine Berlin (CSSB), Charité – Universitätsmedizin Berlin, Berlin, Germany, 2Department of Training and
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Abstract

Fluctuations during isometric force production tasks occur due to the inability of musculature to generate purely constant
submaximal forces and are considered to be an estimation of neuromuscular noise. The human sensori-motor system
regulates complex interactions between multiple afferent and efferent systems, which results in variability during functional
task performance. Since muscles are the only active component of the motor system, it therefore seems reasonable that
neuromuscular noise plays a key role in governing variability during both standing and walking. Seventy elderly women
(including 34 fallers) performed multiple repetitions of isometric force production, quiet standing and walking tasks. No
relationship between neuromuscular noise and functional task performance was observed in either the faller or the non-
faller cohorts. When classified into groups with either nominal (group NOM, 25th –75th percentile) or extreme (either too
high or too low, group EXT) levels of neuromuscular noise, group NOM demonstrated a clear association (r2.0.23, p,0.05)
between neuromuscular noise and variability during task performance. On the other hand, group EXT demonstrated no
such relationship, but also tended to walk slower, and had lower stride lengths, as well as lower isometric strength. These
results suggest that neuromuscular noise is related to the quality of both static and dynamic functional task performance,
but also that extreme levels of neuromuscular noise constitute a key neuromuscular deficit in the elderly.
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Introduction

The order of recruitment as well as the variability in the firing of

multiple motor units during voluntary isometric submaximal

muscular contraction results in an inability of the musculature to

generate constant forces, causing oscillations or fluctuations in the

resulting force output [1–7]. The level of force fluctuation is thus

modulated by physiological parameters such as the number, size

and discharge rates of the motorneurons, as well as muscle fibre

type etc. [1]. Due to these physiological characteristics, the level of

fluctuation during isometric force generation is considered to be an

approximation of the amount of neuromuscular noise, considered to

be disturbances that obscure the desired output of the sensorimo-

tor system [7–9]. Furthermore, neuromuscular noise is known to

be proportional to the force output [10]. The variability of kinetics

and kinematics are therefore dependent upon the requirements of

the task, such that e.g. final location accuracy is reduced with

increasing trajectory speed [10,11].

Since this variability within the generated force is known to

influence the intended movement trajectory [4,11–13], the

presence of neuromuscular noise is thought to affect the trial-to-

trial repetitions of a task [1,10]. The effective regulation of

neuromuscular noise is therefore a prerequisite for continuous or

repetitive functional task performance, such as standing (postural

sway) and walking (gait variability) [11,14–16]. The level of force

fluctuations during muscular contractions [1,2,4,17] thus needs to

be accounted for in order to optimise kinetics and kinematics

during task performance, and this is achieved through feedback

mechanisms within the sensori-motor system [1,11,15,16,18–21].

It is reasonable that variability during repetitive tasks provides

a measure of an individual’s static or dynamic task performance,

and could be used to assess the limitations of their system. The

quantification of variability during task performance has therefore

become a target for evaluating the human sensori-motor system

[4,16,22–28].

Variability during task performance is omnipresent and does

not necessarily suggest motor related pathology [14,28]. In fact,

variability is an indicator of redundancy within the system that

allows performance adaptation, and is therefore thought to be

necessary for optimised task learning [29,30]. On the other hand,

excessive variability may indicate that the system is operating

closer to the limits of ability, expressed as stability during balance

and gait [14,25–27,31,32]. Here, in order to maintain stability, the

centre of mass must be effectively maintained within the base of

support. A stable system during standing would therefore either

stay in or return to a state of equilibrium after being perturbed

[23,33]. In a similar manner, during dynamic conditions e.g.

walking, a stable system would remain in a state of uniform

motion, maintained by suitable foot placement. Systems with

higher levels of variability would thus require greater error

correction in order to maintain the centre of mass within the base

of support. In fact, higher levels of variability during standing and

walking, have been observed in individuals that are at increased
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risk of falling, as well as in those who suffer from motor related

pathologies [22,27,32]. Until now, variability during static or

dynamic functional tasks has been viewed independently

[18,21,23,25,34,35], but it seems plausible that variability during

specific tasks results from core system characteristics such as

neuromuscular noise, together with local functional ability,

including strength, coordination and training of the specific

musculature. Since muscles are the only active component of the

motor system, it seems reasonable that neuromuscular noise in the

lower extremities could explain variability during upright (standing

posture) tasks including standing and walking. An understanding

of the contribution of force fluctuations, as a measure of

neuromuscular noise, on balance and walking performance in

elderly populations would not only help to provide an un-

derstanding of the aetiology of postural sway and gait variability,

but might also aid in the early diagnosis of motor related

pathologies, particularly in individuals with balance and gait

deficits. The aim of this study was therefore to investigate the

relationship between neuromuscular noise and static and dynamic

task variability among elderly healthy and faller cohorts.

Methods

Participants
Within a larger study examining the risk of fracture in the

elderly (EU VPHOP FP7–223864), we examined ninety elderly

participants from the local community. Of these 90, a number of

subjects who reported conditions of arthritis, artificial joints,

diabetes and/or herniated vertebral discs were excluded from the

study cohort for this analysis. As a result, seventy elderly women

(34 with at least 1 fall within the previous 12 months - ‘‘faller’’; 36

healthy controls – ‘‘non-faller’’) undertook the experimental

protocol. All participants provided written informed consent and

the experiments were approved by the local ethics committee.

Both groups were homogenous in terms of age, weight and height

with a mean (6 SD) of: 69.8 (64.8) years, 69.7 (610.2) kg and

163.1 (66.6) cm for elderly fallers, and 69.2 (64.6) years, 67.7

(610.7) kg and 162.1 (66.0) cm for elderly non-faller cohorts

respectively.

Experimental Design and Procedures
Within each test session, participants performed a minimum of

3 test repetitions or trials to examine force fluctuations, postural

sway, and walking variability in separate sessions conducted on the

same day. Force fluctuations were measured on the right limb

during isometric knee extension and isometric ankle plantar-

flexion. Postural sway was measured during quiet standing in

a biped position with eyes open. Gait assessment was performed at

preferred walking speed.

Force Fluctuation Measurements
In this study, force fluctuations were considered an indirect

measure of neuromuscular noise, and were assessed in the knee

extensors and ankle plantarflexors. Briefly, participants were

seated in a standardised position in a Biodex 3 Pro dynamometer

(Biodex Medical Systems Inc., USA) [17]. Before each measure-

ment the flexion/extension rotation axis of the tested joint was

aligned with the rotational axis of the dynamometer. Knee

extension measurements were then conducted with the knee flexed

at 90 degrees, while for ankle measurements, the knee was fully

extended with 10u of plantarflexion at the ankle. Prior to the start

of each force fluctuation session, maximum voluntary isometric

contractions (MVICs) were obtained by providing standardised

instructions and verbal encouragement, trying to reach peak

exertion 2–3 s after the start of the trial. MVICs, which lasted for

5 s, were measured three times with a minimum of 30 s pause

between contractions [2]. The single maximum value from the

three contractions for the ankle as well as the knee was then used

as the respective MVIC.

Objective or target torque (TT) level was provided visually as

a constant or ramp ascending torque plot. The TT was overlaid by

the actual torque produced in real-time, such that both plots were

displayed simultaneously on the monitor. TTs were set at constant

levels of either 15% or 20% MVIC, or to a ramp ascending torque

from 15–20% MVIC for each test joint. Participants were

instructed to match the torque level as best they could for the

duration of the 15 s test by performing isometric knee extension or

ankle plantarflexion respectively. The active torque applied by the

participant was displayed as a real-time visual feedback at 10 Hz,

which overlaid the TT. Participants were provided 4–5 practice

test repetitions to familiarise themselves with the experimental

procedures. The presentation order of the signals was randomised,

with all TTs (i.e. constant 15%, constant 20% and ramp of the

15220% MVIC) presented a minimum of three times.

Postural Sway Measurements
In order to obtain measurements of postural sway, partic-

ipants were requested to stand barefoot in a quiet, bilateral

stance with eyes open and with their hands by their sides. In

this condition, participants focused on a visual target, positioned

at eye level on the wall, approximately 3 m in front of them,

and were instructed to stand as still as possible. The medial

aspects of the tibial malleoli were positioned not more than

7 cm apart from one another, but on separate force platforms

(AMTI OR6-7-1000, Watertown, Massachusetts, USA). In

order to ensure the repeatability of the sway tests, foot locations

were marked on the force platforms.

Participants were provided a minimum of 60 seconds practice

before 3 repetitions of quiet standing were recorded. At least one

minute relaxation was provided between each sway test. Tri-axial

ground reaction force data were recorded at 120 Hz in order to

allow determination of measures of the centre of pressure.

Gait Analysis
The 3D kinematics of the right foot were measured using 4

reflective markers (14 mm) attached to the skin, tracked at

120 Hz using a 10-camera motion capture system (Vicon,

OMG Ltd, Oxford, UK). Using manual palpation to locate the

bone landmarks, the markers were attached to the tuber

calcanei (heel), caput ossis metatarsale I (first metatarsus), caput

ossis metatarsale V (fifth metatarusus) and at the base of the os

metatarsale II and III (at the base of the second and the third

metatarsus). Participants were requested to walk barefoot along

a 10 m straight walkway, at their preferred walking speed, with

recording beginning after at least 3 practice walks. A minimum

of 6 walks were then measured for the determination of

measures of gait.

Data Analysis

Force Fluctuations
All torque measurements were collected using Labview (Lab-

view 8.6, National Instruments, Inc., USA). From each trial, the

first 7 and the last 2 seconds of torque output were removed to

avoid any transients during initiation or termination of the trials.

All data were then low pass filtered (4th order, zero-phase lag,

Butterworth, 25 Hz cut-off frequency). In order to assess force

fluctuations, both mean and standard deviation of the force
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production signal were evaluated [17]. In addition, the coefficient

of variation (CV) of the force was calculated as the ratio of the

standard deviation to the mean of the force output for each type of

force fluctuation test and joint.

Postural Sway
Since all force fluctuation measurements were derived from

muscles that are predominantly associated with sway in the antero-

posterior (A-P) direction, all tri-axial force data for postural sway

were also transformed to obtain CoP times series in the A-P

direction [16], with the initial and final 2 seconds of data removed

to avoid boundary effects. After low-pass filtering (Butterworth, 2nd

order, bi-directional, 5 Hz cut-off frequency), mean (MDIST) and

root mean square (RMS) distance of the CoP time series were

calculated to quantify sway [22,36] in the A2P direction. In

addition, the CV of postural sway for the CoP time series in the A-

P direction was calculated as the ratio of the RMS to the MDIST

of sway in A-P direction.

Gait Analysis
The trajectories of the right heel marker and the marker at

the base of the second and the third metatarsus were used to

extract stride time information. After low-pass filtering (Butter-

worth, 4th order, bi-directional, 25 Hz cut-off frequency), heel

strikes were identified using a foot velocity algorithm [37]. Two

consecutive heel strikes were then defined as a single stride and

the time elapsed between heel strikes (in seconds) provided the

stride time. A minimum of 6 walks were used to calculate the

variability of stride time with the first and last strides from each

walk removed to avoid transients, leaving a total of approxi-

mately 30240 strides for analysis. The CV of stride time, which

represented kinematic gait variability, was calculated for each

participant as the ratio of the standard deviation to the mean of

the stride time for all walks.

Statistical Analyses

Factor Analysis for Extraction of Principal Force
Fluctuation Components
Factor analysis (FA), using the ‘‘FACTOR’’ procedure (within

the SPSS statistics package), was applied to the CV of force

fluctuation obtained from the three signals (constant 15%,

constant 20% MVIC and ramp 15–20% MVIC) during ankle

plantarflexion and the same three signals during knee extension.

The correlation analysis method was used to extract the principal

components of force fluctuation before the ‘‘VARIMAX’’ pro-

cedure applied the appropriate rotation. Only those force

fluctuation principal components (ffPCs) that had Eigenvalues

greater than one then formed the dimension of the component

dataset. This reduced set of ffPCs, instead of the original six CVs

of force fluctuation, were considered representative of the key

aspects of neuromuscular noise, and were used to compare the

levels of noise between faller and non-faller cohort groupings, as

well as to examine the relationships between force fluctuations,

postural sway and gait variability in all subjects.

Noise and Variability During Task Performance in Fallers
and Non-fallers
In order to assess differences between faller and non-faller

cohorts, non-paired t-tests were conducted on ffPCs, CV of

postural sway (in the A2P direction) and CV of stride time, with

significance set at 0.05.

Relationship between Force Fluctuation, Postural Sway
and Gait Variability
To examine the relationship between force fluctuations,

postural sway and gait variability, two stepwise multiple linear

regression (MLR) analyses were performed for each cohort, with

independent variables being the derived force fluctuation compo-

nents from the factor analysis. Dependent variables were firstly CV

of postural sway in the antero-posterior direction, and then CV of

stride time from the right limb with significance for regression

analyses set at 0.05.

In the final stages of this study, we aimed to establish the

relationship between force fluctuations, postural sway and gait

variability. Here, since the relationship between system noise and

task performance is thought to be non-linear [38], the derived

components from the factor analysis were used to classify

individuals into three sub-groups based on the percentiles of the

distribution of the ffPCs [32], using 1st and 4th quartile (25th –75th

percentile) groupings. In this approach, individuals with noise

levels within 2nd and 3rd quartiles were termed the nominal noise level

group (group NOM), while those outside these bounds were

considered the extreme noise level groups (group EXT). The relation-

ships between local noise components, postural sway and gait

variability, were assessed within these sub-groups using MLR

analyses.

The significance for regression analyses were set at 0.05. All

statistics were conducted using the SPSS package (SPSS v20, IBM

Corp., USA). Furthermore, to ensure comparability of results, all

values of ffPCs, postural sway and gait variability were converted

and presented as standardised Z-scores.

Results

Factor Analysis for Extraction of Principal Force
Fluctuation Components
The derived dimension of the force fluctuation dataset was two,

representing the key components of the original force fluctuation

data (Table 1), with Eigenvalues of 2.7 and 1.2 (Table 2). The

rotated component matrix (Table 2) indicated that ffPC 1 was

predominantly associated with force fluctuations from the ankle

plantarflexors, and this component was therefore denoted ‘‘ankle

noise’’, while ffPC 2 was almost entirely composed of force

fluctuations from the knee extensors, and hence termed ‘‘knee

noise’’.

Noise and Variability During Task Performance in Fallers
and Non-fallers
Force fluctuations. The faller cohort performed the torque

generation task with higher levels of knee noise than their non-faller

counterparts (p,0.05, Table 3). However, no significant differ-

ences were observed between the faller and non-faller cohorts for

ankle noise.

Postural sway. During quiet standing, faller cohorts exhib-

ited significantly higher values for CV of sway in the antero-

posterior direction compared to the non-fallers (p = 0.02, Table 3).

Gait variability. The CV of stride time was approximately

44% higher for the fallers compared to the non-fallers (p = 0.03,

Table 3).

Relationship between Force Fluctuation, Postural Sway
and Gait Variability
MLR analyses found no association for fallers or non-fallers

between ankle and knee noise, and postural sway or gait variability.

However, classification (Figure 1) into nominal (group NOM, 24
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participants aged 6865 years) and extreme noise level groups (group

EXT, 46 participants, aged 7065 years), revealed a non-linear

relationship between noise and task performance (Figure 2) as

follows:

In group NOM, there was a significant relationship between knee

noise and CV of postural sway in Z-score values (r2 = 0.23, p = 0.02,

Figure 2 top).

Predicted values of CV of postural sway in the A-P direction ~

{1:08 Noiseknee { 0:36

where Noiseknee represents knee noise (Tables 1 & 2).

Similarly, a significant relationship was observed between knee

noise and CV of stride time in Z-scores, (r2 = 0.24, p = 0.01, Figure 2

bottom).

Predicted values of CV stride time~{1:68Noiseknee{0:63

Subjects in group EXT (21 participants from the non-faller and

25 from the faller groupings), tended to be older than the

participants of group NOM (p = 0.06). MLR analyses revealed no

relationships between either ankle or knee noise, and postural sway or

gait variability. Furthermore, group EXT had lower levels of

MVIC in the knee extensors (p = 0.04) and tended to walk slower

(p = 0.08) with shorter strides (p = 0.01) than group NOM.

Discussion

Variability during task performance is known to be increased in

subjects who have fallen [12,31,39], but the aetiology of variability

during static and dynamic functional task performance has until

now, remained unclear. Based on the notion that the fluctuations

during isometric force production tasks closely represent neuro-

muscular noise [2], this study examined whether levels of

neuromuscular noise could predict variability during standing

and walking. In this study we therefore investigated the levels of, as

well as the relationships between, neuromuscular noise in the knee

extensors and ankle plantar-flexors, and variability during task

performance in cohorts of fallers and non-fallers. The results of

this study indicate that fallers possess higher levels of noise during

muscular force production in the knee extensors (p,0.05) but not

in the ankle plantarflexors. In addition, fallers also exhibited

higher levels of postural sway and gait variability than their non-

faller counterparts. We observed that subjects with nominal levels

of neuromuscular noise throughout the lower extremities (group

NOM) exhibited a clear association (r2.0.23), whereas those with

extreme (high as well as low) noise levels (group EXT) did not. In

addition, group EXT possessed lower stride lengths, isometric

muscle strengths and walking speeds. This suggests that extreme

levels of noise during force production in the lower extremities are

Table 1. Correlation coefficients for force fluctuation datasets for all participants.

CV Ankle 15% CV Ankle Ramp CV Ankle 20% CV Knee 15% CV Knee Ramp CV Knee 20%

CV Ankle 15% 0.34* 0.50* 0.25 0.22 0.33*

CV Ankle Ramp 0.70* 0.02 0.41* 0.27

CV Ankle 20% 0.22 0.34* 0.28*

CV Knee 15% 0.35* 0.52*

CV Knee Ramp 0.32*

CV Knee 20%

Figures in bold show significance at p,0.05, while.
*indicates p,0.01.
doi:10.1371/journal.pone.0048449.t001

Table 2. The two derived and rotated principal components
(Table 1b) indicate that the first component (Eigenvalue = 2.7)
was composed of force fluctuations from the ankle
plantarflexors and has thus been renamed ‘‘ankle noise’’, while
the second component (Eigenvalue = 1.2) represented force
fluctuations from the knee extensors, renamed as ‘‘knee
noise’’.

PC 1: Ankle noise PC 2: Knee noise

(Eigenvalue =2.7) (Eigenvalue =1.2)

CV Ankle 15% 0.59 0.32

CV Ankle Ramp 0.90 0.00

CV Ankle 20% 0.88 0.15

CV Knee 15% 0.00 0.90

CV Knee Ramp 0.45 0.48

CV Knee 20% 0.22 0.78

The rotated components ankle and knee noise are presented in standardised (Z-
scores) values.
doi:10.1371/journal.pone.0048449.t002

Table 3. Differences between faller and non-faller cohorts for
components of force fluctuations, Ankle and Knee noise,
postural sway, and gait variability.

Non-fallers (N=36)
Fallers
(N=34)

Force fluctuations Ankle noise 0.01 (60.90) 20.1 (61.11)

Knee noise 20.22 (60.74) 0.23 (61.2)

Postural sway CV Sway A-P 20.25 (60.69) 0.26 (61.2)

Gait variability CV Stride time 20.32 (60.90)* 0.34 (61.0)*

Force fluctuations were quantified using the coefficient of variation (CV), of the
force production signals with TTs set at 15%, 20% and 15–20% ramp for ankle
plantarflexors and knee extensors. CV of postural sway in the A-P direction was
evaluated as the ratio of the RMS of sway to the mean distance of sway in the
A-P direction. Finally, gait variability was quantified using CV of stride time
during walking from the right leg. Values in bold represent significance with
p,0.05, while * represents significance at p,0.01.
doi:10.1371/journal.pone.0048449.t003
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associated with functional deficits consistent with reduced gait

stability [12,26,39] and even falling [22,23,31,40], and could

therefore be considered a key neuromuscular deficit in the elderly.

Excessive levels of variability during standing as well as walking

are factors known to limit functional performance in the elderly

[14,26,27,31,32,41]. However, recent studies indicate that nominal

levels of variability might be essential for effective task learning

[28–30], while extreme levels of variability, both high and low,

might indicate motor-related pathologies [14,22,24,26,31,32,38].

Our premise in this study was that neuromuscular noise is

responsible for the variability in output task performance. This was

demonstrated in our study by a clear relationship between noise in

the knee extensors and variability during standing and walking in

subjects with nominal levels of neuromuscular noise. However, no

such relationships were present in subjects who exhibited

excessively high or extremely low levels of noise, suggesting either

some compensation mechanisms or neuromuscular deficits. Such

adaptations might well be due to a remodelling of the sensori-

motor system in these individuals, possibly also leading to the

observed lower levels of isometric strength in the knee extensors

and shorter strides, as well as a tendency towards slower walking.

In order to avoid excessive levels of variability that could lead

the system either to operate closer to or even outside the limits of

stability during continuous standing or walking, the human

sensori-motor control system attempts to regulate and maintain

the centre of mass within the base of support by using a variety of

strategies [18,20,21,23,34,40,42–44]. The results of this study

suggest not only that the quality of control of posture and

movement, but also the choice of control strategy seems to be

influenced by the level of noise in the sensori-motor system. Since

fluctuations during force production at the knee were a predictor

of sway and gait variability in group NOM, it seems that one

mechanism for effective task performance, at least in these

subjects, might well have been a strategy involving optimisation

of neuromuscular noise in the force outputs [11,15]. While the

exact mechanisms remain unclear, it appears that effective

regulation of neuromuscular noise within the sensori-motor system

might be a prerequisite for improved task performance.

Fluctuations in force generation during submaximal isometric

contractions within a particular muscle are known to be dependent

upon the discharge properties of the motor units recruited to

perform the required task [1,3]. However, variability during task

performance such as standing or walking, depends not only the

recruitment of motor units within a particular muscle, but also on

other factors such as muscle force-length and force-velocity

relationships [45], muscle coordination [46], sensori-motor

feedback quality [47], and alternating activation of agonist,

synergists and antagonists [1,13,18,21,35,39,44], as well as the

Figure 1. Classification of participants according to neuromuscular noise. Histogram of the 1st and 2nd rotated components obtained using
the factor analysis, representing the ankle and knee force fluctuations, or ‘‘ankle noise’’ and ‘‘knee noise’’ respectively. The dotted lines represent the
25th and the 75th percentile boundaries. The bell shaped curve illustrates the normal distribution plot for the knee as well as the ankle noise
components. The participants that had both ankle noise and knee noise values inside the dotted lines (25–75th) were classified in the nominal noise
level group (group NOM, N=24, inc. 15 non-fallers and 9 fallers), while those that had values outside the dotted lines formed the extreme noise level
group (group EXT).
doi:10.1371/journal.pone.0048449.g001
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requirements of the task itself [6,13,48]. For example, task

performance during position-matching (anisometric) activities is

thought to differ from performance during position-maintaining

(isometric) tasks [6,13,48]. While many of these complexities could

not be specifically considered within our study, the underlying

mechanisms governing the variability of output task performance

seem to be closely associated with the levels of neuromuscular

noise. Further support for such a concept comes from studies that

show a clear relationship between the variability in discharge

properties of active motor units, and the task performance,

including the variability of force output [6,13,48]. Furthermore, it

is important to note that in this study, fluctuations were measured

at 15–20% MVIC, but it is possible that fluctuations at different

recruitment levels might also play a role in sway during standing

Figure 2. Relationship between neuromuscular noise and task variability. The regression plots for group NOM using standardised Z-scores
of the measured postural sway in AP direction (Figure 2; Top) and stride time variability (Figure 2; Bottom) represented on the y-axis against
standardised Z-scores of the predicted values from the regression. Independent variables are ankle and knee noise. The r2 for the regression with
postural sway in A-P direction as dependent variable was 0.23 and with stride time variability was 0.24.
doi:10.1371/journal.pone.0048449.g002

Neuromuscular Noise in Static and Dynamic Tasks
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[49], as well as in variability during walking. It is therefore

plausible that assessment of different aspects of neuromuscular

noise, including different contractions as well as at varying force

levels, might allow a more comprehensive understanding of the

relationships between neuromuscular noise levels and task

performance. On the other hand, according to the Optimal

Control Theory proposed by Harris and Wolpert [11,15], which

suggests that SD and mean of the produced force are proportional,

the relationship between neuromuscular noise levels and variabil-

ity during task performance should be independent of the force

production levels. Further investigation is therefore required in

order to provide a deeper understanding of the in vivo relationships

between force levels, the recruitment of motor units, variability of

discharge rates of the active motor neurons, and the quality of task

performance [13].

While a variety of both clinical and functional approaches have

been used to investigate the risk of falling in the elderly (for an

overview see [31,50]), we have addressed the role of the underlying

physiological characteristics, specifically neuromuscular noise, on

task performance in these populations. In this study, we examined

the relationships between force fluctuations, postural stability and

gait variability in faller and non-faller cohorts. Elderly fallers are

known to possess higher levels of sway [22], as well as increased

gait variability [24–26,31], than their non-falling counterparts,

and this has been confirmed in our cohorts (Table 3). In this study,

fluctuations during force production were larger in elderly fallers

compared to non-fallers and this deficit might have affected the

control of both the timing of stride events during walking as well as

sway during standing. More importantly, for the first time, it was

demonstrated in this study that neuromuscular noise levels might

play a direct role in the quality of both static and dynamic

functional task performance. Specifically, individuals with nominal

levels of noise exhibited a clear association between neuromuscu-

lar noise and variability during task performance. On the other

hand, individuals with extreme levels of noise, did not exhibit any

such relationship, but also tended to be older and walked slower,

while having lower isometric strength in the knee extensors and

smaller stride lengths. Although further investigation is required, it

seems reasonable that an assessment of force fluctuations in the

musculature of the lower limb, achievable in a clinical setting,

could contribute towards the early identification of motor related

pathologies. Whether intervention programmes or clinical thera-

pies to improve muscular control and steadiness are then able to

also reduce e.g. a subject’s risk of falling, remains to be elucidated.

Conclusions
Individuals with nominal levels of noise exhibited a clear

association between neuromuscular noise, assessed as force

fluctuations from muscles of the lower extremity, and the

variability in performing both static and dynamic functional tasks.

However, in individuals with extreme levels of neuromuscular

noise, no such relationships were observed, and these subjects

possessed neuromuscular compensations such as lower stride

length and isometric strength. The results of this study therefore

suggest that extreme levels of neuromuscular noise, both

excessively high and low, constitute a key functional deficit in

elderly individuals.
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