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Abstract

As public and political debates often demonstrate, a substantial disjoint can exist between the findings of science and the
impact it has on the public. Using climate-change science as a case example, we reconsider the role of scientists in the
information-dissemination process, our hypothesis being that important keywords used in climate science follow ‘‘boom
and bust’’ fashion cycles in public usage. Representing this public usage through extraordinary new data on word
frequencies in books published up to the year 2008, we show that a classic two-parameter social-diffusion model closely fits
the comings and goings of many keywords over generational or longer time scales. We suggest that the fashions of word
usage contributes an empirical, possibly regular, correlate to the impact of climate science on society.
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Introduction

For over a decade, leading scientific organizations such as the

American Association for the Advancement of Science (AAAS),

the Intergovernmental Panel on Climate Change, the American

Geophysical Union, the National Academy of Sciences (NAS), and

the American Meteorological Society have sent clear signals that

Earth’s climate is warming and that the changes are in large part

the result of anthropic activities. Despite debate over precise

mechanisms and the amount of warming brought on by various

processes [1], scientific reports collectively demonstrate that ‘‘most

of the observed warming of the last 50 years is likely to have been

due to the increase in greenhouse gas concentrations’’ [2].

Despite the play these findings receive in the media and in

venues organized by scientific bodies such as the AAAS, the

response in terms of public opinion and behavior has been slow.

Although there are substantial issues concerning the public trust in

science [3,4], as well as a widely held perception that climate

change is only a distant threat [5], probably the underlying reason

has to do with poor communication [6,7] and ‘‘the role of

language (metaphors, words, strategies, frames and narratives) in

conveying climate change issues to stakeholders’’ [8]. Some of this

concern focuses on journalists, whose regular use of terms such as

‘‘global warming’’ might be perceived as biased, whereas another

concern focuses on climate scientists and specialized jargon that

fails to convey key concepts [9].

Even the most well-intentioned communication approaches

typically assume that the public consists of empty vessels ‘‘waiting

to be filled with useful information upon which they will then

rationally act’’ [8]. The shortcoming of this ‘‘information deficit

model,’’ whereby ordinary people are simply supplied with expert

information, is in neglecting social learning. People clearly share

with each other their impressions of climate change and policy

[10]. As they recognize this, policymakers are shifting from

traditional information campaigns toward a more flexible ability to

respond to these movements or at least trying to ‘‘nudge’’ them in

certain directions [11].

As George Orwell famously reasoned [12], the stylistic use of

language is central to political discourse. For just one documented

example, opponents of the estate tax help influence attitudes in

their favor by calling it a ‘‘death tax,’’ which magnifies the

prospect of upward mobility [13]. Since climate science too is

political, these dynamics matter, as certain trends of language use

could lock the public into specific ways of defining, thinking, or

interpreting climate change [8].

In our study below, we present a starting point for an empirical

study of scientific ‘‘impact’’ as reflected by wider discourse. Our

hypothesis is that certain keywords used in climate science will

follow a distinct ‘‘boom and bust’’ fashion wave in general usage

(distinct from the more specific usage in science), which can be

modeled with a simple two-parameter logistic growth model. We

fit the model to the word-frequency data using a simple statistical

testing procedure [14] that minimizes the least-squared regression

between the model and data over the space of the three input

parameters. We then discuss how the fitting of this classic two-

parameter social-diffusion model to the word data could contrib-

ute an empirical correlate to the impact of climate science on the

public.

Modeling language fashions in climate science
We aim to investigate general usage of climate-science

vocabulary through the new ‘‘Ngram’’ database [15], which at

present scans through over five million books published in seven

languages since the 1500s (about 4% of all books), although

Google recommends using data after 1800 for quantitative analysis

(the sample before 1800 being very rare books). Using these

remarkable new data, we can evaluate the evolutionary history of

word frequencies to characterize the effective degree of fashion
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versus independent decisions to use a particular word or phrase

[16–23].

For our case study focused on keywords used in climate science,

we benefit from the study of Li et al. [24], who have already listed

the top keywords for the period 2004–2009, the 1-grams among

which include: adaptation, biodiversity, climate, diatoms, drought, global,

Holocene, isotopes, paleoclimate, phenology, photosynthesis, pollen, precipita-

tion, and temperature. As these represent important keywords in the

narrow sphere of academic climate science, our aim is to

investigate possible social-diffusion trends in more general usage

of these words, via the much larger Ngram database.

We approach this with a simple diffusion model that would

characterize word-frequency evolution along a continuum gov-

erned by two parameters, often interpreted to represent individual

decision versus social fashion [20,25–29]. The classic formulation

of Bass [30] expressed at time t is

f (t)~(mzqFt)(1{Ft): ð1Þ

The first half of f (t) in equation (1) models the probability a

word is used at time t as proportional to its cumulative fraction, Ft,

of all the times the word will eventually be used, as governed by

the constant q. The second constant, m, governs the relative rate of

independent discovery (more detail in Methods).

In order to estimate the parameters of equation (1) to fit a data

series, a useful formulation [31] would represent the cumulative

number of times a word w is used, Xw(t) by

Xw(t)~Nw(t)Ft~Nw(t)
1{e{(mwzqw)t

1z
qw

mw

e{(mwzqw)t
, ð2Þ

where integer Nw(t) is the maximum number of times the word

could have possibly appeared by time t.

Our aim is to fit the popularity of each word over time to the

process described in equation (2). As the number of books grows

with time, we need a dynamic Nw(t) in equation (2) that allows the

total potential number of times, Nw, that the word could be used to

increase with time accordingly. One approach is to allow Nw to

grow in some predictable fashion over time, perhaps exponential

growth,

Nw(t)~Nw(0)elt, ð3Þ

where Nw(0) is a constant specific to word w and l is a universal

constant derived from the entire Ngram dataset. This approach,

which we will call Model 1, substitutes Nw(0)elt into equation (2)

for the amplitude Nw(t):

Xw(t)~Nw(0)elt 1{e{(mwzqw)t

1z
qw

mw

e{(mwzqw)t
: ð4Þ

To represent the number of word usages per year, rather than

cumulative usage, we apply Model 1 as a difference equation,

Xw(t){Xw(t{1), yielding.

Xw(t){Xw(t{1)~Nw(0)el(t{1)

el 1{e{(mwzqw)t

1z
qw

mw

e{(mwzqw)t
{

1{e{(mwzqw)(t{1)

1z
qw

mw

e{(mwzqw)(t{1)

0
B@

1
CA: ð5Þ

If the approximation of (3) for the total number of words is too

crude, then a more data-driven approach we can explore, which

we will call Model 2, is to assume that Nw(t) is some fixed fraction,

awv1, of the use of the word the:

Nw(t)~awNthe(t), ð6Þ

where aw is a parameter specific to word w. We then substitute

Nw(t)~awNthe(t) into equation (2), such that the difference

equation, Xw(t){Xw(t{1), for Model 2 is

Xw(t){Xw(t{1)~aw Nthe(t)
1{e{(mwzqw)t

1z
qw

mw

e{(mwzqw)t

0
B@

{Nthe(t{1)
1{e{(mwzqw)(t{1)

1z
qw

mw

e{(mwzqw)(t{1)

1
CA:

ð7Þ

For this alternative approach to the amplitude, the cumulative

word counts of the word the (since 1800) produce the time series for

Nthe(t). We propose that it is better to normalize to the, the most

common word in English, than to use the gross total of Ngrams

per year, because the full, unfiltered Google record includes

growing numbers of characters, data, and other non-English

‘‘noise’’ over the past centuries.

In comparing the Bass diffusion model to the word data, we

acknowledge that the parameter q does not necessarily have to be

‘‘social,’’ as S-curves of adoption can be generated through

individual learning in successive stages [29], and we show a simple

‘‘nonsocial’’ version of the model in our Methods. Because we are

dealing with language, however, we maintain that the usefulness of

a word depends intrinsically on how other people have used it. We

therefore feel comfortable referring to the parameter q as the social

parameter.

In any case, setting aside the epistemology of the meaning of q,

our aims are practical. To determine the amplitude term for

Model 1, we start by finding a universal exponent l for the general

growth equation (3) to fit the overall Ngram database. For each

word w in our case study, we then seek the best values of N(0),mw,

and qw that lead Model 1 to fit its Ngram count through time.

Alternatively, for Model 2, we seek the best values of aw, mw, and

qw to fit the Ngram count for the word through time, where the

amplitude is governed by a fraction, aw, of cumulative usage of the

through time.

The modified Bass model from equation (2), applied as a

difference equation via equation (5) for Model 1 or equation (7) for

Model 2, can be fitted to to the yearly usage counts for each of the

individual words. To fit the model to the data for each word, we

optimize the word-specific values of qw and mw, plus either N(0)
for Model 1 or aw for Model 2. For this study, we eyeball the start
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date of the diffusion curves, which is actually very effective (we

discuss below how this might be systematized).

Results

We extracted the use statistics from the Google database for the

1-grams among the top keywords used in climate science (but not

the 2-grams, such as climate science). Figure 1 shows the popularities

(logarithmic scale) of these climate-science words since 1900.

Among the sample, the words that show relatively steady rate of

use include climate, diatoms and pollen (Figure 1). These words can be

predicted by Model 1 or Model 2, but in the trivial sense that the

social parameter q is very small or zero (Table 1).

Eight of the words, in contrast, demonstrate a Bass-like wave —

biodiversity, global, Holocene, isotopes, phenology, and paleoclimate on a

time scale of decades and precipitation, photosynthesis, and adaptation at

a century time scale. These waves begin at different times, from

the late 19th century to the late 20th century, but occur on a range

of different timescales (Figure 1).

Using equation (3) for the amplitude term for Model 1, we see

from the entire Google 1-gram database that the number of words

published, Nw(t), grew fairly smoothly for three centuries, by

about 3% per year (Figure 2). There were 793,000 words for the

year 1700, which grew to 5.46 trillion words for the books of 2000.

The number of words in each year of the record fits an exponential

growth function proportional to e0:028t.

Applying this to equation (5), we let Nw(t)~Nw(0)e0:028t. Using

this expression for exponential growth in amplitude in Model 1,

the gray curves in Figure 3 show the best fit of equation (5) to the

yearly word count of four words from the list: biodiversity, global,

isotopes, and adaptation. Table 1 lists the best-fit parameters q, m, and

N(0) under Model 1 for the full list of words. For example,

plugging in the specific values of m~0:002, q~0:27, and

N(0)~319,760 from Table 1 for biodiversity, and with

e0:028&1:028, the Model 1 difference equation (5) is

319,760e0:028(t{1) 1:028
1{e{0:272t

1z133e{0:272t
{

1{e{0:272(t{1)

1z133e{0:272(t{1)

� �
ð8Þ

usages of biodiversity per year t (Figure 3). The three other Model 1

curves in Figure 3 are similarly produced by plugging the

corresponding parameter values for the word (top half of

Table 1) into equation (5).

We then explore the alternative approach of Model 2, which

uses the actual yearly counts of the word the for the amplitude term

of equation (7). The Model 2 results fit the individual words better

than Model 1 (Figure 3, black curves), yielding better estimates of

confidence intervals around the parameters in Table 1). Each

Model 2 curve in Figure 3 is produced by plugging the specific

parameter values q, m, and aw for the word (bottom half of Table 1)

into equation (7). Taking biodiversity again as an example, we plug

in its specific values of m~0:0015, q~0:277, and aw~0:000033
from Table 1, so that the Model 2 difference equation (7) is

0:000033 Nthe(t)
1{e{0:2785t

1z185e{0:2785t

�

{Nthe(t{1)
1{e{0:2785(t{1)

1z185e{0:2785(t{1)

� ð9Þ

usages of biodiversity per year t.

As we see in Figure 3, the raw word count of each word is

underlain by the exponential growth in published English over the

years. The raw yearly counts for a word rarely return to zero,

because the exponential growth in amplitude dominates as t

increases. Among our examples in Figure 3, this can be seen

particularly well for the word isotopes, where the ‘Bass’ part of

Model 1 yields the first peak by midcentury, but then the

exponential growth in amplitude dominates by later in the

century.

Hence the raw count does not convey very well how most of

these words ultimately decline in their relative frequency among all

words. Rather than try to second-guess when this exponential

growth in total word count will level off (which is even more

ambiguous now with digital publishing), we simply present the

same results normalized by the counts of the in Figure 4. The

normalized plots in Figure 4 show the decline in relative frequency

after the peak, as well as subtler changes. When we normalize

isotopes, for example, the curve has just the one major peak in

midcentury (Figure 4). The other Model 2 curves in Figure 3 are

shown in black, plugging the corresponding parameters from the

bottom half of Table 1 into equation (7).

Looking in more detail at these fits, we recognize that the

probabilities m and q cannot be expected to be uniform over time

and different communities. If we assume that their mean values

remain the same over time, we can introduce ‘‘noise’’ in both m
and q during these modeled dynamics (detailed in Methods). Using

maximum likelihood to find the parameters of best fit to each word

diffusion, we can then measure the errors (residuals) as a function

of time to evaluate the predictions of the noisy Bass model.

To evaluate the noise predictions, we consider how the actual

word frequency departs from the model over time for each word in

our example set. It is instructive, therefore, to treat the fitted

diffusion model as the null model and then plot the departures

from this null over time. We measure these departures simply by

taking the difference between the prediction of the model and the

actual word count for each year, and then express this as a fraction

of the actual word count. Figure 5 illustrates departures for several

examples; note that the magnitude of the residuals decreases over

the long term for biodiversity, adaptation, global and isotopes. This

suggests the noise is more in mw than in qw. Indeed, we generally

found the fitting of mw, which varies by orders of magnitude

Figure 1. The popularities of the top climate change 1-grams in
the Google Ngrams database, normalized to the word the and
using a logarithmic scale. Shown here is the last century of public
usage of a set of the top climate-change keywords in recent scientific
publications [24], which include: adaptation, biodiversity, climate,
diatoms, drought, global, Holocene, isotopes, paleoclimate, phenology,
photosynthesis, pollen, precipitation, and temperature.
doi:10.1371/journal.pone.0047966.g001
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among our examples, more difficult than fitting qw, which is more

consistent (Table 1).

Interestingly, the residuals for global and isotopes increase at the

very end of the time series (just year 2008), due to a faster drop in

real frequency compared to the model prediction. We do not show

the 2008 residuals in Figure 5, however, because we suspect this

may be an ‘edge effect’ in the datasets at year 2008, when the

Google Ngram count is truncated, but perhaps they suggest some

learning bias against these two words by 2008. Only more data in

the future can answer this question.

Discussion

We have found that the same classic two-parameter Bass model

closely fits the usage of certain scientific keywords in the more

general, public sphere of all published books. Among the two

approaches to the amplitude portion of the model, the more

accurate is to use the actual observed number of uses of the word

the per year as an input parameter, compared to the coarser

estimate of a purely exponential growth in the number of words

through time.

Figure 2. Total number of word usages per year recorded by the Google database, in billions. Inset shows the same data with
logarithmic y-axis.
doi:10.1371/journal.pone.0047966.g002

Figure 3. Word counts per year versus Model 1 and Model 2, for selected words as examples. Gray circles show the word data, the gray
curve shows Model 1, and the black curve shows Model 2 (occasionally the black curve obscures the gray curve). Plugging in the best-fit values of m,
q, and N(0) from Table 1 (top half) for each word, Model 1 uses equation (5) to represent the word-usage rate. For Model 2, we plug the word-specific
values of m, q, and aw from Table 1 (bottom half) into equation (7).
doi:10.1371/journal.pone.0047966.g003
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Because the scale of these keyword trends varies from centuries

to years, we posit that the explanation is not a normal distribution

of independent response times but rather the diffusion of these

words through social learning. Several of the words conform to the

suggestion that there is a typical diffusion time of about 30–

50 years, or a timescale ‘‘roughly equal to the characteristic

human generational time scale’’ [32]. A few words however, such

as adaptation, precipitation, photosynthesis, and possibly temperature,

appear to be diffusing on a scale of multiple generations. One

difference, which may be important, is that we studied selected

popular words that diffused en route to becoming popular,

whereas Petersen et al. [32] looked at all words above a certain

minimal threshold of usage, the majority of which may never have

become popular. Future studies might explore whether there is a

certain threshold of popularity where these lifespan dynamics

change [16,33].

These diffusions are visible in general usage, and so we are not

suggesting that climate science itself is a fashion. We suggest that

some of the core vocabulary of climate science becomes passé in

public usage, even as the scientific activity may remain steady. A

new keyword database of scientific discourse (arxiv.culturomic-

s.org) shows the usage of these climate-science keywords in science

does not show the same marked social-diffusion curves that we find

in public/general usage represented by the Google Ngram

Figure 4. Normalized word counts per year versus normalized Model 2. Shown are the word data from Figure 3 fitted by Model 2, each
normalized by the yearly count of the word the in the Google database.
doi:10.1371/journal.pone.0047966.g004

Figure 5. Residuals from the best-fit Model 1 and Model 2, expressed as percentages of the actual frequency of each word through
time. Examples shown are biodiversity, global, adaptation, and isotopes. Filled circles for Model 1, and white circles for Model 2 (results overlap
substantially for biodiversity and global).
doi:10.1371/journal.pone.0047966.g005
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database. This bears consideration as a factor (among the clear

economic and other barriers) for why the social and political

impact of the convincing climate evidence has been disappointing.

The model is widely applicable. In fact, our original motivation

for this case study was in observing that the simple model of

equation (2) fits the coming and going of many of the fashionable

words that Michel and colleagues [15] used as examples. There

clearly appear to be words with high q=mww1, which rise and fall

as symmetric waves, such as feminism or global. Also, there are

words with low q=mvv1, which rise very quickly after an event

and then decline exponentially. The best examples of this are the

names of a calendar year (‘‘1883,’’ ‘‘1910,’’ ‘‘1950’’), which follow

the low q=m pattern, starting just after the named calendar year

[15]. Some words rise with good fit to the social-diffusion pattern

but then persist without declining, presumably because they

acquire a basic function in the language. These include useful

technologies or scientific discoveries, such as DNA, telephone, and

radio [15]. The word radio, for example, shows a fashionable rise

during the initial stage but then settles into the more stable,

functional stage.

The Bass model we adapted in this study has been used

effectively for decades in marketing and other applications to

capture social versus independent spread of purchases of consumer

goods, adoption of technologies, and more recently in online

media [34]. As has been suggested for other public-communica-

tion concerns, such as recent flu scares [18], we suggest that the

three-parameter social-diffusion model can be a highly useful tool

for getting a quick, rough assessment of how words are chosen and

shared within discourse, whether published in academic journals,

reported by the media, or found during online searches or on

social networking sites.

The goals for future work are first to make a more systematic

comparison of public usage to the scientific corpus, and then

second to devise an algorithm to search the dataset, find diffusion

peaks, find the best fit of a Bass process to each, and return a q=m
ratio. We would need to construct a critical test for a leveling-off

that indicates a word has ceased to be trendy and enters the

language functionally (such as DNA or radio). This would require an

automated process examining large datasets, which might be an

algorithm that defines the ‘‘birth’’ of a new word in one of two

ways, either (a) the time at which the logged frequency of the word

grows in ten consecutive time periods or (b) by an order of

magnitude in a shorter time period (this simple pair of rules is

consistent with the visual start date to within several years in

almost all cases).

Conclusions

Our goal has been to demonstrate the potential of a simple

model for characterizing word-usage trends, which then can be

used to inform efforts at better communication. Recognizing

which words spread by diffusion, along with the ideas or

metaphors they represent, can justify an information campaign

shifting its focus toward social learning rather than expecting an

audience to adopt a message simply because its content is

objectively sound.

When one asks, ‘‘How can scientists respond?’’ when the public

is ambivalent about climate change [9], it is tempting simply to

shrug and lament that media and the public are prone to fashions,

even as scientists gravitate toward consensus [8]. As Orwell [12]

reminded us long ago, however, the trends of English usage might

be the key to improving the politics that surround science. In a

recent book [35], we discuss the example of the small Danish

island of Samsø, whose inhabitants succeeded in shifting the

island’s energy supply from oil entirely over to renewable wind

turbines, even though those cost about $1 million apiece [36].

Several key elements appear to have been pivotal in this

remarkable, inspiring transformation, but for this expensive new

behavior to spread, social learning was key. In small and socially

cohesive Samsø communities, the project leader promoted the

idea at every opportunity, from local town meetings to everyday

conversations, which later became an organic component of daily

conversation, as newly erected wind turbines became a highly

visible part of the constructed environment [35,36].

As we believe to be the case for words of a language, the

parameters of the model can be argued to represent social versus

individual decision making. As we discussed above, however, the

same sorts of adoption curves can be achieved through some

distribution of purely independent response times [29]. It remains

for future research to attack this ‘‘identification problem’’ of

separating actual social forces from independent forces in the

observed dynamics of word usage. Of course, one means to

address this is not to rely on curve fitting but to use it merely as a

quantitative population-scale tool to complement qualitative local-

scale investigation such as ethnography, interviews, or discourse

analysis [37,38]. Hence, the curve fitting becomes a means of

presenting hypotheses for qualitative, detailed investigation,

including interesting exceptions that depart from the Bass model.

An example would be the ‘‘presidential’’ boost in Google searches

for ‘‘bird flu’’ in November 2005 exhibited after President Bush

announced a $7 billion ‘‘Bird Flu Strategy’’ [18], or the boost in

the names associated with U.S. presidents and their family

members in the year following their election [39]. Alternatively,

other words have declined so sharply in time as to signify forms of

censorship or sudden social inappropriateness, such as the word

slavery after 1865 [15]. In a less dramatic sense, the residuals from

our models suggest some bias against adaptation and g
_
lobal in the

last years of the dataset (to 2008). Though time will tell how this

plays out, it demonstrates the utility of this simple model as a tool

for identifying subtler trends.

Methods

The model
In the Bass [30] formulation of equation (1), Ft is the cumulative

distribution function and f (t)~dFt=dt is what Bass described as

the density function. The ratio f (t)=(1{Ft), representing adop-

tion rate as a fraction of potential adopters remaining, is known as

the Bass ‘‘hazard function.’’ We assume the total population size is

fixed at one, so that Ft is the fraction of eventual uses of the word

by time t, and dFt is the number of new users during (t,tzdt). In

order to predict the date of peak adoption rate, we differentiate

equation (1) and obtain.

0~
df (t)

dt
~

d (1{Ft)(mzqFt)½ �
dt

~½(q{m){2qFt�f (t): ð10Þ

This maximum occurs at a date t � when the density f (t) takes

a maximum. At this maximum, the cumulative-adoption fraction,

F , is

Ft�~
(q{m)

2q
ð11Þ

Bass [30] solved (4) and (5) and found that

t�~½1=(mzq)� ln (q=u).
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Non-social version. In comparing the Bass diffusion model

to the word data, we acknowledge that the parameter q is merely

reflecting frequency-dependent growth, which does not necessarily

have to be ‘‘social,’’ as S-curves of adoption can be generated

through individual learning in successive stages [29]. The full

literature on discrete-choice models is beyond the scope of the

current study, but to take an example, let the net cumulated utility

to the usage of word w by date t be denoted by

Uw(t)~

ðt

s~0

uw(s)ds ð12Þ

We can then apply a discrete-choice model [25], whereby the

choice between using word w and some other word is given by

Ft~
ebUw(t)

1zebUw(t)
ð13Þ

Differentiating both sides of equation (13), we obtain

dFt

dt
~bFt(1{Ft)(uw(t)): ð14Þ

Assuming uw(t) is positive and constant through time, then

Uw(t) increases steadily through time and we replicate Bass

diffusion, with the ‘‘individualistic’’ term bu acting like the ‘‘social’’

q parameter in equation (1). Effectively, we have re-labeled the

parameter that governs frequency-dependent growth of the word

usage from ‘‘social’’ to ‘‘accumulated utility.’’ As described above,

however, we feel comfortable in the specific case of this study of

language use, which is inherently social, to refer to the parameter q
as the social parameter.

Regarding equation (2) above, in which Nw grows with time, we

can follow Brock and Durlauf [26], who specify a hazard function

of this sort and (dropping the covariates) arrive at the same two-

parameter Bass hazard function as in equation (1) above, where

f (t)=(1{Ft)~(mzqFt). In order to be thorough with our

approach of inserting equation (6) into (2) using the empirical

counts of the word the, which dropped in relative frequency from

about 6% to about 5% over three centuries, we would need to add

to the RHS of equation (2) a discrete time analog of the term

1

aw(t)

daw(t)

dt
z

1

Nthe(t)

dNthe(t)

dt

� �
Xi(t): ð15Þ

However, we can afford to neglect this entire term because (a)

under the maintained hypothesis that aw(t)~aw is constant for all

dates t, daw=dt~0, and (b) dNthe=dt is also small, as it took

centuries for the to decrease from 6% to 5%.

Noisy version. In order to introduce ‘‘noise’’ in both m and q
during these modeled dynamics, we introduce the noise term, s,

the amplitude of which is governed by dWt=dt, where Wtf g is a

standardized Wiener process. We may then write

dFt ~ mzsm
dWmt

dt
z qzsq

dWqt
dt

� �
Ft

� �
1{Ftð Þ

h i
dt

~ (mzqFt)(1{Ft)½ �dtzsm(1{Ft)dWmtzsqFt(1{Ft)dWqt:
ð16Þ

Dividing both sides of equation (16) by 1{Ft, the remaining

potential adoptions, we have the following for f (t)=(1{F (t)),
which is also known as the Bass hazard function:

dFt
1{Ft

~ mzsm
dWmt

dt

� �
z qzsq

dWqt
dt

� �
Ft

h i
dt

~(mzqFt)dtzsmdWmtzsqFtdWqt:
ð17Þ

Note that if sm~0~sq, we recover the deterministic case where

dFt~f (t)dt is the absolute word-adoption rate during (t,tzdt)
and dFt=(1{Ft) is again the Bass adoption rate per potential

adoption yet to be made.

To focus first on noise in the parameter m, we eliminate the

noise in q by setting sq~0. Because dFt is Bass adoptions during

(t, tzdt), we have

dFt~ (mzqFt)(1{Ft)½ �dtzsm(1{Ft)dWmt: ð18Þ

We may compute the variance of usage (ignoring the truncation

issue in that Ft must always be positive, meaning that we must use

a ‘‘truncated’’ normal when F0~0 and t is near zero),

var(dFt) ~var(sm(1{Ft)dWmt)

~ sm(1{F (t))
� �2

dt,
ð19Þ

where we used the basic property of standardized Wiener

processes, Et(dWmt)
2~dt. Hence, noise in m implies the variance

of adoption rate, dF , during (t, tzdt) will decline as future

potential adoptions, 1{Ft, also decline. Next, we add noise in q,

such that sqw0 and

dFt~ (mzqFt)dtzsmdWmtzsqFtdWqt

� �
(1{Ft): ð20Þ

Hence, var(dF (t)) is given by

var(dFt) ~var (smdWmtzsqFtdWqt)(1{Ft)
� �

~ s2
m(1{Ft)

2zs2
q Ft(1{Ft)½ �2z2rsmsqFt(1{Ft)

2
n o

dt:

ð21Þ

Here, r is the correlation between the noises shocking the

inventors (m in equation (1)) and the noises shocking the imitators

(q in equation (1)). The correlation between the noises and the

relative sizes of the noises should differ across contexts. For

parsimony, however, we set r~0. This secondary variable could

be investigated in the future.

Data
For each word in our case study, we obtained the time series of

word frequencies via Google’s Ngram tool from the 10 CSV data

files (approximately 1 GB each) provided for 1-grams among the

datasets combining both British and American English. Google

distributes the 1-grams data into nine comma-separated values

files, which we imported into a MySQL database. A substantial

fraction of these 1-grams are not words, and we therefore removed

all 1-grams consisting of commonly used symbols or numbers, as

well as any 1-gram that contained the same consonant three or

more times consecutively. A MySQL table was then created that

contained the 1-grams that passed through the filters.
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For each word we examined, one of these 10 files provides the

integer number of appearances, per calendar year, in 4% of all

English-language books (the data also include the number of

published pages the 1-gram appeared on and the number of

different books it appeared in; we do not use these measures). The

1-grams are case-sensitive, and we used the lowercase version of all

words. The word counts run from about the mid-17th century to

2008. This remarkable dataset has a minor constraint in that it

includes only Ngrams that appear over 40 times in the whole

corpus (ngrams.googlelabs.com/datasets); this bounds the observ-

able Zipf’s Law at extremely low frequencies of occurrence, which

has no effect on our observances of the top 1000 most-common

words through time.

We used Java code to analyze the data in these MySQL tables

of filtered and raw data. To produce the distributions of 1-gram

frequencies, we first queried the raw data to produce a list of

Ngrams and their frequencies for a year of interest. We then cross-

referenced this with the table of filtered Ngrams to remove

nonwords.

Fitting
To test whether these words can be fitted with the simple Bass

diffusion model, we estimated m, q, plus either N(0) for the

exponential version of equation (5) for Model 1, or aw in the best

fit of equation (7) for Model 2. We estimated the three parameters

by applying a nonlinear fitting algorithm (‘‘nlinfit’’ in MATLAB)

to the word frequencies. Based on minimizing the least-squares

regression between the nonlinear function and the data [14], this

algorithm searches the space of parameters by iteratively refitting a

weighted nonlinear regression. It bases the weight at each iteration

on the residual from the previous iteration [40], which de-

emphasizes the influence of outliers on the fit, and the iterations

are continued until the weights converge [41].
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