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Abstract

Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop
production systems in the United States are characterized by low species and management diversity, high use of fossil
energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system
diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs
used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three
contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation
(maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more
diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small
grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle
manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than,
those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all
systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional
system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical
inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the
performance of less diverse systems.
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Introduction

One of the key challenges of the 21st century is developing ways

of producing sufficient amounts of food while protecting both

environmental quality and the economic well-being of rural

communities [1,2]. Over the last half century, conventional

approaches to crop production have relied heavily on manufac-

tured fertilizers and pesticides to increase yields, but they have also

degraded water quality and posed threats to human health and

wildlife [3–6]. Consequently, attention is now being directed

toward the development of crop production systems with

improved resource use efficiencies and more benign effects on

the environment [1,7]. Less attention has been paid to developing

better methods of pest management, especially for weeds. Here we

explore the potential benefits of diversifying cropping systems as a

means of controlling weed population dynamics while simulta-

neously enhancing other desirable agroecosystem processes [8].

We focus on crop rotation, an approach to cropping system

diversification whereby different species are placed in the same

field at different times.

Rotation systems have been used for millennia to maintain soil

fertility and productivity and to suppress pests, and can increase

yields even in situations where substantial amounts of fertilizers

and pesticides are applied [9,10]. Rotation systems also foster

spatial diversity, since different crops within the rotation sequence

are typically grown in different fields on a farm in the same year.

Diversification through crop rotation can be an especially useful

strategy in farming systems that integrate crop and livestock

production. The addition of forage crops, including turnips and

clovers, to cereal-based systems in northwestern Europe and

England in the 1600s and 1700s enhanced nitrogen supply

through fixation by legumes, and increased nutrient cycling due to

greater livestock density and manure production. These changes

allowed the intensification of both crop and livestock production

and increased yields substantially [11,12]. Integrated crop–

livestock systems remained widespread in northern Europe,

England, and much of the humid, temperate regions of North

America until the 1950s and 1960s, when increased availability of

relatively low-cost synthetic fertilizers made mixed farming and

nutrient recycling biologically unnecessary and specialized crop

and livestock production more economically attractive. In recent

years, there has been interest in reintegrating crop and livestock

systems as a strategy for reducing reliance on fossil fuels,

minimizing the use of increasingly expensive fertilizers, and
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limiting water pollution by nutrients, pathogens, and antibiotics

[13,14].

Weeds are a ubiquitous and recurrent problem in essentially all

crop production systems, and chemicals applied for weed control

dominate the world market for pesticides [15]. With the

introduction of crop genotypes engineered to tolerate herbicides,

especially glyphosate, and with the continuing availability of older,

relatively inexpensive herbicides, such as atrazine, successful weed

management in conventional crop production systems has been

largely taken for granted since the mid-1990s. Now, however, with

expanded recognition of herbicides as environmental contami-

nants [4] and the increasing prevalence of herbicide resistant

weeds [16], there is an important need to develop weed

management strategies that are less reliant on herbicides and that

subject weeds to a wide range of stress and mortality factors [17].

We believe that cropping system diversification may play an

important role in the development of such strategies.

Here, we report the results of a large-scale, long-term

experiment examining the consequences of cropping system

diversification on agronomic, economic, and environmental

measures of system performance. The experiment was conducted

during 2003–2011 in Boone County, Iowa, within the central U.S.

maize production region, and comprised three contrasting

cropping systems varying in length of crop sequence, levels of

chemical inputs, and use of manure. We compared a convention-

ally managed 2-yr rotation (maize-soybean) that received fertilizers

and herbicides at rates comparable to those used on surrounding

commercial farms with two more diverse cropping systems: a 3-yr

rotation (maize-soybean-small grain + red clover) and a 4-yr

rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with

reduced N fertilizer and herbicide inputs and periodic applications

of composted cattle manure. Triticale was used as the small grain

crop in 2003–2005; oat was used in 2006–2011. The 2-yr rotation

is typical of cash grain farming systems in the region, whereas the

3-yr and 4-yr rotations are representative of farming systems in the

region that include livestock. Details of the experimental site,

management practices, sampling procedures, and data analyses

are provided in the online SI section (Text S1, Figure S1, Tables

S1-S4).

A central hypothesis framing our study was that cropping

system diversification would result in the development of

ecosystem services over time that would supplement, or eventually

displace, the role of synthetic external inputs in maintaining crop

productivity and profitability. Based on this hypothesis, we

predicted that input requirements of the more diverse systems

would initially be similar to that of the less diverse system, but

would increasingly diverge from the less diverse system over time

as the systems matured. We also predicted that crop yields, weed

suppression, and economic performance of the three systems

would be similar throughout the study. Finally, we predicted that

reduced requirements for external synthetic inputs for pest

management would result in a lower toxicological profile of the

more diverse systems compared to the less diverse system.

Results

Crop Yields and Net Profitability
Cropping system diversification enhanced yields of maize and

soybean grain and system-level harvested crop mass (grain, straw,

and hay) while maintaining economic returns. The most

parsimonious linear statistical models for each of these measures

of system performance contained terms for main effects of year and

system, but no interaction term (AICwith interaction = 319;

AIC no interaction = 315). Over the 2003 to 2011 period, maize

grain yield was on average 4% greater in the 3-yr and 4-yr

rotations than in the 2-yr rotation (means for the 2-yr, 3-yr and 4-

yr rotations are hereafter referred to as m2, m3 and m4, respectively;

m2 = 12.360.1 Mg ha21; m3 = 12.760.2 Mg ha21;

m4 = 12.960.2 Mg ha21; pre-planned 1 d.f. contrast of system:

F1,7 = 8, P = 0.03), and similar in the 3-yr and 4-yr rotations

(Fig. 1a). Soybean grain yield during the same period was on

average 9% greater in the 3-yr and 4-yr rotations than in the 2-yr

rotation (m2 = 3.460.07 Mg ha21; m3 = 3.860.08 Mg ha21;

m4 = 3.860.08 Mg ha21; F1,7 = 11.3, P = 0.01) and similar in the

3-yr and 4-yr rotations (Fig. 1b). Harvested crop mass, averaged

over the various crop phases comprising each cropping system,

followed a similar pattern to maize and soybean grain yields.

Mean crop biomass for 2003 to 2011 was 8% greater in the 3-yr

and 4-yr rotations than in the 2-yr rotation (m2 = 7.960.08 Mg

ha21; m3 = 8.560.1 Mg ha21; m4 = 8.660.2 Mg ha21; system:

t6 = 5.1, P = 0.002), and similar in the 3-yr and 4-yr rotations

(Fig. 1c).

We examined system profitability by calculating net returns to

land and management, which represent profits to a farm operation

without accounting for costs of land (e.g., rent or mortgage

payments), management time (e.g., marketing), and federal

subsidies. Profitability was analyzed for two temporal periods.

From 2003 to 2005, considered the ‘‘startup’’ phase for the study,

there were no differences among cropping systems in net profit,

either through an analysis of main effects of system

(m2 = $448617 ha21; m3 = $402617 ha21; m4 = $457615 ha21;

F2,6 = 0.12, P = 0.89) or by pre-planned 1-d.f. contrasts (2-yr vs.

3-yr and 4-yr rotations: F1,7 = 0.10, P = 0.77) (Fig. 1d). From 2006

to 2011, the ‘‘established’’ phase of the study, there were again no

differences among systems, either through main effects of system

(m2 = $953636 ha21; m3 = $965634 ha21; m4 = $913626 ha21;

F2,6 = 0.62, P = 0.57) or by pre-planned 1-d.f. contrasts (2-yr vs.

3-yr and 4-yr rotations: F1,7 = 0.03, P = 0.86).

Stability of system performance over time, as measured through

a comparison of variances for the various products of the system,

was similar for maize grain yield (F2,6 = 2.4, P = 0.17), soybean

grain yield (F2,6 = 0.95, P = 0.44) and net returns to land and

management during the startup phase of the study, 2003 to 2005

(F2,6 = 0.05, P = 0.95). Two system products, harvested crop mass

from 2003 to 2011 and profit during the established phase of the

study, 2006 to 2011, showed considerable differences in system

stability over time, but in contrasting ways. Variance in mean

harvested crop mass was greater in the 3-yr and 4-yr rotations than

in the 2-yr rotation (s2
2 = 0.27; s3

2 = 0.60; s4
2 = 0.95; F1,7 = 16,

P = 0.005). Conversely, cropping system diversification was

associated with lower variance in profit during the established

phase of the study. Variance in profit from 2006 to 2011 was lower

in the 3-yr and 4-yr rotations than in the 2-yr rotation

(s2
2 = 1.56105; s3

2 = 8.16103; s4
2 = 6.36103; F1,7 = 16,

P = 0.005).

Agrichemical, Labor and Energy Inputs
Application rates of the primary agrichemicals used in this

study, manufactured N fertilizer (F2,14 = 117, P,0.0001) and

herbicides (F2,14 = 287, P,0.0001), both showed strong effects of

cropping system. Manufactured N fertilizer applications were

higher in the 2-yr rotation than in the 3-yr and 4-yr rotations

(m2 = 8063 kg N ha21; m3 = 1663 kg N ha21; m4 = 1162 kg N

ha21; F1,17 = 16, P = 0.005), with the difference between systems

increasing over the course of the study (F2,14 = 11.6, P = 0.001)

(Fig. 1e). Herbicide application rates followed a similar pattern,

with greater amounts of herbicide applied in the 2-yr rotation than

in the 3-yr and 4-yr rotations (m2 = 1.960.06 kg a.i. ha21;
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Figure 1. Cropping system performance over time. Annual performance of maize-soybean (2-yr), maize-soybean-small grain/red clover (3-yr),
and maize-soybean-small grain/alfalfa-alfalfa (4-yr) cropping systems in Boone, IA, from 2003 to 2011. Performance metrics included: a) maize yield, b)
soybean yield, c) rotation-level harvested crop mass, d) net returns to land and management, e) manufactured N fertilizer application rate, f) herbicide

Cropping Systems Diversification
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m3 = 0.2660.05 kg a.i. ha21; m4 = 0.2060.03 kg a.i. ha21;

F1,17 = 610, P,0.0001); differences among systems, however, did

not increase over time (Fig. 1f).

Fossil energy use was strongly influenced by cropping system in

both the startup (F2,6 = 94, P,0.0001) and established (F2,6 = 116,

P,0.0001) phases of the study, with no difference in energy use

between experimental phases (F1,92 = 0.39, P = 0.53) (Fig. 1g).

From 2003 to 2011, inputs of energy were greater in the 2-yr

rotation than in the 3-yr and 4-yr rotations (m2 = 8.660.1 GJ

ha21; m3 = 4.560.1 GJ ha21; m4 = 4.260.04 GJ ha21; F1,7 = 55,

P = 0.0001). The partial correlations between energy use in a given

cropping system and energy use in the maize phase of that

rotation, taking into account the amount of N fertilizer applied to

maize, were 0.94, 0.81 and 0.70 in the 2-yr, 3-yr and 4-yr systems,

respectively (SI, Table S5). This indicated that synthetic N

fertilizer use in the maize phase of the various cropping systems

drove energy use within the maize phase, which in turn drove

energy use by a given cropping system.

Demand for labor differed among the three cropping systems in

both the startup (F2,4 = 26, P = 0.005) and established (F2,10 = 299,

P,0.0001) study phases, but followed a contrasting pattern to

energy requirements (Fig. 1h). Labor inputs were more than 33%

lower in the 2-yr rotation than in the 3-yr and 4-yr rotations from

2003 to 2005 (F1,5 = 35, P = 0.002) and from 2006 to 2011

(F1,11 = 59, P,0.0001). Overall, there was a strong negative

correlation (r = 20.79, P,0.0001) between fossil energy and labor

inputs over time in the three cropping systems.

Divergent Weed Management Systems
Two lines of evidence indicate that weeds were managed

effectively in all three cropping systems in both the ‘startup’ and

‘established’ phases, in spite of reducing herbicide use by 88% in

the 3-yr and 4-yr rotations compared to the 2-yr rotation. First,

weed seedbanks declined at an equal rate in all study systems

(Fig. 2a). Selection among linear mixed effects regression models

incorporating temporal autocorrelation among seedbank mea-

surements over time supported different intercepts (system:

F2,6 = 16.8, P = 0.0035) but did not support inclusion of a year by

system interaction term (AICs = 182; AICs*y = 185), thus indicating

a common slope (b1 = 20.18). For all three systems, the time to

decline to 95% of the weed seedbank levels in 2003 was 16.6 years.

Declines in weed seedbanks reflected a focus of management

attention on the timing of weed management activities and

herbicide choices in all three systems, as well as the increased

number and diversity of stress and mortality factors present in the

3-yr and 4-yr rotations [8,21]. Higher densities of weed seeds in

the 3-yr and 4-yr rotations, as indicated by their greater intercept

values than for the 2-yr rotation (Fig. 2a.), were the result of poorer

weed control in the 3-yr and 4-yr rotations during the set-up of the

experiment plots in 2002.

The second line of evidence concerns weed biomass, which was

very low in all three cropping systems for the duration of the study

(Fig. 2b), never exceeding 0.3% of harvested crop mass. Weed

biomass was the same within a given crop phase, regardless of the

cropping system in which it occurred (main effect of system: maize,

F2,6 = 1.47; P = 0.30; soybean, F2,6 = 0.88; P = 0.46; small grain,

F1,3 = 1.24; P = 0.31). There were differences in mean weed

biomass among cropping systems (m2 = 0.000360.00007 Mg

ha21; m3 = 0.007660.0012 Mg ha21; m4 = 0.00960.001 Mg

ha21; F2,6 = 12.7; P,0.007). These differences arose mainly due

to the presence of a small grain phase in the 3-yr and 4-yr rotation

crop sequences. Weed biomass did not differ between maize and

soybean in any of the cropping systems (F1,202 = 2.1; P = 0.15),

however weed biomass in the small grain phase of the 3-yr and 4-

yr rotations was greater than weed biomass in the maize and

soybean phases (F1,206 = 174; P,0.0001). In the 4-year system,

weed biomass in alfalfa was intermediate between weed biomass

levels in the maize/soybean and small grain phases.

Environmental toxicity, in relation to ecotoxicological profiles

for herbicides used in this study (Fig. 2c), showed a strong effect of

system (F2,14 = 1673, P,0.0001), with lower toxicity potential in the

3-yr and 4-yr rotations compared to the 2-yr rotation (type:

F1,17 = 2691, P,0.0001). Ecotoxicity in the diversified and

conventional systems diverged as the systems matured over time

[type x phase: F1,16 = 7.4, P = 0.015], transitioning from a two-fold

application rate, g) fossil energy use, and h) labor requirements. Symbols represent the mean 6 SEM of four replicate experimental blocks (N = 36 per
cropping system).
doi:10.1371/journal.pone.0047149.g001

Figure 2. Divergent weed management systems. Weed manage-
ment characteristics in maize-soybean (2-yr), maize-soybean-small
grain/red clover (3-yr), and maize-soybean-small grain/alfalfa-alfalfa (4-
yr) cropping systems in Boone, IA, from 2003 to 2011. Performance
metrics included a) weed seed density in soil, b) weed aboveground
biomass, and c) freshwater toxicity potential expressed in comparative
toxic units (CTUe). Symbols represent the mean 6 SEM of four replicate
experimental blocks (N = 36 per cropping system).
doi:10.1371/journal.pone.0047149.g002
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difference during 2003 to 2005 to a two hundred-fold difference in

toxicity from 2006 to 2011 (Fig. 2c).

Discussion

Our results support the hypothesis that the development of

ecosystem services over time in more diverse cropping rotations

increasingly displaces the need for external synthetic inputs to

maintain crop productivity. From 2003 to 2011, as predicted, the

desired products (crop yield, weed suppression, and economic

performance) of the more diverse and less diverse cropping

rotations were similar, whereas external inputs and environmental

impacts differed greatly among the systems (Fig. 3). Comparing

these metrics of system performance by experimental phase (initial

three years of system establishment versus the following six years)

confirmed our prediction that system inputs and environmental

impacts would diverge over time, whereas yield and profit would

remain similar among more diverse and less diverse rotations. In

the more diverse rotations, small amounts of synthetic agrichem-

ical inputs thus served as powerful tools with which to tune, rather

than drive, agroecosystem performance.

Grain production in the U.S. is dominated by short rotation

systems designed to maximize grain yield and profit. These are

important goals but represent only a portion of the many ecosystem

services that managed lands may provide [18] and that should be

considered when evaluating alternative production systems [1,19].

We believe that these functions are complementary, rather than

competing, considerations for agroecosystem design. The results of

this study demonstrate that more rotationally diverse cropping

systems may be optimized in multiple dimensions, leveraging small

agrichemical inputs with biological synergies arising from enhanced

diversity of crop species and management tactics.

An example of the synergizing effects of cropping system

diversification can be found in weed management in the 3-yr and

4-yr rotations. Weeds were suppressed as effectively in these

systems as in the 2-yr rotation, with declining soil seedbanks and

negligible weed biomass, yet herbicide inputs in the 3-yr and 4-yr

rotation plots were 6 to 10 times lower, and freshwater toxicity 200

times lower, than in the 2-yr rotation. Improved efficiency and

environmental sustainability of weed management in the 3-yr and

4-yr rotations resulted from integrating multiple, complementary

tactics in an ecological weed management framework [8,20].

Mounting evidence for unintended effects resulting from heavy

reliance on herbicides highlights the need to re-think the role of

herbicides in weed management. Non-target impacts of herbicides

include reproductive abnormalities and mortality in vertebrates

[5,21–23] and potential for diminished non-crop nectar resources

for key pollinator species [17,24,25]. Herbicide overuse has also

resulted in widespread, accelerating evolution of weed genotypes

resistant to one or more modes of herbicide action [26,27]. Our

Figure 3. Multiple indicators of cropping system performance. Comparative long-term performance of maize-soybean (2-yr), maize-soybean-
small grain/red clover (3-yr), and maize-soybean-small grain/alfalfa-alfalfa (4-yr) cropping systems in Boone, IA, averaged over the 2003–2011 study
period. Variable means are normalized on a 0 to 1 scale, with 1 representing the cropping system with the largest absolute value for that variable
(N = 36 per cropping system). Performance metrics included: maize and soybean yield, rotation-level harvested crop mass, net returns to land and
management, manufactured N fertilizer and herbicide application rate, fossil energy use, labor requirements, freshwater toxicity potential and weed
seedbank decline (measured as exponential decay constant).
doi:10.1371/journal.pone.0047149.g003
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data indicate that, in the context of a cropping system with weed

suppressive characteristics, small herbicide inputs may contribute

to a diverse suite of tactics that cumulatively provide effective,

reliable, and more durable weed management.

The diversity-productivity-stability relationship has long been a

key theme in ecology [28,29]. Recently, it has been applied in the

context of bioenergy crop production to describe increases in

biomass and ecosystem services, such as C sequestration,

associated with increasing species diversity in polycultures of

bioenergy feedstock crop species [30]. Our work supports the

application of this concept to cropping systems more broadly.

Future gains in more diverse systems may depend upon the

application of ecological principles surrounding this relationship to

cropping system design [31,32]. Cropping system diversification in

this study included both crop species and management practices.

In contrast to the 2-yr rotation, with two species, both of the 3-yr

and 4-yr rotations included four crop species. In the 4-yr rotation,

further temporal diversification was achieved by including a

perennial-only crop phase (alfalfa hay) for one quarter of the

rotation sequence. Our results showed productivity gains associ-

ated with greater diversity in system-level harvested crop mass and

maize and soybean seed yields. We also observed increased

stability of profit, with similar long-term means, in the 3-yr and 4-

yr rotations compared to the 2-yr rotation.

Similar profits were attained through different pathways in the

3-yr and 4-yr rotations and the 2-yr rotation (Fig. 3). Increased

labor, information intensive management and ecosystem services

arising from increased biological N fixation (via the clover and

alfalfa crops) and contrasting crop phenologies and competitive

abilities were substituted in 3-yr and 4-yr rotations for the higher

inputs of manufactured N, herbicides and energy from fossil fuels

driving the 2-yr rotation. Energy use in maize drove differences

among the cropping systems, and manufactured N inputs to maize

contributed most strongly to energy balances for this crop. The

high sensitivity of agricultural energy use to N fertilizer inputs

provides a high-priority target for the redesign of cropping systems

for increased sustainability.

Reintegration of crop and livestock production, as represented

by the forage legumes and manure applications present in the

more diverse systems, is not simply another aspect of cropping

system diversification. Instead, it embodies an important principle

in sustainable agriculture: system boundaries should be drawn to

minimize externalities. Animal manure is produced regardless of

whether feed grains are shipped to centralized concentrated

animal feeding operations, or produced within integrated crop-

livestock farming operations. In the former case, the manure may

become a waste product and water pollutant if quantities exceed

available land area for field application [33], whereas in the latter

case, it contributes directly to crop nutrient requirements,

improves soil quality, and reduces fossil fuel subsidies associated

with grain transport and external N fertilizer inputs [14].

Substantial improvements in the environmental sustainability of

agriculture are achievable now, without sacrificing food produc-

tion or farmer livelihoods. When agrichemical inputs are

completely eliminated, yield gaps may exist between conventional

and alternative systems [19]. However, such yield gaps may be

overcome through the strategic application of very low inputs of

agrichemicals in the context of more diverse cropping systems.

Although maize is grown less frequently in the 3-yr and 4-yr

rotations than in the 2-yr rotation, this will not compromise the

ability of such systems to contribute to the global food supply,

given the relatively low contribution of maize and soybean

production to direct human consumption and the ability of

livestock to consume small grains and forages [34]. Through a

balanced portfolio approach to agricultural sustainability, crop-

ping system performance can be optimized in multiple dimensions,

including food and biomass production, profit, energy use, pest

management, and environmental impacts.

Materials and Methods

Site Details and Agronomic Management
To investigate the relative performance of conventional and more

diverse cropping systems, we conducted a 9-hectare experiment at

the Iowa State University Marsden Farm (Figure S1), in Boone

County, IA (42u019 N; 93u479 W; 333 m above sea level). The

experiment site lies within a region of intensive rain-fed maize and

soybean production and is surrounded by farms with high levels of

productivity. Soils at the site are deep, fertile Mollisols. The

experimental cropping system treatments included a conventionally

managed 2-yr rotation (maize/soybean) that received agrichemicals

at rates comparable to those used on commercial farms in the

region, and more diverse cropping systems – a 3-yr rotation (maize/

soybean/small grain + red clover green manure) and a 4-yr rotation

(maize/soybean/small grain + alfalfa/alfalfa hay) – managed with

reduced N fertilizer and herbicide inputs.

The entire site was planted with oat in 2001 and the cropping

systems experiment was established in 2002 using a randomized

complete block design with each crop phase of each rotation system

present every year in four replicate blocks. Plots were 18 m x 85 m

and managed with conventional farm machinery. Spring triticale

was used as the small grain in 2003–2005, whereas oat was used in

2006–2010. Synthetic fertilizers were applied in the 2-yr rotation at

conventional rates based on soil tests. In the 3-yr and 4-yr rotations,

composted cattle manure was applied before maize production at a

mean dry matter rate of 8.3 Mg ha21 and substantial amounts of N

were added through fixation by red clover and alfalfa [35,36,37].

Manure and legume N-fixation in the 3-yr and 4-yr rotations were

supplemented with synthetic fertilizers based on soil tests, including

the late-spring soil nitrate test for maize production [38]. Weed

management in the 2-yr rotation was based largely on herbicides

applied at conventional rates. In the 3-yr and 4-yr rotations,

herbicides were applied in 38-cm-wide bands in maize and soybean

and inter-row zones were cultivated; no herbicides were applied in

small grain and forage legume crops. Choices of post-emergence

herbicides used in each of the systems were made based on the

identities, densities, and sizes of weed species observed in the plots.

Other details of the farming practices used in the different cropping

systems are described in Liebman et al. [39] and in the online SI

materials (Text S1). Sampling procedures for determining crop

yields, weed biomass and weed seed densities in soil are also

described in the online SI materials (Text S1).

Energy and Economic Analyses
Energy inputs were divided into five categories: seed, fertilizer,

pesticides, fuel for field operations, and propane and electricity

used for drying maize grain after harvest. Data were obtained

from logs describing all field operations, material inputs, and crop

moisture characteristics for the experimental plots during the study

period. Economic analyses measured performance characteristics

of whole rotation systems under contrasting management strate-

gies. We evaluated net returns to land and management on a unit

land area basis, with land units divided in two equal portions for

maize and soybean in the 2-yr rotation; three equal portions for

maize, soybean, and small grains with red clover in the 3-yr

rotation; and four equal portions for maize, soybean, small grains

with alfalfa, and alfalfa in the 4-yr rotation. Net returns to land and

management represented returns to a farm operation calculated
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without accounting for costs of land (e.g., rent or mortgage

payments), management time (e.g., marketing), or possible federal

subsidies. Data sources and assumptions for the energy and

economic analyses are shown in the online SI materials.

Ecotoxicological Calculations
Freshwater ecotoxicity of pesticide use was estimated using the

USEtox model [40–42]. Characterization factors (CFs) of

ecotoxicity potential for active ingredients included transport to

freshwater via surface water, soil, and air. CFs were available for

eight of ten active ingredients applied in the three rotations. The

two active ingredients for which CFs were unavailable are not of

particular concern for freshwater ecotoxicity due either to their

low toxicity (mesotrione) or low infiltration and persistence in

freshwaters (lactofen) [43].

Statistical Analyses
The experiment was arranged in a randomized complete block

design, with all entry points of the three crop rotations (i.e. all

crops within each of the rotations) represented in four replicate

blocks in each year of the study, for a total of 36 plots. Cropping

system effects in time series data were analyzed using hierarchical

linear mixed effects repeated measures models, modeling tempo-

rally correlated errors with an ARMA (auto-regressive moving

average) correlation structure in the nlme package of R v.2.14.1

[44,45]. Fixed effects included cropping system and experimental phase

(startup = 2003 to 2005; established = 2006 to 2011), and random

effects included replicate block nested within cropping system and year.

Partial correlations were estimated using the corpcor package in R

v.2.14.1. In contrast to data for quantitative observations (e.g. crop

yield or weed biomass) that varied by replicate block and year,

data for input variables, such as synthetic fertilizer or herbicides

and associated environmental toxicity metrics, did not vary among

blocks for a particular rotation entry point in a given year, but did

vary among years. Therefore, site-year was treated as the source of

experimental replication for these latter variables in our statistical

tests for effects of cropping system and experimental phase. This led to

contrasting degrees of freedom in reported F-tests for these two

data types. Finally, for variables with non-constant variance

among cropping systems over time (crop biomass and profit), we

used the ‘varIdent’ variance function within the nlme package to

explicitly model differences in variances among cropping systems

for these variables within our mixed effects models.

Supporting Information

Figure S1 Aerial view of Marsden Farm study, Boone
IA. Crop abbreviations: m = maize, sb = soybean, g = small grain,

a = alfalfa.

(TIF)

Table S1 Mean monthly air temperature and total
monthly precipitation during the 2003–2011 growing
seasons, and long-term temperature and precipitation
averages. Data were collected about 1 km from the experimental

site in Boone Co., IA.

(DOCX)

Table S2 Crop identities and seeding rates in 2003–
2011.

(DOCX)

Table S3 Macronutrients applied in manufactured
fertilizers, herbicide adjuvants, and manure in 2003–
2011. Manufactured N, P, and K fertilizers were applied at rates

that varied among years and rotations in response to soil test

results. Manure was applied at a rate of 15.7 Mg ha21 in maize

phases of the 3-year and 4-year rotation systems, but moisture and

nutrient concentrations varied among years, resulting in variable

rates of macronutrient additions.

(DOCX)

Table S4 Herbicide applications in 2003–2011 to maize
and soybean in the three rotation systems. No herbicides

were used for triticale, oat, red clover, and alfalfa grown within the

3-yr and 4-yr systems. Reported application rates reflect the effect

of banding of herbicides over crop rows in the 3-yr and 4-yr

systems.

(DOCX)

Table S5 Simple and partial correlations between
energy use within a given crop phase and mean rotation
energy use and between energy use within a given crop
phase and N fertilizer application rates.

(DOCX)

Text S1 Detailed description of experimental site,
management practices, scientific methods and statisti-
cal approach.

(DOCX)
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