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Abstract

Prognostic models are often used to estimate the length of patient survival. The Cox proportional hazards model has
traditionally been applied to assess the accuracy of prognostic models. However, it may be suboptimal due to the
inflexibility to model the baseline survival function and when the proportional hazards assumption is violated. The aim of
this study was to use internal validation to compare the predictive power of a flexible Royston-Parmar family of survival
functions with the Cox proportional hazards model. We applied the Palliative Performance Scale on a dataset of 590 hospice
patients at the time of hospice admission. The retrospective data were obtained from the Lifepath Hospice and Palliative
Care center in Hillsborough County, Florida, USA. The criteria used to evaluate and compare the models’ predictive
performance were the explained variation statistic R2, scaled Brier score, and the discrimination slope. The explained
variation statistic demonstrated that overall the Royston-Parmar family of survival functions provided a better fit (R2 = 0.298;
95% CI: 0.236–0.358) than the Cox model (R2 = 0.156; 95% CI: 0.111–0.203). The scaled Brier scores and discrimination slopes
were consistently higher under the Royston-Parmar model. Researchers involved in prognosticating patient survival are
encouraged to consider the Royston-Parmar model as an alternative to Cox.
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Introduction

Prognostic models are often used to estimate the length of

patient survival and improvement in the accuracy of prognosis

translates into superior quality of patient care. Precise prognosis of

survival using modeling techniques requires rigorous methods for

the development and testing of the accuracy of prognostic models.

Developing a prognostic model entails having accurate patient

data for prognosis, and selecting clinically relevant candidate

predictors and measures of model performance, usually in the

context of multivariable regression [1]. This process produces

patient performance scores that allow for classification of patients

into different risk groups [2,3,4].

In the hospice setting, accurate prognostication of survival

affords patients and their families a vital opportunity to attend to

matters such as planning, prioritizing, and preparing for death [5].

Predicting patient survival is a complex decision making process

involving numerous subjective and numerical factors that have

substantial variation which may lead to poor prediction of life

expectancy. Many physicians practice optimism or avoidance, thus

overestimating survival at times by a factor of five [6].

Implementing appropriate statistical methodologies translates into

improved accuracy of prognosis and superior quality of care.

Predictions based on appropriate statistical modeling have been

shown to be superior to physicians’ prognostication [4,7].

The Cox proportional hazards (CPH) model [8] is the most

commonly-used survival prediction model [4,9]. In the hospice

and palliative settings, demographic and clinical covariates are

often included in CPH to predict patient survival [10,11]. The

appeal of the model is its analytic simplicity and that the baseline

survival function does not need to be defined apriori–it is absorbed

when the likelihood function is maximized (note that ‘‘baseline’’

refers to zero values of the covariates, not to time equal to zero). It

is possible to estimate the baseline survival function for the CPH

model conditional on the estimated regression coefficients.

However, this is highly rigid as the smoothing of the underlying

function depends on the proportional hazards assumption, which

may not be supported by the data and is often overlooked by the

investigators [9]. Essentially, the CPH model was designed to

measure the effects of covariates on the changing hazard function

and not to model patient survival. A flexible family of functions

which allows for parametrically modeling the baseline survival

function is more appropriate, especially if the proportional hazards

assumption is violated in the CPH [12]. The baseline survival has

for the most part been ignored because it is left undefined in the

CPH model.
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In this manuscript we compare CPH with an alternative

method of estimating survival in the form of the class of flexible

Royston-Parmar (RP) parametric functions [12]. We use the

Palliative Performance Scale (PPS) [13] from a cohort of hospice

patients. Results from systematic reviews have shown that the

patient PPS score is an accurate measure of patient survival in the

palliative setting [7,11]. Furthermore, PPS and CPH model have

been used to construct meaningful hospice patient survival

estimates in the form of a life expectancy table and survival

nomogram [14] and to validate prognosticating scales for hospice

patient survival [15,16,17].

In addition to PPS, other risk factors such as age, cancer status

and gender have been reported to be significant predictors of

palliative patient survival in several studies [11,14]._ENREF_18

In our study we did not adjust for other risk factors because though

they may be significant predictors of survival for the cohort of

patients in our dataset, they may not be in other palliative settings.

Our goal was to demonstrate that the RP family of parametric

functions allowed for a direct and flexible modeling of the baseline

survival and that it might be formulated so that the impact of the

proportional hazard assumption is minimized. We determined if

the overall performance and discriminatory ability of RP family of

parametric functions is superior to CPH in the sample by using

models that were derived and tested on the whole dataset (naı̈ve

validation) and using (internal) cross-validation. It is important to

note that the RP parametric functions have not been applied to

prognostic models in the hospice and palliative settings. It is also

important to note that we did not perform external validation,

which entailed using a different data set than the one used to

create the model[3]. In the next section we briefly discuss PPS,

introduce the statistical models and measures of model perfor-

mance.

Methods

Study sample and palliative performance
The patient data were obtained from the Lifepath Hospice and

Palliative Care Center licensed since 1983 to serve in Hillsborough

County, Florida. Hospice care focuses on pain control and

symptom management. To avoid selection bias, we retrospectively

and sequentially extracted data for 590 patients who, as of January

2009 were deceased. This study was a retrospective review of the

deceased patients’ medical records. Only data pertaining to

outcomes were collected; personal information was not collected

and the data were de-identified prior to analysis. Since we did not

collect any information that can identify deceased patients or their

family members, under HIPPA rules and regulations (45 CFR

164.512) the requirement for consent does not apply. The study

and consent procedures were approved by the University of South

Florida Institutional Review Board prior to study initiation. Two

research assistants extracted all data necessary to populate the

model variables and two faculty members randomly checked 25%

of the data for accuracy. The models were tested against observed

survival duration.

The Palliative Performance Scale (PPS) was developed and

reported by Anderson et al. [13] as a measure of palliative patients’

functional status. The scale has 11 possible mutually exclusive

levels, which are based on five domains: six levels of ambulation,

six levels of activity and evidence of disease, five levels of self-care,

five levels of food intake and four levels of consciousness. The scale

ranges from PPS of 0% (deceased patient) to PPS of 100%

(ambulatory and healthy patient). Numerous studies have studied

its prognostic accuracy of survival in a variety of settings and found

it provides meaningful estimates of patient survival

[10,14,15,18,19,20,21,22,23]. PPS has been found to be both

valid and reliable [24].

Model selection and validation
Validating a prognostic model is generally accepted to mean

that given a patient population it works in a data set other than the

one it is applied to[2,25]. In other words, the model needs to be

tested using a different data set than the one used to create the

model[3]. It is also generally accepted that the validation process

should follow guidelines and that un-validated prognostic models

should not be applied in clinical practice [3,4,26]. When validating

a prognostic survival model in the regression framework, most

attention has been on the value of the prognostic index based on

covariates, while the role of the baseline survival function has been

largely ignored.

The role of the baseline survival is significant as it quantifies the

absolute patient survival probabilities over time. For a vector of

covariates x and parameter vector b, the survival function S(t; x) at

Table 1. Patient characteristics.

Variable Result

Total no. of patients 590 (100%)

Age at Treatment

,45 37 (6.3%)

45–64 187 (31.7%)

65–74 110 (18.6%)

75–84 129 (21.9%)

85+ 127 (21.5%)

Gender

Male 293 (49.7%)

Female 295 (50%)

Unknown 2 (0.3%)

No. of patients with cancer/noncancer

Noncancer 363 (61.5%)

Cancer 227 (38.5%)

Diagnosis category for cancer

Brain 10 (1.7%)

Gastrointestinal 35 (5.9%)

Genital-female 12 (2%)

Genital-male 12 (2%)

Head and neck 8 (1.4%)

Hematopoietic 10 (1.7%)

Pancreas 24 (4.2%)

Respiratory 49 (8.3%)

Skin 2 (0.3%)

Urinary 4 (0.6%)

Other 61 (10.3%)

Diagnosis category for noncancer

AIDS 12 (2%)

Cardiovascular 74 (12.5%)

Neurological 119 (20.2%)

Respiratory 37 (6.3%)

Other 121 (20.6%)

doi:10.1371/journal.pone.0047804.t001
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time t for the CPH model is commonly expressed as

S t; xð Þ~ S0 tð Þ½ �exp xbð Þ
, where S0 (t) is the baseline survival

function, i.e. survival function when all the covariates x are equal

to zero. In the CPH framework, the estimation of the prognostic

index xb does not require the formulation of the baseline

cumulative survival function S0 (t), which itself can be estimated

conditional on the covariate estimates. The two popular methods

for estimating baseline survival S0 (t) are the Breslow and

Kalbfleisch-Prentice methods [27]. Both give similar results in

practice, but can lead to ‘‘choppy’’ estimates of the baseline

function and are dependent on the proportional hazards

assumption.

When the goal of a survival analysis is to estimate hazard

ratios (the effect of covariates on the changing hazard

function), the baseline function is of no consequence. The

CPH is appropriate as the baseline function gets absorbed

when coefficient bs are estimates by the method of partial log

likelihood. However, when the goal is to prognosticate patient

survival, there is a need for more flexibility in modeling the

baseline survival.

Table 2. Survival time by age, gender, diagnosis and initial PPS.

Survival Times (in Days)

Variable Mean (95% CI) Median (95% CI) Range No. of Patients (%)

Total no. of patients

Overall 14 (12, 17) 6 (5, 6) 1–371 590

Age at Treatment

,45 15 (8, 22) 8 (4,12) 1–95 37 (6.3%)

45–64 14 (11, 17) 7 (5, 9) 1–114 187 (31.7%)

65–74 14 (8, 20) 5 (4, 6) 1–271 110 (18.6%)

75–84 14 (8, 20) 6 (5, 7) 1–371 129 (21.9%)

85+ 15 (9, 21) 5 (4, 6) 1–313 127 (21.5%)

Gender

Male 14 (10, 18) 6 (5, 7) 1–371 293 (49.7%)

Female 15 (11, 19) 6 (5, 7) 1–271 295 (50%)

No. of patients with cancer

Noncancer 12 (8, 16) 5 (4, 6) 1–371 363 (61.5%)

Cancer 17 (14, 20) 9 (7, 11) 1–113 227 (38.5%)

Diagnosis category for cancer

Brain 27 (16, 39) 28 (14, 42) 3–55 10 (1.7%)

Gastrointestinal 21 (14, 29) 11 (5,17) 1–82 35 (5.9%)

Genital-female 15 (6, 24) 8 (1, 15) 2–55 12 (2%)

Genital-male 26 (7, 45) 13 (4, 22) 1–100 12 (2%)

Head and neck 10 (2, 18) 5 (1, 9) 1–36 8 (1.4%)

Hematopoietic 4 (2, 6) 3 (1, 5) 1–10 10 (1.7%)

Pancreas 18 (7, 29) 7 (3, 11) 1–113 24 (4.2%)

Respiratory 15 (10, 20) 10 (7, 13) 1–71 49 (8.3%)

Skin 11 11 11–11 2 (0.3%)

Urinary 25 (1, 58) 9 (1, 39) 4–76 4 (0.6%)

Other 17 (12, 22) 9 (5, 12) 1–103 61 (10.3%)

Diagnosis category for noncancer

AIDS 18 (3, 33) 8 (1, 15) 1–85 12 (2%)

Cardiovascular 14 (5, 23) 5 (3, 7) 1–271 74 (12.5%)

Neurological 8 (5, 11) 5 (4,6) 1–77 119 (20.2%)

Respiratory 25 (1, 49) 3 (1, 5) 1–371 37 (6.3%)

Other 11 (1, 15) 5 (4, 6) 1–174 121 (20.6%)

Initial PPS Score

PPS 10% 5 (3, 7) 3 (2, 4) 1–77 188 (32.6%)

PPS 20% 16 (8, 24) 5 (4, 6) 1–371 125 (21.7%)

PPS 30% 15 (11, 19) 7 (5, 9) 1–140 123 (21.4%)

PPS 40% 24 (18, 30) 14 (11, 17) 1–147 96 (16.7%)

PPS 50–80% 28 (21, 35) 18 (9, 27) 1–76 44 (7.6%)

doi:10.1371/journal.pone.0047804.t002
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An alternative to the CPH is the RP family of models that

resembles the generalized linear models and can be viewed as a

parametric extension Cox proportional hazard models [12].

The models are framed to rely on the transformation g(.), such

that g(S(t; x))~g(S0(t))zxb. The transformation g(.) can be

either from the proportional hazard, proportional odds,

Aranda-Ordaz or probit families [12]. We did not consider

the Aranda-Ordaz family in this study due to possible

interpretational difficulties [12]. Under the proportional

hazard link function, the hazard ratio estimates are nearly

identical to those estimated under CPH. The attractive feature

of the RP baseline survival function is that its shape is

preserved, but the location of the baseline distribution function

can vary, which allows for flexible model recalibration. Also,

the estimate g s0 tð Þð Þ is implemented on log-time scale. It is

generally gently curved and smooth, making survival estimates

more accurate.

In the RP framework, if the proportional hazard assumption

is violated, the probit-link function g(s) = 2W21(s) can be

applied, where W21(.) is the inverse standard normal distribu-

tion function. The baseline survival function s0 tð Þ is approx-

imated and smoothed by a restricted cubic spline function with

m interior knots. Splines are piecewise polynomials that ensure

the overall curve is smooth (see Royston and Parmar [12] for

details). Spline-based survival models such as RP have been

empirically shown to be superior when the proportional hazard

assumption is violated [28]. The optimal number of knots and

the comparison among different RP models can be found using

the minimum combination of Akaike Information Criterion

(AIC), Bayes Information Criterion (BIC) and explained

variation statistic R2 [29,30]. The AIC is defined in the usual

manner as - 2Log(likelihood) + 2(No. of model parameters),

while BIC equals - 2Log(likelihood) + (No. of model para-

meters)*Log(n). In survival analysis n is interpreted as the

number of events rather than the number of patients. The

placement of knots in spline modeling is an issue. We have

placed the knots at equally spaced centiles of the log-survival

times, following published recommendations [31]. For exam-

ple, for m = 1 the knot is at the 50th centile, for m = 2 the knots

are at the 33th and 67th centiles, etc.

We compared RP and CPH by performing internal

validation (assessing validity in the population where the

development data originated from) on the whole data set

(naı̈ve) and using split-sample cross-validation. We performed

10-fold cross-validation by splitting the data into development

Figure 1. Kaplan-Meier survival curves by initial PPS.
doi:10.1371/journal.pone.0047804.g001

Figure 2. Test of the proportional hazards assumption under CPH for initial PPS.
doi:10.1371/journal.pone.0047804.g002
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and validation sets and repeating the process 20 times. The

methods can be readily implemented in Stata [32,33] statistical

software using the stpm [29] and stpm2 [34] commands, or in

open source statistical software R as flexsurv package [35].

Assessment of model performance
Model performance is the ability of the estimated risk score to

predict survival and is assessed using the measures of explained

variation, calibration, and discrimination. Calibration refers to

how closely the predicted survival at a pre-specified time agrees

with the observed survival. For cross-validation, we compared the

average fitted probabilities of survival under RP and CPH for the

first 15 days to observed probabilities estimated non-parametri-

cally using Kaplan-Meier curves [36].

The Brier score is a quadratic scoring rule that calculates the

differences between the actual outcomes and predicted probabil-

ities[37]. Given the predicted probability of survival pi at time t for

patient i, and Yi binary (0–1, dead-alive) variable, the Brier score is

defined as
P

i

(Yi(1{pi)
2z(1{Yi)p

2
i ). A Brier score of 0

indicates a perfect model, while 0.25 indicates a non-informative

model (the value achieved when issuing a predicted probability of

50% to each patient). The Brier score may be scaled by its

maximum Briermax = (1 – mean(pi)) mean(pi) to obtain

Brierscaled~(1� Brier

Briermax

)100%. The scaled Brier scores range

from 0% to 100% and have interpretation similar to the Pearson

correlation coefficient[38].

For a particular risk score, discrimination is the ability to

differentiate between the patients who died versus those who

survived. The Kaplan-Meier plot of survival for patients in

different risk groups can be used to test for separation,

indicating that the different risk groups are well defined [39].

For a statistical model, the global measure of the model’s

discriminatory power is the explained variation statistic R2,

which measures the variation explained by the fitted model

[40]. Higher values of R2 indicate greater discrimination. In

this study we implement R2 for survival models, as described

by Royston and Sauerbrei,[41].

The discrimination or Yates slope is a measure of how well the

subjects with and without the outcome are separated. It is defined

as the absolute difference in mean predictions of survival

(mean[pi]) between those who died and those who survived at

time t[2]. The scaled Brier scores and discrimination slopes were

calculated separately for the (naı̈ve) model using the whole dataset

and the model derived using cross-validation for t = 1, 2… 100

days. Higher scaled Brier scores and discrimination slopes

represent better model performance.

All statistical calculation were performed using Stata version

11.2 [32,33].

Figure 3. Test of the probit assumption under RP for initial PPS.
doi:10.1371/journal.pone.0047804.g003

Table 3. Criteria for the choice of scale in the RP model.

No. of
knots m PH PO Probit

AIC, BIC, R2 AIC, BIC, R2 AIC, BIC, R2

0 2033, 2042, 0.156 1887, 1896, 0.321 1872, 1881, 0.295

1 1889, 1902, 0.178 1883, 1896, 0.322 1858, 1871, 0.298

2 1871, 1888, 0.170 1870, 1887, 0.312 1857, 1874, 0.296

3 1870, 1892, 0.172 1870, 1892, 0.311 1858, 1880, 0.297

4 1865, 1892, 0.171 1865, 1891, 0.310 1855, 1881, 0.296

5 1866, 1896, 0.171 1865, 1896, 0.309 1856, 1886, 0.296

doi:10.1371/journal.pone.0047804.t003
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Results

Description of the data source
The patient characteristics of the retrospective cohort are

summarized in Table 1. The cohort consisted of 293 males

(49.7%) and 295 females (50.0%), and 2 (0.3%) with unknown

gender. The data were collected starting from patients’ entry

into hospice care until death for all 590 patients. The mean,

median and range of survival times for the patients by PPS at

admission, age, gender, cancer status, and diagnosis category

are given in Table 2. The table shows that the median survival

was fairly evenly distributed across age groups and gender, but

unevenly across the cancer status and initial diagnosis

category. All patients were assigned PPS at the time of

Figure 4. Baseline survival functions under CPH and RP models.
doi:10.1371/journal.pone.0047804.g004

Figure 5. Predicted survival by PPS under RP and CPH compared with the Kaplan-Meier estimates in the validation data.
doi:10.1371/journal.pone.0047804.g005
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admission to hospice care. Since PPS score of 0% means that

the patient is dead, the data were transformed so that the PPS

score of 10% was set as the baseline. There were only 15 total

observations for PPS = 60%, 70%, 80%, so they were

combined with PPS = 50% to obtain meaningful survival

estimates. Fourteen patients had missing values for PPS.

The time of admission was the starting point for survival time.

The Kaplan-Meier curves stratified by initial PPS level are shown

in Figure 1. The curves show good separation indicating that the

different risk groups are well defined. The log-rank test for equality

of survival curves was highly significant at P = 0.001. The global

test based on Schoenfeld residuals showed that the proportional

hazard assumption was violated for PPS (P-value ,0.001), which

can also be seen from the un-parallel natural log-plot of survival

curves (Figure 2).

Table 3 lists AIC, BIC and R2 values for 5 knots under the

proportional hazard, proportional odds and probit RP families;

the minimum combination in each is underlined. The number of

optimal knots was found to be m = 1 under the probit model. The

improvement in fit with the probit model can be seen from the

parallel survival curves of log-probit against natural log time

(Figure 3).

R2 was higher in the RP model (R2 = 0.298; 95% CI: 0.236–

0.358) than the Cox model (R2 = 0.156; 95% CI: 0.111–0.203),

indicating that the RP model explained significantly more

variation than CPH. To illustrate the differences for the baseline

function, Figure 4 shows plots of the CPH and RP baseline

survival functions. The CPH baseline survival is ‘‘choppy’’ to

approximately day 12, while the RP is smooth. The two baseline

functions converged at around day 12.

Cross-validation showed that the relation between the two

predicted survival estimates is approximately linear, with RP

model consistently estimating a higher probability, which is

particularly evident for higher scores of PPS corresponding to

longer survival times (Figure 5). Overall, the predicted probabil-

ities under RP tended to be closer to the Kaplan-Meier estimates

than CPH. The plot of the consistently positive differences

between RP and CPH scaled Brier scores (Figure 6a) and

discrimination slopes (Figure 6b) showed that the RP model

discriminated better across patient survival times for both the full

(naı̈ve) and cross-validated models. This suggested that the higher

value of R2 under RP was not due to over-fitting.

Discussion

The results from our study show that RP family of models

predicts survival more accurately than CPH through its flexible

modeling of the baseline survival function. Using the RP flexible

baseline function modeling would allow for more precise

calibration in the prognostication phase than CPH. As Figure 5

illustrates, the predicted RP survival probabilities are consistently

higher for higher values of PPS, and closer to the Kaplan-Meier

estimates of survival. We suspect that both the robust modeling of

baseline survival and overall model fit provide for better survival

estimation.

There are limitations to our study, the primary one being the

use of retrospective data. The RP family of parametric functions

needs to be applied prospectively to assess accuracy of prognostic

models through external validation. Furthermore, the dataset was

limited to the hospice setting with no censored observations and

with majority of patients having a very short follow-up time. For

future studies, application of the proposed methodology should

account for these limitations, and comparisons with parametric

prognostic survival models should be explored.

The flexible models discussed in this paper could greatly

improve the ability of researchers to accurately predict survival.

An advantage of RP is that it can be used to validate published

models for which the original individual patient data are

unavailable. If the scale used (hazard, probit or odds), the knot

positions, and the estimates of prognostic indices are known, then

it would be possible to use RP. In the case of CPH this is not

possible, since the baseline function would not be available.
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