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Abstract

There is a large body of scientific evidence suggesting that 3,39-Diindolylmethane (DIM), a compound derived from the
digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo.
Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy
homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment
in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability
was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the
precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we
investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells.
Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of
the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of
apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates
AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results
suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate
cancer regardless of androgen responsiveness, although functional AR may be required.
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Introduction

AMP-activated protein kinase (AMPK) is expressed in all

eukaryotic cells and is a critical enzyme that plays an essential

role in cellular energy homeostasis, as well as controlling

processes related to tumor development including cell cycle

progression, cell proliferation, protein synthesis, and survival.

Therefore, as an anti-cancer target, AMPK has received

intensive attention in recent years. Mammalian AMPK is a

trimeric serine/threonine protein kinase composed of a catalytic

a subunit and two regulatory subunits, b and c. AMPK is

activated through phosphorylation of Thr-172 on the a subunit

by an energy-depleting stress, such as increased ratios of AMP/

ATP [1] and ADP/ATP [2], or stimulated by cellular kinases

including liver kinase B1 (LKB1) [3–4] and calmodulin-depen-

dent protein kinase kinase (CaMKK) [5]. Once activated, AMPK

plays two major functions, metabolic and non-metabolic. In the

regulation of metabolic process, AMPK phosphorylates serine

moieties in many target proteins and results in switching on of

catabolic pathways to activate ATP-generating processes includ-

ing the uptake and oxidation of glucose and fatty acids, and

switching off of anabolic pathways including protein, fatty acid

and cholesterol syntheses, which consume ATP [6]. Regarding

non-metabolic functions of AMPK, activation of AMPK can

induce cell cycle arrest and inhibit cell proliferation and protein

synthesis in malignant cells through multiple mechanisms such as

the accumulation of tumor suppressor factor p53 and the cyclin-

dependent kinase inhibitors p21 and p27 [7], as well as down-

regulation of the mTOR pathway [8–9]. Extensive research

supports the role of AMPK in cancer prevention and therapeu-

tics, suggesting that targeting AMPK may be a promising option

for cancer treatment.

To that end, metformin, an anti-diabetic drug, has been shown

to activate AMPK, raising a hypothesis that metformin may

reduce the risk of cancer in patients with type 2 diabetes through

activation of the AMPK pathway [10]. Indeed, reports from

clinical studies have demonstrated that diabetic patients treated

with metformin had a significantly lower rate of cancer incidences

and cancer-related mortality compared with patients exposed to

other anti-diabetic medicines [10–12]. Pre-clinical studies have

also shown that metformin not only inhibits growth of cultured

cancer cells [13–14] and tumors in mice [15], but also selectively

targets cancer stem cells [16].

Besides metformin, some natural compounds, including

quercetin, genistein [17], capsaicin, EGCG [18], and curcumin

[19], have been shown to have anticancer effects associated with

activation of the AMPK signaling pathway. In fact, natural
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products have been the most productive source of leads for the

development of anti-cancer drugs. According to the literature,

approximately 73% of anticancer drugs were discovered from

natural origins or derived from natural compounds over the past

half a century [20]. The natural compound indole-3-carbinol

(I3C), which is found at relatively high levels in cruciferous

vegetables such as broccoli and cabbage, and its dimer 3,39-

diindolylmethane (DIM) have shown anti-tumor activity in vitro

and in vivo [21–22]. Recently, we reported that a formulated

DIM (BR-DIM, obtained from BioResponse Nutrients, LLC.,

Boulder, Colorado, hereafter abbreviated as B-DIM), showed

approximately 50% higher bioavailability in vivo [23] compared

with DIM. B-DIM induced apoptosis and inhibited cell growth,

angiogenesis, and invasion of prostate cancer cells, which is

associated with regulation of Akt, NF-kB, VEGF and AR

signaling pathways [24–25]. In addition, recent results have

shown that B-DIM treatment of prostate cancer cells in vitro or B-

DIM intervention in patients with prostate cancer led to the

nuclear exclusion of AR associated with activation of miR-34a

[24]. However, the precise molecular mechanism(s) by which B-

DIM plays its anti-cancer and cancer-preventive roles have not

been fully elucidated; more specifically, it has not been reported

whether the biological activity of B-DIM is related to induction

of AMPK signaling.

Therefore, in the current study, we investigated the effects of B-

DIM on AMPK signaling and its related downstream targets in

both androgen-sensitive LNCaP and androgen-insensitive C4-2B

prostate cancer cells containing functional AR. Our results

showed, for the first time, that B-DIM could function as an

AMPK activator. Activation of AMPK by B-DIM resulted in the

down-regulation of AR and prostate-specific antigen (PSA)

expression, and caused induction of cell apoptosis, suppression of

mTOR pathway, and inhibition of prostasphere formation in

human prostate cancer cells in vitro and in vivo. Our findings also

demonstrated that the AMPK pathway is one of the novel

molecular targets of B-DIM for its anti-cancer effects against

human prostate cancer.

Methods

Cell Culture, Protein Extraction, and Western Blot Assay
Human prostate cancer C4-2B (obtained from Professor Leland

Chung, Emory University, School of Medicine, Atlanta, GA; and

currently at Cedars-Sinai, Los Angeles, CA) and LNCaP

(American Type Culture Collection Manassas, VA, USA) cells

were grown in RPMI 1640 medium (Invitrogen, Carlsbad, CA)

supplemented with 10% fetal calf serum (FCS), 100 mg/ml

streptomycin, 100 units/ml penicillin, and 2 mM glutamine, in a

humidified incubator with 5% CO2 and 95% air at 37uC. A whole

cell extract was prepared as previously described [26]. For

Western blot analysis, an equal amount of protein from each cell

extract was subjected to denaturing polyacrylamide gel electro-

phoresis (SDS-PAGE) and transferred to nitrocellulose mem-

branes. Individual membranes were probed with indicated

antibodies. Immunoreactive bands were developed using horse-

radish peroxidase conjugated secondary antibodies and Super-

Signal WestPico chemiluminescent substrate (Pierce) and visual-

ized using X-ray film.

Prostasphere Formation Assay
Prostasphere formation assay was performed to assess the

capacity of cancer stem cell self-renewal following our published

procedure [27]. Briefly, single cell suspensions of C4-2B cells were

thoroughly suspended and plated in ultra low adherent-wells of 6-

well plates (Corning, Lowell, MA) at 1,000 cells/well in 1.5 ml of

sphere formation medium (1:1 DMEM/F12 medium supplement-

ed with 50 units/ml penicillin, 50 mg/ml streptomycin, B-27, and

N-2). One milliliter of sphere formation medium was added every

3 days. After 6 days of incubation with different concentrations of

B-DIM or metformin (as a control), the formed spheres were

collected by centrifugation at 3006g for 5 minutes and prosta-

sphere numbers were counted under an inverted phase-contrast

microscope. The proportion of sphere-generating cells was

calculated by dividing the number of cells seeded by the number

of prostaspheres.

Experimental Animals
Male homozygous CB-17 SCID mice (4–5 weeks old) were

purchased from Taconic Farms (Germantown, NY). The mice

were housed and maintained under sterile conditions in facilities

accredited by the American Association for the Accreditation of

Laboratory Animal Care and in accordance with current

regulations and standards of the U.S. Department of Agriculture,

U.S. Department of Health and Human Services, and NIH. The

mice were used in accordance with Animal Care and Use

Guidelines of Wayne State University under a protocol approved

by the Wayne State University Animal Care and Use Commit-

tee. Mice received Lab Diet 5021 (Purina Mills, Inc., Richmond,

IN).

Human Bone and Implantation of Tumor Cells
Human male fetal bone tissue was obtained by a third party

nonprofit organization (Advanced Bioscience Resources, Alame-

da, CA), and written informed consent was obtained from the

donor family, consistent with regulations issued by each state

involved and the federal government. After one week of

acclimatization, the mice were implanted with a single human

fetal bone fragment as described previously [28–29]. C4-2B cells

were harvested from subconfluent cultures after a brief exposure

to 0.25% trypsin and 0.2% EDTA. Trypsinization was stopped

by adding a medium containing 10% FBS. The cells were

washed once in serum-free medium and resuspended. Only

suspensions consisting of a single cell with .90% viability were

used for the injections. Cells (16106) in 20-mL serum-free RPMI

medium were injected intraosseously by insertion of a 27-gauge

needle and Hamilton syringe through the mouse skin directly

into the marrow surface of the previously implanted bone. In

our previous experience with this model, we found a tumor

uptake rate of .95% compared to skin xenograft wherein the

tumor uptake rate was comparatively less with prolonged

latency period. As soon as the majority of the bone implants

began to enlarge (now called a ‘‘bone tumor’’) as determined by

caliper measurements (30th day after cancer cell injection), mice

were randomized into the following treatment groups (n = 7): (a)

untreated control; (b) only B-DIM, 5 mg/mice fed everyday

orally by gavage for 4 weeks since the initiation of therapy. The

volume of the bone tumor in each group was determined by

twice weekly caliper measurements. The body weight of mice in

each group was also measured. All mice were euthanized one

day after the last dose of B-DIM treatment (5 weeks) because

large tumors were formed in the control mice, which required

termination, and their final body weight and tumor volume

were recorded. On autopsy, the tumor was neatly excised, freed

of any extraneous adhering tissue, and part of the tissue was

fixed in formalin and embedded in paraffin for immunostaining

and H&E staining for confirming the presence of tumor.

B-DIM Activates AMPK Pathway in Prostate Cancer
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Results

B-DIM Activates AMPK Signaling in Human Prostate
Cancer Cells

We assessed whether the AMPK signaling pathway could be

one of the molecular targets of B-DIM in both androgen-

insensitive C4-2B (Fig. 1A) and androgen-sensitive LNCaP

(Fig. 1B) prostate cancer cells. Both cell lines were treated with

different concentrations of B-DIM for 3 hours, and cell lysates of

the treated cells were analyzed by Western blot to measure the

levels of phosphor-AMPKa (T172), an active form of AMPK

protein, as well as some downstream target proteins. The results

showed that the level phosphor-AMPKa in both prostate cancer

cell lines treated with B-DIM increased in a dose-dependent

manner (Fig. 1A, B). As a control, the total AMPK protein levels

remained relatively unchanged (Fig. 1A, B). Both regulatory-

associated protein of mTOR (Raptor) and acetyl-CoA carboxylase

(ACC) are direct downstream substrates of AMPK, as activated

AMPK is able to phosphorylate Raptor protein on serine residue

792 [8] and ACC protein on serine residue 79 [30–31]. Treatment

with B-DIM resulted in increased levels of phosphor-Raptor

(S792) and phosphor-ACC (S79) in the treated cells (Fig. 1A, B),

further supporting that B-DIM is an AMPK activator. mTOR is a

downstream signaling pathway of AMPK, and activation of

AMPK can inhibit the mTOR signaling pathway [32]. Our data

also revealed that activation of AMPK by B-DIM could suppress

the mTOR pathway, as measured by decreased protein level of

phosphor-mTOR (Fig. 1A, B), demonstrating, for the first time,

the functionality of B-DIM as an AMPK activator in both AR-

sensitive and AR-insensitive prostate cell lines. The inactivation of

mTOR by B-DIM is consistent with our previously published

report [33].

Activation of AMPK by B-DIM at Early Hours is Associated
with Subsequent Down-regulation of AR and PSA Protein
Expression and Induction of Apoptosis in Human
Prostate Cancer Cells

The results displayed above show that B-DIM harbors AMPK-

activating property. We then investigated whether activation of

AMPK by B-DIM could result in apoptotic cell death and inhibit

the expression of prostate cancer signature proteins, such as AR

and PSA. We showed previously that activation of AMPK

signaling by B-DIM is an early event that occurs as early as three

hour-treatment (the upper panel of Fig. 1A, B). We found that

further treatment of C4-2B and LNCaP cells with B-DIM for up to

24 hours significantly decreased the expression levels of AR and

PSA in a dose-dependent manner, and also resulted in apoptotic

cell death as measured by PARP cleavage (the lower panel of

Fig. 1A, B). These data suggest that activation of the AMPK

signaling pathway is one of the major targets of B-DIM leading to

the induction of apoptotic cell death of prostate cancer cells.

Activation of AMPK by B-DIM can be Blocked by an AMPK
Inhibitor

Compound C was developed as a selective inhibitor of AMPK

[34]. We hypothesized that if AMPK is an essential molecular

target of B-DIM, co-treatment with Compound C should

attenuate or block the effects of B-DIM on prostate cancer cells.

To test this hypothesis, prostate cancer C4-2B and LNCaP cells

were pre-treated with either 20 mM of Compound C or DMSO

for 6 hours and then co-treated with B-DIM at two concentrations

for additional 3 hours. The immunoblotting results showed that in

both prostate cancer cell lines treated with B-DIM alone, AMPK

signaling was activated as measured by a dose-dependent increase

in the phosphorylation of AMPKa (T172) and the phosphoryla-

tion of Ser79-ACC (Fig. 2), a direct substrate of AMPK that is

widely used as a detector of AMPK activation [35–37]. However

the protein levels of phosphor-AMPKa and phosphor-ACC were

dramatically decreased in cells pre-treated and co-treated with

Compound C (Fig. 2), suggesting that B-DIM-activated AMPK

can be blocked by an AMPK inhibitor.

B-DIM Enhances AR Suppressing-effect of Anti-AR Drug
Casodex

One of the current treatment strategies for advanced prostate

cancer is to suppress AR function by castration and anti-

androgens. Casodex is an anti-androgen drug clinically used for

patients with metastatic/advanced stage prostate cancer, and

works by binding and preventing the activation of the AR. Our

previous studies have shown that B-DIM is able to inhibit AR

expression in prostate cancer cells [24]. We further hypothesized

that the combination of B-DIM with casodex may have a

synergetic effect on the inhibition of AR expression and induction

of apoptosis in prostate cancer cells, which may be associated with

the activation of AMPK. To test this hypothesis we co-treated both

prostate cancer cell lines with 100 mM of casodex and 40 mM of B-

DIM for 24 hours, and treatment with each agent alone served as

controls. The data show that co-treatment of C4-2B and LNCaP

cells with casodex and B-DIM significantly decreased the

expression level of AR and increased apoptosis-associated PARP

cleavage compared to each treatment alone, and the synergetic or

additive effect was accompanied by increased AMPK activation

(Fig. 3).

Both B-DIM and Metformin Significantly Inhibits
Prostasphere Formation

Tumor stem cells have the characteristics of forming tumor-

spheres. It has been shown that metformin could inhibit cancer

stem cell growth, associated with AMPK activation [16]. In order

to test whether B-DIM, which functions as an AMPK activator

(Fig. 1, 2, 3) could target cancer stem-like cells and inhibit

prostasphere formation, C4-2B cells were treated with different

concentrations of B-DIM for 6 days in ultra-low adherent wells of

6-well plates. Treatment with metformin served as a control. The

results showed that B-DIM inhibited prostasphere formation by

29% and 90% at treatment concentrations of 10 mM and 25 mM,

respectively (Fig. 4), which is consistent with our previous findings

[27]. The data demonstrate that B-DIM may possess the ability to

suppress tumor stem-like cells in prostate cancer through

activation of the AMPK pathway.

B-DIM Activates AMPK and Down-regulates AR in
Androgen Independent C4-2B Prostate Tumor
Xenografts in SCID Mice

The above results from our in vitro studies clearly showed that

the AMPK signaling pathway is one of the novel molecular targets

of B-DIM in prostate cancer cells. To confirm this finding in vivo,

we designed and used the experimental bone metastasis animal

model (see Materials and Methods) that mimics bone metastasis of

human prostate cancer. We found that B-DIM treatment in vivo

inhibited C4-2B tumor growth within the bone microenvironment

to some extent (20%; data not shown). The tumor tissues were

removed and analyzed by immunohistochemistry using anti-

phosphor-AMPKa, phosphor-ACC and AR antibodies. The

results showed that p-AMPK- and p-ACC-positive cell popula-

tions increased significantly, while AR-positive cells decreased

B-DIM Activates AMPK Pathway in Prostate Cancer
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greatly in the tumors treated with B-DIM compared to the control

(Fig. 5). These findings confirm that B-DIM is able to activate the

AMPK pathway in vivo, associated with its anti-cancer activity.

Discussion

The search for new antitumor drugs from natural sources is one

of the most promising approaches for cancer prevention and

Figure 1. B-DIM activates the AMPK pathway, resulting in inhibition of AR and PSA expression and induction of apoptosis in
prostate cancer cells. Human prostate cancer C4-2B (A) or LNCaP (B) cells were treated with indicated concentrations of B-DIM for 3 hours to
measure protein levels of phosphor-AMPKa, AMPKa, phosphor-Raptor, phosphor-ACC, phosphor-mTOR, or for 24 hours to measure protein levels of
AR, PSA or PARP cleavage by Western blot analysis. Measurement of b-actin served as loading controls. The numbers underneath the Western results
of phosphor-AMPKa indicate quantified normalized phosphor-AMPKa and b-actin ratios.
doi:10.1371/journal.pone.0047186.g001

Figure 2. AMPK inhibitor Compound C can block AMPK
activation by B-DIM in prostate cancer cells. Prostate cancer C4-
2B and LNCaP cells were pre-treated with 20 mM of AMPK inhibitor
Compound C (CC) for 6 hours, followed by co-treatment with indicated
concentrations of B-DIM for 3 hours. Cell extracts of the treated cells
were immunoblotted for anti-phosphor-AMPKa, phosphor-ACC or b-
actin antibodies.
doi:10.1371/journal.pone.0047186.g002

Figure 3. B-DIM enhances the effects of AR inhibitor casodex in
prostate cancer cells, associated with increased activation of
AMPK. Prostate cancer C4-2B and LNCaP cells were treated with
100 mM of casodex, 40 mM of B-DIM alone or a combination of casodex
and B-DIM for 24 hours, followed by Western blot analysis using anti-
phosphor-AMPKa, AR, PARP or b-actin antibodies.
doi:10.1371/journal.pone.0047186.g003

B-DIM Activates AMPK Pathway in Prostate Cancer
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therapy. We have been studying formulated 3,39-Diindolyl-

methane (B-DIM) and showed that B-DIM can induce apoptosis

and inhibit cell growth, angiogenesis, and invasion of prostate

cancer cells by regulating NF-kB, Akt and AR signaling pathways

[24–25]. However, the precise molecular mechanism(s) by which

B-DIM elicit its anti-cancer effects on human prostate cancer have

not been fully elucidated. In this study, we discovered that AMPK

is one of the direct molecular targets of B-DIM in prostate cancer

cells in vitro and in vivo.

The AMPK signaling pathway has recently become an

important focus of interest in cancer prevention and therapy.

Bowker et al. investigated the incidence of cancer in 10,309

diabetic patients treated with insulin, metformin or sulfonylureas

for a period of 5 years. They reported that patients treated with

metformin had a significantly lower rate of cancer-related

mortality compared with patients exposed to other anti-diabetic

medicines [12]. The major anti-cancer mechanism of metformin

was associated with activation of AMPK signaling [34]. Activation

of AMPK inhibits energy consuming pathways, protein synthesis

and cell proliferation, through suppression of the mTOR pathway

via tuberous sclerosis 2 protein (TSC-2) [38]. Hirsch H et al.

reported that metformin selectively targets cancer stem cells and

inhibits tumor growth in mouse models mediated by activation of

the AMPK pathway [16]. It has been reported that some natural

compounds including genistein (rich in soy bean), EGCG

(abundant in green tea), and capsaicin (from hot pepper) are able

to activate the AMPK pathway [17]. Discovery of more AMPK

activators from natural sources is becoming an attractive approach

to cancer prevention and therapy.

Our current findings show that B-DIM can activate AMPK

signaling as early as three hours in both androgen-sensitive

LNCaP and androgen-insensitive C4-2B prostate cancer cells,

measured by: (i) increased protein levels of phosphor-AMPKa

Figure 4. Treatment with B-DIM or metformin inhibits prostasphere-forming ability. C4-2B cells were treated with indicated doses of B-
DIM (A, B) for 6 days. Treatment with different concentrations of metformin served as controls (C, D). After 6 days, prostasphere numbers were
counted under the microscope and the proportion of sphere-generating cells was calculated by dividing the number of cells seeded by the number
of prostaspheres (A, C). Prostaspheres from C4-2B cells treated with B-DIM (B) or metformin (D) were photographed and the results showed that 10
and 25 mM of B-DIM significantly reduced size and numbers of prostaspheres. n = 6, * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0047186.g004

Figure 5. B-DIM activates AMPK signaling and inhibits AR
expression in prostate tumor xenograft tissues. ICR SCID mice
were implanted with C4-2B cells and treated with 5 mg/mouse of B-
DIM by oral gavages daily for 4 wks. Tumor tissues were analyzed by
immunohistochemistry using anti-phosphor-AMPKa (T172), phosphor-
ACC (S79) or AR antibodies. The stained sections were visualized under
the microscope (4006amplification). Unlike solvent-treated control,
mice treated with B-DIM presented with activation of AMPK and
significant loss of AR in tumor sections.
doi:10.1371/journal.pone.0047186.g005

B-DIM Activates AMPK Pathway in Prostate Cancer
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(T172), (ii) increased levels of phosphorylated ACC on serine

residue 79 [30–31], (iii) increased protein levels of phosphor-

Raptor (S792), which is a direct target of AMPK and an mTOR

binding partner and inhibitor [8], and (iv) decreased levels of

phosphor-mTOR (Fig. 1). Consequences of AMPK activation by

B-DIM appear to be mediated through inhibition of AR and PSA

expression, leading to the induction of apoptosis upon further

treatment for an additional 21 hours (Figs. 1, 6). AMPK activation

by B-DIM could be blocked by pre-treatment with Compound C,

an AMPK inhibitor, in the prostate cancer cells (Fig. 2).

The androgen receptor (AR) is a critical factor for prostate

cancer development and progression. Prostate cancer is dependent

on androgen stimulation mediated by AR, and AR even plays an

important role in cancer development and drug-resistance in

androgen-independent prostate cancer cells. Alternative mecha-

nisms of AR activation in androgen-independent prostate cancer

are proposed through other signaling pathways, including ERKs,

Akt, b-catenin and caveolin [39–41]. Therefore suppression of AR

is one of the therapeutic strategies for prostate cancer patients.

Casodex is an anti-androgen drug clinically used for patients in

metastatic/advanced stage. Any natural compounds that could

enhance the efficacy of casodex have potential therapeutic benefit

in the clinic. We showed in the present study that co-treatment of

cells with casodex and B-DIM led to a significant increase in

phosphor-AMPKa and suppressed AR expression in prostate

cancer cells (Fig. 3), demonstrating a novel mechanism for synergy

of anti-AR therapy.

Prostate cancer tissue contains a rare population of multi-potent

cancer stem cells with the capacity to self-renew. These prostate

cancer stem cells could be enriched and measured by a colony

formation assay in three-dimensional cultures, referred to as

prostasphere formation. Prostate cancer cells with stem cell

characteristics possess the ability to form prostaspheres from single

cells as a condition for self-renewing in non-adherent culture

conditions [42]. To determine if B-DIM could target prostate

stem/stem-like cells, we tested it in prostasphere formation assays.

The result showed that after six-day incubation of C4-2B cells with

different doses of B-DIM, not only were numbers of formed

prostaspheres significantly decreased, but the size of prostaspheres

was reduced as well (Fig. 4). The findings from the in vitro studies

were further confirmed by the immunohistochemical results from

tumor tissues of prostate cancer xenografts treated with B-DIM

(Fig. 5). Positive cell populations stained with phosphor-AMPK or

phosphor-ACC were significantly increased, while AR-positive

cells were reduced in the B-DIM treated tumor tissue (Fig. 5).

In summary, the present study provides the first evidence that

the AMPK signaling pathway is one of the molecular targets of B-

DIM for its anti-cancer activity. Activation of AMPK by B-DIM

Figure 6. Schematic diagram showing the various mechanisms associated with inhibition of tumor growth and induction of
apoptosis by B-DIM.
doi:10.1371/journal.pone.0047186.g006

B-DIM Activates AMPK Pathway in Prostate Cancer
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results in the suppression of its downstream target mTOR, down-

regulation of AR expression and induction of apoptosis in both

androgen-sensitive LNCaP and androgen-insensitive C4-2B pros-

tate cancer cells (Fig. 6). Activation of AMPK by B-DIM was also

observed in treated prostate tumors. Our findings demonstrate

that B-DIM could be used as a potential agent in the clinic for the

prevention and/or treatment of prostate cancer regardless of

androgen responsiveness of the cells.
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