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Abstract

Bovine seminal (BS) RNase, the unique natively dimeric member of the RNase super-family, represents a special case not
only for its additional biological actions but also for the singular features of 3D domain swapping. The native enzyme is
indeed a mixture of two isoforms: M = M, a dimer held together by two inter-subunit disulfide bonds, and MxM, 70% of
the total, which, besides the two mentioned disulfides, is additionally stabilized by the swapping of its N-termini. When
lyophilized from 40% acetic acid, BS-RNase oligomerizes as the super-family proto-type RNase A does. In this paper, we
induced BS-RNase self-association and analyzed the multimers by size-exclusion chromatography, cross-linking,
electrophoresis, mutagenesis, dynamic light scattering, molecular modelling. Finally, we evaluated their enzymatic and
cytotoxic activities. Several BS-RNase domain-swapped oligomers were detected, including two tetramers, one exchanging
only the N-termini, the other being either N- or C-swapped. The C-swapping event, confirmed by results on a BS-K113N
mutant, has been firstly seen in BS-RNase here, and probably stabilizes also multimers larger than tetramers. Interestingly,
all BS-RNase oligomers are more enzymatically active than the native dimer and, above all, they display a cytotoxic activity
that definitely increases with the molecular weight of the multimers. This latter feature, to date unknown for BS-RNase,
suggests again that the self-association of RNases strongly modulates their biological and potentially therapeutic properties.
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Introduction

Bovine seminal ribonuclease (BS-RNase) is the sole natively

dimeric [1] member of the pancreatic-type RNase super-family

[2], and it is a mixture of two isoforms. The first, called M = M,

accounts for about the 30% of the total, and it is dimeric due to

two anti-parallel disulfide bonds linking the Cys-31 and 32 of the

two subunits [3,4]; the second isoform, called MxM, (70% of the

total) is stabilized, in addition to the mentioned disulfides, also by

the three dimensional (3D) swapping [5] of its N-terminal domains

(residues 1–15) [6]. BS-RNase is endowed with special biological

actions, especially a potentially therapeutic antitumor activity [7].

Notably, only MxM is selectively [8] cytotoxic against malignant

cells [9], because it maintains the dimeric structure necessary to

evade the RNase inhibitor (RI) even under the reducing cytosolic

environment that breaks the inter-subunits disulfide bonds and

causes the disassociation of the unswapped M = M form [9,10].

Libonati first showed that, when dissolved in 40–50% acetic

acid (HAc) and subjected to lyophilization [11], BS-RNase forms a

mixture of meta-stable oligomeric aggregates [12], whose stability

increases in sodium phosphate buffers (NaPi), as occurs to bovine

pancreatic ribonuclease (RNase A), the monomeric proto-type of

the super-family [11]. Later, Mazzarella and colleagues hypoth-

esized the existence of more than one tetrameric isoform

(dimer+dimer) ascribable to different induced orientations of the

BS-RNase N-termini [13]. Nevertheless, despite many studies

focused on the propensity to natively swap its N-termini [14–18]

no additional investigations on BS-RNase oligomers have been

performed. However, the high sequence identity (about 82%)

existing between BS-RNase and RNase A [4], and the similar

chromatographic behavior of the two proteins after their multi-

merization [12,13], has lead us to hypothesize that BS-RNase

could oligomerize through the same mechanism of its pancreatic

monomeric counterpart, i.e. the double domain swapping [19] of

both N- and/or C-termini [20,21].

It is noteworthy that the 3D domain swapping mechanism is

shared by several fibril-forming proteins, such as cystatin C

[22,23], human prion protein [24,25], T7-Endonuclase I [26], b-2

microglobulin [27,28], but also by proteins that are not

fibrillogenic, such as cytochrome c [29], and RNase A [20]. By

the way, RNase A is considered a model for the formation of

amyloid or amyloid-like fibrils through domain swapping [19],

although only mutants containing poly-Q- or poly-G-expanded
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loops were shown to produce native-like fibrils [30,31]. Contrarily,

no conditions yielded fibrils from wt RNase A [31,32], even if this

enzyme displays more than one cross-b-spine-prone sequence

[33], and although more recently another pancreatic-type [2]

RNase, the eosinophil cationic protein (ECP), was shown to form

fibrils [34]. Anyway, RNase A can form several N-or C-domain-

swapped oligomers [20,21] if it is lyophilized from 40% HAc

solutions [11], or if highly concentrated protein solutions are

subjected to a thermally-induced aggregation procedure [35]. In

addition, it has recently been discovered that minor but not

negligible amounts of dimers, especially the C-swapped one, are

produced in vitro in CHO cells and in vivo in bovine pancreatic

tissue [36]. The structures of RNase A N-swapped or C-swapped

dimers, or of a C-swapped cyclic trimer, called ND, CD and CT

respectively [20], have been solved (PDB codes 1A2W, 1F0V,

1JS0, respectively) [37–39], while plausible models have been

proposed for RNase A tetramers and larger oligomers [21,40,41].

Although being meta-stable, all multimers maintain and/or

increase their enzymatic and biological activities, becoming also

cytotoxic in vitro and in vivo [42], depending on their mass (i.e.

degree of oligomerization), and on the number and/or exposure of

basic charges, these latter features differently related to N- or C-

swapped structures [20].

In this composite scenario, the characterization of BS-RNase

oligomerization profile could further elucidate the structural

determinants controlling the self-association of RNase(s) and of

proteins in general [43]. In addition, considering the cytotoxic

potential of the seminal enzyme [8], it would be very interesting to

see if also BS-RNase multimers display augmented catalytic and/

or, above all, biological activities. Thus, we induced BS-RNase

multimerization through the mentioned protocols [11,35], and the

oligomers produced were purified and studied in their structural

and functional properties, side-by-side with the well characterized

RNase A oligomers [20,21,37–40], employed in this study as

standards.

Results and Discussion

BS-RNase aggregation, purification, and analysis of the
oligomeric products

To avoid spontaneous deamidation, heterogeneity of the

samples and side-reactions, the protein used here as wt is N67D-

BS-RNase [44] (See Materials and Methods), considering that the

biological and structural features of this protein are known to be

almost identical to those of the native enzyme [45].

BS-RNase multimers were firstly obtained upon subjecting the

protein to incubation in 40% HAc followed by lyophilization

[11,12]. These conditions are known to extensively denature

RNase A [46], with its oligomers forming only when the

lyophilized powder is re-dissolved in ‘‘benign buffers’’ [46], like

NaPi. Accordingly, one would expect similar results with BS-

RNase when incubating either a pure isoform or any combination

of them; therefore, for sake of clarity, all BS-RNase oligomers have

been produced starting from the equilibrium mixture of the two

native isoforms [6], i.e. M = M and MxM.

Preliminary results obtained through size-exclusion chromatog-

raphy (SEC) with a Sephadex G-100 column showed the presence

of BS-RNase tetramers (TT), hexamers (H), and larger oligomers

(L.O.) (Figure 1A). The chromatographic medium is crucial to

purify different RNase oligomeric isoforms, but no improvement

was achieved with a Superdex 200 column (data not shown). In

contrast, a superior separation was obtained using a Superdex 75

10/300 GL column (Figure 1B, continuous line), reporting the

yields of all BS-RNase oligomers in Table 1. We also attempted to

refine the separation using two different cation-exchange columns,

but, contrarily to RNase A [20], no conditions allowed us to

improve the quality of the purification previously obtained with

SEC (data not shown).

The BS-RNase pattern of Figure 1B is superimposed with the

known [20] RNase A oligomerization profile (dashed line). By the

way, we recall here that BS-RNase is a covalent dimer [3], while

RNase A is natively monomeric. Therefore, the multimerization

sequence of the seminal variant is dimer.tetramer(s).hexamer(-

s).octamer(s), etc, and accounts for the absence of BS-RNase

peaks co-eluting with monomeric, trimeric and pentameric (data

not shown, and [21]) RNase A. Nevertheless, the two RNases’

profiles showed strong similarities: in fact, BS-RNase (native)

dimer (fractions 7, 8, Figure 1B) eluted at the same volume of

RNase A-CD [20,38]; in addition, a composite peak (fraction 5, 6)

co-eluted with RNase A tetramers (NCNTT and CNCTT [20], in

the grey magnification) and a composite peak (fractions 3, 4)

overlaps the RNase A hexameric traces, whose position was

determined in previous studies [21]; finally, also traces of larger

BS-RNase multimers (octamers and so on) were clearly visible

(fractions 1, 2). Each numbered fraction was separated, concen-

trated, and analyzed through 10% cathodic PAGE under non-

denaturing conditions [47] (Figure S1), confirming that all peaks

are BS-tetramers (TT, fractions 5, 6), hexamers (H, fractions 3, 4)

and larger oligomers (L.O., fractions 1, 2), respectively, as reported

in Figure 1C. Moreover, in panel C, at least two BS-hexamers (H1

and H2), and especially two different tetramers (TT1 and TT2) are

visible. A 7.5% non-denaturing cathodic PAGE of tetramers (inset

of Figure 1C) deriving from three preparations showed that BS-

TT1 and -TT2 display different electrophoretic mobilities and

shapes, with alterations in the charged groups exposure, or both

[40]. Anyhow, although TT1 and TT2 are qualitatively different,

they were not completely purified from each other. Thus, we

collected their mixture, concentrated it in 0.4 M NaPi to the

smallest volume possible, and re-chromatographed in the Super-

dex 75 column equilibrated with the same buffer (Figure 1D,

dashed+dotted line). The two fractions collected were further

purified and the separation was definitely satisfactory for TT1

(continuous line). Contrarily, it was not possible to completely

purify TT2, even after two consecutive attempts (dotted and

dashed lines, respectively). Nevertheless, the residual contaminant

TT1 was only about 15% (dashed line), and the first part of TT2

peak was discarded for further analyses. Thus, also after this last

purification the two tetramers confirmed to have different shape,

and this fact is somehow surprising, considering the similar size,

shape and charge exposure of the two BS-N-swapped tetrameric

models proposed by Mazzarella and colleagues [13] and shown in

the right part of Figure 1D: these two structures differ, in fact, only

in the orientation of the N-swapped domains, and they are

chromatographically undistinguishable. They represent the only

possibility for BS-RNase to form different N-swapped tetramers,

taking also into account the constraint given by the two disulfides

involving Cys-31 and -32 that link the two subunits of the native

dimer. Thus, a domain other than the N-terminus has to swap to

justify the different behavior of BS-TT1 and -TT2, and the C-

terminus can be the logical candidate to be swapped. This

hypothesis is enforced by the evidence that, in SEC, RNase A-CD

partially precedes the N-dimer (ND, Figure 1B, dashed line), as BS-

TT1 does towards BS-TT2. Consequently, BS-TT1 should be the

C-swapped conformer, while BS-TT2 is assignable to one, or both,

of the two N-swapped models proposed by Mazzarella and co-

workers [13].

Biologically Active N/C-Swapped BS-RNase Multimers
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Cross-linking of BS-RNase with DVS and DFDNB
Divinylsulfone (DVS) cross-links BS-RNase His-12 and His-119

[48], the catalytic residues which lye close to each other at the

active site. Being H12 and 119 at the N- and C-termini of the

enzyme, respectively, DVS will yield oligomers that are stable

under denaturing conditions only if 3D domain swapping had

occurred [48]. Thus, BS-RNase tetramers were distinctly cross-

linked with DVS, and the SDS-PAGE analysis of the reaction

time-course is shown in Figure 2A,B. The reaction yield is low for

both isomers, especially BS-TT1, because the conditions required

for the reaction (sodium acetate, pH 5.0) were not optimal for

oligomers’ stability. Nevertheless, a light band corresponding to a

MW comprised between 45 and 66 kDa, which includes a RNase

tetramer (<55 kDa), was visible for both isomers, indicating their

domain-swapped nature. Furthermore, no higher M.W. bands are

present in the panels, confirming that the two species analyzed are

tetramers, and that no spuriously cross-linking due to occasional

protein collisions occurred.

1,5-difluoro-2,4-dinitrobenzene (DFDNB) permits one to dis-

tinguish between N-terminal and C-terminal swapping because it

selectively cross-links RNase Lys-7 and Lys-41 [49], thus

stabilizing only the N-swapped oligomers. The cross-linking

reaction was performed on both BS-RNase tetramers purified

from SEC, and also on the positive and negative controls, RNase

A-ND and -CD, respectively. The reaction mixtures were analyzed

by SDS-PAGE under reducing and non-reducing conditions

Figure 1. SEC chromatograms and PAGE under non denaturing conditions of BS-RNase aggregates obtained by lyophilising the
protein from a 40% (v/v) acetic acid solution. (A) SEC pattern obtained with a Sephadex G100 column. Elution with ammonium acetate 0.1 M,
pH 5.65, flow rate of 0.4 ml/min. (B) SEC chromatogram of BS-RNase multimers superimposed with that of RNase A oligomers: both patterns were
obtained with a Superdex 75 10/300 GL column. Elution with 0.2 M NaPi, pH 6.7, flow rate 0.1 ml/min. (C) Enlarged Superdex 75 SEC pattern of BS-
RNase aggregates; in the inset, 7.5% non denaturing PAGE of the two BS-tetramers, run-time 110 min. (D) Additional purification of the two BS-RNase
tetramers: their mixture was concentrated to 25 ml in 0.4 M NaPi, and re-chromatographed in the Superdex 75 column equilibrated with the same
buffer (dashed+dotted line). Then, TT1 and TT2 fractions were further purified: once for TT1, continuous line; twice for TT2, dotted and dashed lines,
respectively. In the right part of the panel are reported the models of two N-swapped BS-RNase tetramers proposed by Adinolfi et al. [13]: they
cannot be associated to both tetramers. The various BS-RNase species are: D, native dimer; TT1 and TT2, two tetrameric conformers, H (1 and 2),
hexamers; L.O., larger oligomers. Concerning RNase A, grey italics labels: M, native monomer, ND, N-terminal-swapped dimer, CD, C-terminal-swapped
dimer; T, trimers; NCNTT: double N+C-swapped tetramer; CNCTT: double C+N-swapped tetramer; P*: pentamers; H*: hexamers. The asterisk* is present
to mention that P and H positions are derived from data obtained in [21].
doi:10.1371/journal.pone.0046804.g001

Biologically Active N/C-Swapped BS-RNase Multimers
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(Figure 2C,D): a band of BS-TT2 corresponding to a cross-linked

tetramer indicated by the dotted circle in both panels appears to

be more intense than that of BS-TT1, either under reducing (panel

C) or non-reducing (panel D) conditions. Whereas the results were

not clear-cut, we can envisage that BS-TT1 contains fewer

swapped N-termini than BS-TT2, because it has also to be

considered that a significant tetrameric fraction dissociates before

cross-linking occurs, and the cross-linking yield did not reach

100% even for the positive control, RNase A-ND. Thus, the

DFDNB cross-linking appears helpful enough to support the

hypothesis that BS-TT1 contains the C-terminal swapping, while

BS-TT2 does not. We also cross-linked the native dimer to verify if

the N-terminus lock could decrease or even delete the amount of

N-swapping to occur. After SEC and cation-exchange purification

[50] (Figure S2A,B and Discussion S1 file) the cross-linked protein

was induced to oligomerize [11]. The resulting sample showed,

after SEC purification (Figure S2C, continuous line), only one

tetrameric peak, very probably the C-swapped one. Anyhow, the

wideness and position of the peak (Figure S2C, and Discussion S1

file), cannot allow us to certainly assign it to the C-swapped

isoform.

Table 1. Quantification and structural features of BS-RNase oligomers.

Elution Volume (ml) Yield (% of the total)
Hydrodynamic diameter
(nm)a

BS-RNase species WT K113N WT K113N WT

D 12.2760.18 12.3160.05 58.965.3 53.765.1 7.5360.23

TT2/N
b 11.1960.04 11.3160.09 10.262.2 12.261.0 8.5160.32

TT1/C
b 10.8660.03 11.0860.05 15.862.5 13.361.1 9.6560.29

H 10.3560.09 10.4060.02 9.762.6 10.961.9 ---

L.O.c 9.9260.11 9.8760.04 5.462.5 9.963.4 ---

aCalculated from DLS analysis.
bThe elution volumes of the BS-tetramers derive from their additional SEC purification with 0.4 M NaPi as eluent (see Figure 1D).
cL.O.: mixture of BS-RNase octamers and larger oligomers.
doi:10.1371/journal.pone.0046804.t001

Figure 2. 10% SDS-PAGE analysis of the crosslinking reactions of BS-RNase tetramers. (A), (B) DVS reaction time-course of TT1 and TT2,
respectively. 8 mg of each aliquot-sample was electrophoresed after blocking the reaction with 0.2 M b-mercaptoethanol, final concentration. (C), (D)
DFDNB reaction of BS-RNase tetramers and RNase A dimers analyzed under reducing and non-reducing conditions, respectively. Samples were
concentrated to 1 mg/ml, and 10 mg of each were analyzed.
doi:10.1371/journal.pone.0046804.g002
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Stability of the BS-RNase tetramers
Considering that meta-stability hinders the characterization of

BS-RNase tetramers, we studied their relative dissociation kinetics.

Three SEC chromatograms obtained immediately after dissolving

the lyophilized mixture in 0.2 M NaPi, pH 6.7 (blue curve), or

storing at 4uC two aliquots of it for one or two weeks are shown in

Figure 3A, green and red curves, respectively. The relative

oligomers amounts changed, with BS-TT1 being less stable than

BS-TT2, and this trend was confirmed by the chromatograms of

the two tetramers, analyzed after keeping them isolated from the

other oligomers, and incubated together at 4uC up to three days

(Figure 3B).

In contrast to the extensively studied propensity of BS-RNase to

swap its N-terminus [14–18], either the BS-C-terminus or the

hinge loop linking it to the protein core had never been nowadays

analyzed in detail. Several substitutions are present, in this region,

with respect to RNase A [4]: in particular, G111, K113, and S115

of BS-RNase are, respectively, Glu, Asn and Tyr in RNase A [4].

In particular, the mutation at 113 can be crucial, because Asn-113

stabilizes the open-interface [51] of RNase A-CD, through the

formation of a ‘‘steric zipper poly-Q-like’’ hydrogen bond network

(Figure 3C, left and central panels) [38]. Consequently, the

N113K substitution could destabilize the BS-RNase C-swapped

oligomers (i.e. TT1), by deleting the intermolecular H-bond

between the side chais of the two N113 [38], and possibly

introducing electrostatic repulsion caused by the two complemen-

tary lysines side chains (Figure 3C, right panels). Anyhow, it has to

be considered that the factors governing the interplay of four

subunits are larger than those affecting the interactions of two

protein bodies forming a dimer [50].

Production and self-association of BSK113N (K113N-BS-
RNase)

To evaluate the role of the 113 residue, a BSK113N variant was

produced, purified, and induced to oligomerize by the two

methods [11,35] used for the wt enzyme. The BSK113N

oligomerization induced by 40% HAc/lyophilization produced

the results shown, and compared to those relative to wt, in

Figure 3. Analysis of the stability of BS-RNase oligomers. (A) SEC of the oligomers’ mixture immediately dissolved in 0.2 M NaPi, pH 6.7 (day
0-blue curve), or after storing it at 4uC for one or two weeks (7 and 14 days, green and red curves), keeping constant the amount of the native dimer.
(B) SEC of TT1 and TT2 gathered together immediately after their elution from the oligomers’ mixture (day 0-blue curve, cfr. panel A) and re-
cromatographed after a storage at 4uC in 0.2 M NaPi, pH 6.7, for one, two, or three days (1-red, 2-dark green, 3- pink curves, respectively). The SEC
experiments were carried out with a Superdex 75 column. (C) Left panel, RNase A C-dimer [38], and (central panel) the open interface [51] stabilizing a
C-swapped RNase A oligomer. Right panels, BS-RNase C-swapped open-interface: upper panel, wt (K113); lower panel, BSK113N (N113 interplay, as in
RNase A).
doi:10.1371/journal.pone.0046804.g003
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Figure 4A and Table 1: it is clearly visible the higher aggregation

yield of the mutant (53.7% of residual dimer), in particular of its

larger oligomers (L.O.), with respect to the wt one (58.9% of

dimer), as well as to that of RNase A, whose native residual

monomer recovered after oligomerization is known to reach even

73% [52]. The two BSK113N tetramers were withdrawn, concen-

trated and re-analyzed by SEC (Figure 4B), as was performed with

wt tetramers (see Figure 3B), after one, two or three days. The

results of Figure 4B reveal that, under these environmental

conditions [52–55] BSK113N-TT1 is more resistant to dissociation

than wt BS-TT1, indicating that the stability of this tetramer is

increased by the K113N mutation. Finally, the two BSK113N

tetramers were cross-linked with DFDNB, under the same

conditions used for the wt ones. The SDS-PAGE analysis (Figure

S3) did not show significant differences from the results obtained

with wt tetramers (see Figure 2C,D), indicating that the conditions

required for the DFDNB reaction [49,50] flatten the differences of

stability related to the K113N mutation.

Thermally-induced oligomerization of wt and BSK113N

The ‘thermal aggregation’ approach [35] can provide additional

insights into the BS-RNase self-association mechanism, in

particular into the possible swapping of its C-terminus. This

possibility derives from the matter of fact that RNase A changes its

propensity to swap its N- or C-terminus, or both, depending on the

environmental conditions applied [35]. In particular, mildly

denaturing conditions favor the exchange of RNase A N-terminus

and, consequently, ND formation, while more drastic conditions

induce also the swapping of its C-terminus and formation of CD

[35].

The results of the experiments performed with BS-RNase are

shown in Figure 5. Under all conditions applied for one hour, the

only species of wt BS-RNase visible, besides the native dimer D, is

TT2 (Figure 5A–C, blue curves). The only exception occurred

when 40% aqueous EtOH contained 0.5 M guanidine (final

concentration): in fact, after one hour incubation at 60uC, a little

shoulder, assignable to BS-TT1, is also visible (Figure 5D, blue

curve), although about half of the sample precipitated. On the

contrary, RNase A showed to form, as expected [35], a CD

amount larger than ND when it was incubated under the more

drastic conditions (dotted black curves in A–D panels). Thus,

again, the stability of BS-TT1 is definitely low, and here is

additionally compromised by high temperature: consequently, we

can consider the yields of BS-RNase tetramers as a balance

between conditions severe enough to detach the protein terminals

from the core and mild enough to avoid the dissociation of the

newly formed oligomers [35,53].

The results obtained, in parallel, with BSK113N (red curves) show

that its TT1 is definitely present in every aggregation profile,

although its yield never surpassed that of TT2 (Figure 5B,D). Thus,

the K113N mutation definitely favors BS-TT1 formation and

indirectly confirms that this tetrameric conformer is formed

through the C-terminus swapping. Consequently, the two BS-

RNase tetramers will be called, from now on, TTC and TTN,

respectively, or also TT1/C and TT2/N, as in Figure 5.

In addition, small but detectable amounts of BSK113N oligomers

larger than tetramers (L.O.) are visible in all chromatograms of

Figure 5, especially in panel B (red curve). This result suggests that

also BS large oligomers (L.O.), or some of them, contain C-

swapped termini and that their formation was favored by the

increase of the amount of TT1/C [35].

Finally, the higher the denaturing strength of the medium (i.e.,

containing guanidine), the lower the temperature necessary to

avoid a partial protein precipitation. In fact, substantially equal

amounts of BSK113N-TT1/C and -TT2/C formed (Figure 5C, red

curve) when the temperature decreased from 60 to 45uC, while,

instead, this ‘cooling’ event favored RNase A-ND over -CD (dotted

black curve). Taken together, all these final observations suggest

that the optimal conditions to induce BS-RNase thermal

aggregation are slightly milder than those promoting the same

event in RNase A [35,53].

Dynamic Light Scattering (DLS) and Molecular Modeling
of BS-TT1/C

DLS, which measures the hydrodynamic diameter of a protein

[56], can be useful to obtain informations about the disposition of

the BS-tetramers’ subunits, in particular the differences given by

N- and/or C-swapping. The data obtained (Table 1) show that the

Figure 4. SEC chromatograms of K113N BS-RNase aggregates obtained by lyophilising the protein from a 40% (v/v) acetic acid
solution. (A), Superdex 75 chromatogram of the mutant (blue) overlapped with a chromatogram of wt BS-RNase (red). (B), SEC of K113N BS-TT1 and
TT2 gathered together immediately after their elution from the aggregates mixture (day 0-blue curve) and re-cromatographed after storage in 0.2 M
NaPi, pH 6.7, for one, two, or three days (1-red, 2-dark green, 3-pink curves, respectively).
doi:10.1371/journal.pone.0046804.g004
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hydrodynamic diameter of BS-RNase native dimer is in agreement

with the value relative to its crystallographic structure(s) [57,58].

Instead, the BS-TT2/N diameter is slightly larger and consistent

with the two cyclic N-swapped-only models proposed by Adinolfi

et al. [13]. Finally, as expected from SEC (see Figure 1C), the

diameter measured for BS-TT1/C is larger than the BS-TT2/N

one, and cannot fit the cited models.

Thus, on the basis of DLS data, the known structure of MxM

BS-dimer [57], and the structural constraints imposed by the inter-

subunit disulfides, we modelled the structure of BS-TT1/C. Models

were built by molecular docking, starting from two identical

dimers of wt N-swapped BS-RNase (MxM). Each dimer had one

C-terminus ‘‘opened’’, with a conformation based on the crystal

structure of the C-swapped RNase A (PDB code 1F0V) [38].

Then, fifty putative tetramers were generated and, by the docking

and energy minimization algorithms, three representative low

energy structures were selected and here shown in Figures 6 and

S4. The structure which best fits TT1/C hydrodynamic diameter

(Table 1) is the ‘‘quasi-linear’’ [40] one, visible in two different

orientations in the right and left panels of Figure 6A. This model

can also explain the chromatographic differences existing between

BS-TT1 and -TT2 (see Figure 1, Table 1), and consists of two

native N-swapped dimers (MxM) linked by the swapping of the C-

termini of their central subunits (dimer-C-swap-C-dimer). Thus,

this tetramer globally swaps four N-termini and two central C-

termini, and can be named also BS-NCNTT [20]. Its C-swapped

open interface [51] is stabilized by two inter-subunit H-bonds

forming between the two Gly-112, and between Asp-67 and Val-

116 of the two central complementary subunits (left panel of

Figure 6A). This structure is different from the one of RNase A

NCNTT [40,41] reported in Figure 6B for comparison, although

the swapping sequences of the two tetramers are identical: in fact,

the structural differences existing between of RNase A-ND [37]

and BS-RNase [57] induce different structures in the tetramers. In

Figure S4A,B two alternative BS-NCNTT models, increasingly

bent with respect to the structure of Figure 6A, are shown. These

Figure 5. SEC profiles of wt and K113N BS-RNase aggregates obtained through thermal treatment. The various environmental
conditions applied in aqueous solvents [35] are indicated in each of the A–D panels, in which the profiles obtained with the two BS-RNase variants
(blue and red curves) are compared with the corresponding RNase A chromatograms (dotted black curves). Oligomers were obtained as follows:
tubes containing 2.5–3.0 ml (0.5 mg) of each solution were put for 60 min in a thermostatically controlled bath at one of the temperatures indicated
[35]. Then, 200 ml of 0.2 M NaPi, pH 6.7, heated to the same temperature of incubations [35], were added. Each sample was transferred to an ice-cold
bath for 5 min, then injected onto a gel filtration Superdex 75 HR10/30 column. The different oligomers formed are labeled and correspond to the
ones prepared by the lyophilization procedure (see Figure 1) [11]. GDMCl, guanidine hydrochloride; EtOH, ethanol.
doi:10.1371/journal.pone.0046804.g005
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structures lack the Gly-112 and Asp-67/Val-116 H-bonds of the

‘‘quasi-linear’’ model, and their hydrodynamic diameters are

slightly different from the one measured for TT1/C with DLS

(Table 1), although they represent two other energy minima.

Biological activities of BS-RNase oligomers
Enzymatic assays. Native BS-RNase is known to cleave

double-stranded RNA (dsRNA), as well as the pool of its multimers

does [12], although the activity of the latter has not been studied in

detail yet. Instead, it is well-known that RNase A oligomers

acquire the ability to degrade double-stranded polyribonucleo-

tides, with the C-swapped species being more active than the

corresponding N-swapped conformers [20].

Thus, we tested dimers and oligomers of both wt and BSK113N

on yeast RNA and poly(A)Npoly (U), i.e. single-stranded (ss) and

dsRNA, respectively (Table 2). The data obtained on yeast RNA

confirmed that dimers and multimers of both BS-RNase variants

are active, but somewhat less than monomeric RNase A [12,20]

used here as standard. On the contrary, the multimers of both BS-

variants were more active against poly(A)Npoly(U), with respect to

their corresponding native dimer. Interestingly, the specific activity

definitely increased from BS-dimer to tetramers, but only a slight

activity augment was observed for the oligomers larger than

tetramers (L.O.). Anyway, either wt or BSK113N TT1/Cs were

slightly more active than the corresponding TT2/Ns. This behavior

qualitatively parallels the one of RNase A oligomers ([20] and

Table 2), and can be ascribed to a higher basic charge density or

exposure [2] depending on C-swapping event(s) rather than on N-

swapping(s) [20].

Finally, the BS-dimer of wt was slightly more active than the

K113N one (Table 2). Contrarily, the activities displayed by the

homologous wt or BSK113N multimers were almost comprised

within the experimental error, indicating that the loss of K113

positive charge did not significantly affect the catalytic activity of

BS-RNase oligomers. Considering that dsRNAase activity increas-

es with the positive charge density of the active site region [2,20],

we can envisage that the charge of K113 side chain does not affect

RNase-dsRNA recognition.

Cytotoxicity assays. It was mentioned before that native BS-

RNase displays several biological actions, especially a potentially

therapeutic cytotoxic activity [7,8], owned by only the N-swapped

(MxM) dimeric isoform [9,10]. Thus, on the basis of the enzymatic

activities reported (Table 2), we evaluated if BS-RNase multi-

merization could affect the cytotoxic potential of the native dimer.

To avoid to collect data derived by genetic alterations of

immortalized or tumor cell lines, the primary mesenchymal cell

line VIT1 was chosen here as a model to analyze the inhibitory

effect of both BS-RNase variants on cell growth. Cells were treated

with increasing concentrations of dimer (D), or of TT1/C, TT2/N,

or a mixture of BS-L.O.. In Figure 7, it is clearly visible that both

wt and BSK113N multimers display a cytotoxic activity higher than

the corresponding dimers, in parallel with the enzymatic activity

trend [20,42], and in line with previous data obtained with RNase

A oligomers [42]. In particular, Table 2 reports that wt and

BSK113N tetramers’ IC50 values, obtained from growth inhibition

curves shown in Figure 7, are about 10-fold, and more than 3.7-

fold, lower than those of their native dimers, respectively. In

addition, our data show that, within the same BS-RNase species,

the two tetramers display an activity very similar to each other,

and that BS-RNase larger oligomers (L.O.) decrease the IC50

value 17-fold for wt, and more than 6.3-fold for BSK113N, relative

to their dimers, respectively (Figure 7, Table 2). Finally, and

Figure 6. Molecular docking models of NCN-swapped BS-RNase and RNase A. (A), left panel, ‘‘quasi-linear’’ [40] NCNTT model: the stabilizing
intermolecular H-bonds between the two central subunits are indicated with orange circles; right panel, the same structure rotated 90u around the x-
axis. (B) modeled structure of RNase A NCNTT [40,41] reported for comparison.
doi:10.1371/journal.pone.0046804.g006
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notably, the present data become additionally intriguing by

observing that VIT1 cells are substantially resistant to RNase A

native monomer or multimers, i.e. ND, CD, CNCTT, NCNTT,

whose structural features have been previously described [20],

and/or also to a mixture of larger RNase A oligomers (L.O.), as it

is shown in Figure S5.

Altogether, these results indicate a potential therapeutic role for

BS-RNase multimers, support the idea that the increase of

cytotoxicity induced by RNase multimerization is correlated to

the augmented enzymatic activity versus dsRNAs or dsRNA/

DNA hybrids, but not towards ssRNA [20,42], and suggest also

that BS-RNase oligomers, being meta-stable, are active on the

mentioned RNAs during the initial phases [59] of gene

transcription.

Concluding remarks
The results presented in this work elucidate several structural

features underlying BS-RNase self-association through double

domain swapping [19], providing, for the first time, experimental

evidence for C-terminus swapping to occur in this protein, and the

functional consequences related to it. Furthermore, the seminal

enzyme displays to multimerize to a higher extent than RNase A

does (see Table 1).

In addition, and finally, the present work confirms that 3D

domain swapping event, although not cleared in all its aspects,

such as its predictability, is a very intriguing phenomenon often

associated to the incoming or settling of important biological

actions. In this context, RNases continue to represent interesting

models [20,55,60–62] to study protein aggregation through

domain swapping, and suggest that, when not leading to

fibrillization, a controlled protein self-association [31,32,55] can

be advantageous in terms of acquired or increased potentially

therapeutic biological activities, as it is for BS-RNase.

Materials and Methods

Materials
The QuikChange Site-Directed Mutagenesis Kit and protocol

(Stratagene, La Jolla, CA, USA) were used to produce the BS-

RNase mutants, starting from the pET-22b (+) plasmid cDNA

coding for the N67D-BS-RNase variant. The N67D substitution

prevents the spontaneous deamidation of Asn-67 in the native

protein, which should consequently be isolated as a mixture of

Asn, Asp and isoAsp variants at position 67 [44]. The biological

activity and the structural features of the three derivatives are

almost identical to those of the native enzyme [45], thus we used

the N67D variant to avoid side-reactions, and referred to as wild-

type (wt).

As for the (N67D/)K113N-BS-RNase variant, henceforth

named BSK113N, the mutagenic primers were 59-
GCTTGTGGCGGTAACCCGTCCGTGCC-39, and 39-

GGCACGGACGGGTTACCGCCACAAGC-5, confirming the

mutations by DNA sequencing. The mutant was produced and

purified from E. coli as a monomer, with Cys-31 and 32 linked to

two glutathione molecules [15]. After selectively reducing the

mixed disulfides, they were either carboxyamidomethylated with

iodoacetamide [63] to obtain monomers for CD analysis, or

dialyzed against 0.1 M Tris/acetate pH 8.4 followed by SEC onto

a Sephadex G-75 column to obtain dimers [64]. The protein

solution was incubated at 37uC for at least 72 h to reach the

equilibrium between the two MxM and M = M isoforms [6]. The

same protocol was used to express and purify N67D-BS-RNase

(wt), while both recombinant dimeric BS-RNases were treated

with Aeromonas proteolytica aminopeptidase (Sigma) [65] to remove

Met-1 before cytotoxicity arrays.

RNase A (R5500, type XII A), used here as a standard, and poly

(A)Npoly (U), were purchased from Sigma; yeast RNA was

purchased from Boehringer.

Production of BS-RNase oligomers
To prepare BS-RNase oligomers we followed two different

procedures: in the ‘‘classic’’ aggregation protocol [11], 5 to

50 mg/ml protein samples dissolved in 40% HAc were lyophilized

and re-dissolved in 0.2 M, or 0.4 NaPi, pH 6.7 [20,46]. As for the

thermally-induced oligomerization procedure, some of the condi-

tions used elsewhere [35,53] were chosen in this work. Half mg

BS-RNase samples were dissolved at 150–200 mg/ml in various

aqueous media (See Results and Discussion and Figure 5) and

Table 2. Enzymatic and cytotoxic properties of BS-RNase oligomers.

Enzymatic Specific Activity, 236C [20] Cytotoxic Activity

Yeast RNA (Kunitz units/mg
enzyme)

poly (A) : poly (U) (units/mg
enzyme) IC50

a (mg/ml) IC50 Potentiation Factorb

BS-RNase species WT K113N WT K113N WT K113N WT K113N

D 14.862.5 13.261.8 9.360.9 7.860.4 15569.4 .240 1 1

TT2/N 10.162.0 10.361.6 29.461.8 28.662.3 13.260.6 65.665.1 11.7 .3.7

TT1/C 12.362.3 11.761.8 36.161.2 33.161.5 17.261.0 64.965.9 9.0 .3.7

L.O.c 10.362.6 9.862.0 38.063.1 37.361.5 9.160.5 38.162.7 17.0 .6.3

RNase A species WT WT

M 106.261.4 1.660.1

ND 70.361.8 3.160.1

CD 63.361.6 12.260.6

NCNTT 36.462.1 26.863.1

aIC50 mean values (6 S.D.) from three independent experiments on VIT1 cells after 72 h.
bfolds vs the IC50 value of native BS-RNase dimer D.
cL.O.: mixture of BS-RNase hexamers, octamers, and larger oligomers.
doi:10.1371/journal.pone.0046804.t002
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heated to 45, 50, or 60uC up to 1 h. At the end of each treatment,

a 80–100 fold excess of 0.2 M NaPi, pH 6.7, pre-heated at the

incubation temperature [35], was added. Each mixture was

brought to 0–4uC, and chromatographed through SEC.

Chromatographic purification and quantification of the
BS-RNase oligomers

Purification and analyses of the RNase oligomers were

performed through SEC using a Sephadex G-100 column

(7061.5 cm), flow rate 0.4–0.5 ml/min, or with Superdex 75 or

200 10/300 GL columns (GE-Healthcare) attached to an ÄKTA

FPLC system (GE-Healthcare), flow rate 0.08–0.10 ml/min [20],

at room temperature. The purified oligomers were kept at 4uC
until use, or concentrated with Millipore Centricon Ultra-filters

(C.O. 10 kDa) just before use.

BS-RNase multimers were chromatographed also through a

Source 15S HR10/10 or Mono-S cation-exchange columns (GE-

Healthcare): elution was performed with a 0.09–0.20 M NaPi

gradient, pH 6.7 [20]; flow rate was between 0.4 and 1.2 ml/min.

Additional experiments were performed different buffers and/or

gradients: start from 0.10, 0.15, or 0.20 M NaPi, gradient to

0.40 M NaPi, pH 6.7; or, finally, 0.10 M NaPi, pH 6.7, with a

0.05 to 0.40 M NaCl gradient.

The concentration of BS-RNase and RNase A species was

spectrophotometrically measured at 278 nm with a e1%
278 of 4.65

[66], and at 280 nm, e1%
280 of 7.3 [67], respectively. Each RNase

oligomer amount was measured also as the percent area of its SEC

peak relative to the sum of the areas of all peaks eluted. The values

reported are means of five to eight measurements.

Cross-linking
Cross-linking with divinylsulfone (DVS) was performed follow-

ing the method of Ciglic et al. [48], with slight modifications: the

reaction was performed for 315 h at 20uC, not 30uC [48], to

minimize the possible tetramers’ dissociation. At the chosen times,

aliquots of 20 mg of the protein were withdrawn to quench the

reaction by adding b-mercaptoethanol, to a final concentration of

0.2 M. Each aliquot was kept at 4uC, until 8 mg of it were

subjected to SDS-PAGE.

1,5-difluoro-2,4-dinitrobenzene (DFDNB) was used by using the

protocol of Lin et al. [49], with some modifications in order to limit

a contemporary undesired oligomer’s dissociation. 0.2 mg/ml of

each oligomeric RNase species were dissolved in 0.1 M NaPi, and

brought to pH 8.0 with few microliters of Na2B4O7. Four

microliters of DFDNB, 0.37 mM in 2% (v/v) methanol solution,

were added every 8–10 min, over a 3 h period, to the RNase

species separately kept and stirred in the dark at 8uC, to a final

molar RNase/DFDNB ratio of about 1:2. The stirring was

protracted for additional 20 h, and samples were finally concen-

trated to 1 mg/ml to be analyzed through SDS-PAGE. The same

procedure was followed for BS-RNase native dimer, but in 50 mM

borate buffer, pH 8.5, at room temperature [49], but additionally

stirring in the dark for not more than 4 h to limit protein

precipitation.

Gel electrophoresis
SDS-PAGE (10, 12.5, or 15% polyacrylamide gel, Tris/glycine

buffer, pH 8.3) was performed at 20 mA, for 70–120 min,

depending on % of polyacrylamide, at room temperature.

Cathodic PAGE under non-denaturing conditions was per-

formed according to Goldenberg [47], with slight modifications,

using a pH 4.0 b-alanine/HAc buffer. 7.5, 10, or 12.5%

polyacrylamide gels were run at 20 mA for 60–100 min, at 4uC,

fixed with 12.5% trichloroacetic acid and stained with 0.1%

aqueous Coomassie brilliant blue.

Dynamic Light Scattering (DLS)
DLS measurements were performed following the procedures

described in [68], and the data processed, on a Zetasizer Nano-S

device from (Malvern Instruments) to measure the hydrodynamic

diameter of the BS-RNase species dissolved in NaPi 0.2 M,

pH 6.7. The temperature of the sample was controlled by a

thermostat to within 60.1uC. The solution was filtered with

‘‘Anotop’’ filters immediately before use and 12.5645-mm

disposable cells equipped with stopper were used.

Molecular modelling and docking
The structures of the C-swapped dimeric wt BS-RNase and

BSK113N were modelled starting from the NMR structure of the

monomeric BS-RNase derivative (mBS, PDB code 1QWQ [15]),

and from the RNase A C-dimer crystallographic structure (PDB

code 1F0V [38]), respectively. The mentioned atomic coordinates

were used as a template to predict the 3D structure of the variants,

Figure 7. Action of BS-RNase oligomers on the proliferation of
mesenchimal VIT1 cells. (A) wt, and (B) K113N BS-RNase. Cells were
cultured in RPMI 1640 medium supplemented with 2 mM glutamine,
10% FBS, and 50 mg/ml gentamicin sulphate. After addition of the BS-
RNase species, 10 to 240 mg/ml of BS-RNase (native) dimer, or of 10 to
80 mg/ml of BS TT1/C, TT2/N, or a mixture of larger oligomers (L.O.), cells
were incubated for 72 h at 37uC with 5% (v/v) CO2. At the end of the
treatments cells were stained with a Crystal Violet solution and the
survival was measured, and compared to the control lacking any RNase
species, as reported in Materials and Methods. Experiments were
performed in triplicate; the S.D. are comprised between 4.5 and 6.0% for
wt (A), and between 5.1 and 7.7% for K113N BS-RNase (B).
doi:10.1371/journal.pone.0046804.g007
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using the Modeller 9.9 program [69], and the score of variable

target function method [70] to evaluate the quality of the models.

BS-RNase tetrameric models were built by docking using

GRAMM-X (http://vakser.bioinformatics.ku.edu/resources/

gramm/grammx). The starting structures used for the docking

were two BS-RNase MxM dimers (PDB code 1BSR [57]). In each

of them, the same W and y dihedral angles of the RNase A C-

dimer crystallographic structure (PDB code 1F0V [38]) were

imposed to the C-terminal residues 110–124. To perform the

docking it was imposed that the interface of each dimer included

the 111–113 residues of the C-swapped chain(s). The quality of the

tetramers so obtained was checked with ANOLEA [71], and all

the structures were virtualized with PYMOL [72].

Biological assays
Enzymatic assays. The enzymatic activities of the BS-

RNase and RNase A species were measured at 23uC [20], using

a thermostatically controlled Beckman DU-650 spectrophotome-

ter. Assays with yeast RNA as a substrate were performed using

0.5 mg of each RNase (BS or A) species at 300 nm, according to

the method of Kunitz [73]. Assays with dsRNA poly(A)Npoly(U)

were performed, as described in [12], at 260 nm, with 5 mg of BS-

dimer, and 2 mg of each BS-tetramer (TT1 or TT2), and of larger

oligomers (L.O.). Concerning RNase A, the amounts used were:

monomer, 12 mg; dimers (ND or CD), 5 mg; tetramers (NCNTT or

CNCTT), 2 mg. The Abs260 and Abs300, respectively, were

recorded versus time, and the specific activity of the various

RNase species was calculated using the following equation: (DAbs/

time (min))/amount of enzyme (mg). All the enzymatic activity

values are means of three different assays 6 S.D.

In vitro cytotoxicity assays. The primary pancreatic

mesenchymal cell line VIT1 (Chemicon International, Milan,

Italy) was grown in RPMI 1640 supplemented with 2 mM

glutamine, 10% FBS, and 50 mg/ml gentamicin sulfate (BioWhit-

taker, Lonza, Bergamo, Italy) at 37uC with 5% CO2.

Cells were seeded in 96-well plates (2.56103 cells/well), then

treated 24 hours later with the various protein species, and further

incubated for 72 h. At the end of the treatment, cells were stained

with a Crystal Violet solution (Sigma, Milan, Italy). The dye was

solubilised in PBS containing 1% SDS and spectrophotometrically

measured (Abs595 nm) to determine cell growth. IC50 values were

obtained (mean 6 S.D.), and represent the concentration of the

various compounds when 50% growth inhibition is recorded.

Three independent experiments were performed for each assay

condition.

Supporting Information

Figure S1 Native PAGE of BS-RNase species eluted from
SEC visible in Figure 1B. 10% PAGEs under non denaturing

conditions [47] were performed with the BS-RNase species eluted

from SEC and concentrated to 0.6–0.7 mg/ml, in NaPi 0.1 M

pH 6.7. (A) Only the fractions corresponding to tetramers (5 and

6) and dimer (7 and 8) were analyzed, together with the mixture

(Mix) of the aggregates not separated through SEC (right lane). In

this lane, 5 mg of RNase A monomer, less cationic and with a

lower mobility than BS-RNase native dimer, were also added.

Run-time 80 min; (B) Also the BS-RNase oligomers larger than

tetramers are analyzed: electrophoresis was extended for 110 min,

and the dimer D almost escaped out from the gel (lanes 7 & 8), but

more than one tetrameric (TT, lanes 4, 5 & 6) and hexameric (H,

lanes 3 & 4) conformers are present. Finally, more than one

octamer and/or larger oligomers (L.O., lanes 2 & 3) are probably

present, while only a light smear is visible in lane 1. The ‘Mix’ does

not contain here RNase A.

(TIF)

Figure S2 Oligomerization pattern of wt BS-RNase after
cross-linking of the native dimer with DFDNB. (A) The

cross-linked protein was first purified with Superdex 75 column

(dotted line) obtaining four main fractions (1–4). Each fraction was

separately induced to oligomerize from 40% HAc solutions [11].

The result obtained with fraction 3 (continuous line) is reported

together with the pattern relative to an aliquot of BS-RNase that

was not cross-linked (dashed line). The pattern of the cross-linked

protein shows the presence of both tetramers, and also a badly

resolved portion of larger oligomers. Flow rate 0.08 to 0.10 ml/

min, injected volume 25 ml. (B) Further purification of DFDNB-

BS-fraction 3 through a cation-exchange column Source 15S HR

10/10: the two patterns obtained under the two conditions chosen

(100 and 150 mM NaPi, pH 6.7) to better fix the protein to, and

elute it from, the resin are shown in blue and red lines,

respectively. The linear gradient applied to rise NaPi concentra-

tion from 0.10 or 0.15 M up to 0.40 M was applied after 20 ml

(three column volumes) from the elution start. Gradient time-

course: blue curves, 75 min; red curves, 62.5 min; flow rate,

1.2 ml/min. Continuous lines, DFDNB-BS-RNase-fraction 3
(panel A); dashed lines, native dimeric BS-RNase. The DFDNB-

BS portion(s) preceding the dashed+dotted vertical lines (limit to

avoid contamination of un-reacted BS-RNase, see dashed line-

patterns of native BS-RNase) were collected, desalted, concen-

trated and induced to oligomerize through lyophilization from

40% HAc solutions [11]. (C) The resulting mixture was analyzed

through SEC, Superdex 75 column: continuous line, sample

purified through SEC+cation-exchange (panels A+B) before

inducing its oligomerization; dashed line, sample purified only

with SEC (same pattern of panel A, continuous line), reported for

comparison. Flow rate 0.08 to 0.10 ml/min, injected volume

25 ml.

(TIF)

Figure S3 10% acrylamide SDS-PAGE of BSK113N tetra-
mers after their cross-linking with DFDNB. The lane

corresponding to TT2 (considered totally N-swapped) shows a

slightly higher amount of cross-linked products than the

corresponding TT1.

(TIF)

Figure S4 Alternative bent NCNTT models for TT1/C.
The modeled structures (A,B) display an increasing central

bending with respect to the one shown in Figure 6A, and

represent energy minima as well as the latter, but their

hydrodynamic diameter is less in agreement with the one

experimentally measured for BS-TT1/C (Figure 1, Figure 5).

(TIF)

Figure S5 Action of RNase A oligomers on the prolifer-
ation of mesenchimal VIT1 cells. Cells were cultured in

RPMI 1640 medium supplemented with 2 mM glutamine, 10%

FBS, and 50 mg/ml gentamicin sulphate. After the RNase A

species addition, 40 to 240 mg/ml, cells were incubated for 72 h at

37uC with 5% (v/v) CO2. At the end of the treatments cells were

stained with a Crystal Violet solution and the survival was

measured and compared to the control without any RNase

species. RNase A species: M, monomer; DN, N-swapped dimer;

DC, C-swapped dimer; TTN, NCN-swapped tetramer; TTC,

CNC-swapped tetramer; L.O., mixture of RNase A pentamers,

hexamers, and larger oligomers.

(TIF)
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Discussion S1 Discussion concerning the results de-
rived from the patterns reported in Figure S2.
(DOC)
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