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Abstract

As next-generation sequencing projects generate massive genome-wide sequence variation data, bioinformatics tools are
being developed to provide computational predictions on the functional effects of sequence variations and narrow down
the search of casual variants for disease phenotypes. Different classes of sequence variations at the nucleotide level are
involved in human diseases, including substitutions, insertions, deletions, frameshifts, and non-sense mutations. Frameshifts
and non-sense mutations are likely to cause a negative effect on protein function. Existing prediction tools primarily focus
on studying the deleterious effects of single amino acid substitutions through examining amino acid conservation at the
position of interest among related sequences, an approach that is not directly applicable to insertions or deletions. Here, we
introduce a versatile alignment-based score as a new metric to predict the damaging effects of variations not limited to
single amino acid substitutions but also in-frame insertions, deletions, and multiple amino acid substitutions. This
alignment-based score measures the change in sequence similarity of a query sequence to a protein sequence homolog
before and after the introduction of an amino acid variation to the query sequence. Our results showed that the scoring
scheme performs well in separating disease-associated variants (n = 21,662) from common polymorphisms (n = 37,022) for
UniProt human protein variations, and also in separating deleterious variants (n = 15,179) from neutral variants (n = 17,891)
for UniProt non-human protein variations. In our approach, the area under the receiver operating characteristic curve (AUC)
for the human and non-human protein variation datasets is ,0.85. We also observed that the alignment-based score
correlates with the deleteriousness of a sequence variation. In summary, we have developed a new algorithm, PROVEAN
(Protein Variation Effect Analyzer), which provides a generalized approach to predict the functional effects of protein
sequence variations including single or multiple amino acid substitutions, and in-frame insertions and deletions. The
PROVEAN tool is available online at http://provean.jcvi.org.
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Introduction

Recent advances in high-throughput technologies have gener-

ated massive amounts of genome sequence and genotype data for

humans and a number of model species. Approximately 15 million

single nucleotide variations and one million short indels (insertions

and deletions) of the human population have been cataloged as a

result of the International HapMap Project and the ongoing 1000

Genomes Project [1,2]. Additional large-scale projects targeting

human cancers and common human diseases have further

expanded the list of mutations found in healthy and diseased

individuals [3]. Results from the 1000 Genomes project suggest

that each individual human genome typically carries approxi-

mately 10,000–11,000 non-synonymous and 10,000–12,000 syn-

onymous variations [1,4]. In addition, an individual is estimated to

carry 200 small in-frame indels and is heterozygous for 50–100

disease-associated variants as defined by the Human Gene

Mutation Database [1].

The enormous amount of sequence variation data generated

from large-scale projects necessitates computational approaches to

assess the potential impact of amino acid changes on gene

functions. Most computational prediction tools for amino acid

variants rely on the assumption that protein sequences observed

among living organisms have survived natural selection. Therefore

evolutionarily conserved amino acid positions across multiple

species are likely to be functionally important, and amino acid

substitutions observed at conserved positions will potentially lead

to deleterious effects on gene functions. A number of computa-

tional methods have been developed based on such evolutionary

principles to predict the effect of coding variants on protein

function, including SIFT [5], PolyPhen-2 [6], Mutation Assessor

[7], MAPP [8], PANTHER [9], LogR.E-value [10], Condel [11]

and several others [12,13]. In general, the prediction tools obtain
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information on amino acid conservation directly from alignment

with homologous and distantly related sequences. SIFT computes

a combined score derived from the distribution of amino acid

residues observed at a given position in the sequence alignment

and the estimated unobserved frequencies of amino acid

distribution calculated from a Dirichlet mixture. PolyPhen-2 uses

a naı̈ve Bayes classifier to utilize information derived from

sequence alignments and protein structural properties (e.g.

accessible surface area of amino acid residue, crystallographic

beta-factor, etc.). Mutation Assessor captures the evolutionary

conservation of a residue in a protein family and its subfamilies

using combinatorial entropy measurement. MAPP derives infor-

mation from the physicochemical constraints of the amino acid of

interest (e.g. hydropathy, polarity, charge, side-chain volume, free

energy of alpha-helix or beta-sheet). PANTHER PSEC (position-

specific evolutionary conservation) scores are computed based on

PANTHER Hidden Markov Model families. LogR.E-value

prediction is based on a change in the E-value caused by an

amino acid substitution obtained from the sequence homology

HMMER tool based on Pfam domain models. Finally, Condel

provides a method to produce a combined prediction result by

integrating the scores obtained from different predictive tools.

To the best of our knowledge most prediction tools focus on

single amino acid substitutions and therefore are not able to deal

with sequence variations such as amino acid insertions, deletions,

and multiple amino acid substitutions [13]. In addition to single

amino acid substitutions, there are other variation classes

associated with disease phenotypes. For example, a common

disease variant associated with the genetic disease cystic fibrosis is

a deletion of phenylalanine at position 508, part of the ATP-

binding domain of the CFTR protein. The prevalence of the

DF508 allele in cystic fibrosis patients was 71% [14,15]. In the

Human Gene Mutation Database (Professional ver2011.3), at the

gene sequence level approximately half of the human disease

variations are associated with single nucleotide substitutions (57%),

and close to one-fourth of disease mutations (22%) are associated

with small indels [16,17].

Here we present a new algorithm, PROVEAN (Protein

Variation Effect Analyzer), which predicts the functional impact

for all classes of protein sequence variations not only single amino

acid substitutions but also insertions, deletions, and multiple

substitutions. We tested our method on a large set of human and

non-human protein variations obtained from the UniProtKB/

Swiss-Prot database and experimental datasets previously gener-

ated from mutagenesis experiments for the human tumor

suppressor protein TP53 and the ATP-binding cassette transporter

1 protein ABCA1 [18,19]. Our results show that the predictive

ability of PROVEAN for single amino acid substitution is highly

comparable to other popular leading tools. Most importantly, the

PROVEAN algorithm is also capable of handling in-frame

insertion, deletions, and multiple substitutions with equally high

performance and accuracy of prediction. In addition, we also show

that the PROVEAN scores correlate with biological activity level

and may be used as an indicator for the degree of functional

impact of a protein variation.

Results

Delta alignment score
In pairwise sequence alignments, alignment scores can be used

as a measure of sequence similarity to assess how likely the

sequence pairs are homologous or related. In keeping with this

idea, one can interpret a change in the alignment score caused by

an amino acid variation as the impact of the variation on protein

function. Specifically, given a protein A, let us assume there is a

homologous protein B which is functional. To measure the effect

of a variation on protein A, we can measure the similarity of

protein A to B before and after the introduction of the variation.

Our assumption is that a variation that reduces the similarity of

protein A to the functional homolog protein B is more likely to

cause a damaging effect. For this purpose, we suggest a change in

the ‘‘alignment score’’ to be used as a measure of change in

‘‘similarity’’ caused by a variation.

To quantify the degree of impact of a variation on protein

function, we define a delta alignment score (or simply delta score) of a

protein query sequence Q and its variation v with respect to

another protein subject sequence S as the change in semi-global

alignment score (i.e., no penalty on end gaps in global alignment

[20]) between Q and S caused by v. More formally,

D(Q,v,S)~A(Q0,S){A(Q,S)

where Q0 is the variant sequence of Q caused by v, and A(P1,P2) is

the semi-global alignment score between two protein sequences P1

and P2, which is computed based on a given amino acid

substitution matrix (e.g. BLOSUM62) and gap penalties.

The delta score can be used to measure the effect of a variation.

That is, low delta scores are interpreted as amino acid variations

leading to a deleterious effect on protein function (Figure 1A, C,

and E), while high delta scores are interpreted as variations with

neutral effect on protein function (Figure 1B, D, and F). Since the

delta score is computed from alignment scores and that the

alignment scores are computed based on a substitution matrix, the

delta score approach has advantages over other tools as described

below.

First, the delta score approach naturally utilizes a substitution

matrix which implicitly captures information on the substitution

frequency and chemical properties of 20 amino acid residues.

Given a single amino acid substitution, if the reference amino acid

residue is found to be conserved or similar to the aligned amino

acid in a homologous sequence and that the frequency of

substitution from the reference residue to the variant residue in

question is low based on the substitution matrix score, then the

substitution will produce a low delta score which suggests a

deleterious effect of the substitution (Figure 1A). Conversely, if the

variant amino acid residue instead of the reference residue is found

to be similar to the aligned amino acid in the homologous

sequence, then the substitution will produce a high delta score to

suggest a neutral effect of the variation (Figure 1B, Homolog 1).

Second, the delta score is not only determined by the amino

acid position where the variation is observed but can also be

determined by the neighborhood that surrounds the site of

variation (i.e., sequence context). The delta score is computed

from alignment scores that encompass regions flanking both sides

of the site of variation. In the scenario when an amino acid

variation does not cause a change in the flanking sequence

alignment (e.g. in ungapped regions, Figure 1A and B, Homolog

1), the delta score is simply determined by looking up two values

from the substitution matrix scores and computing their differ-

ences (e.g. a BLOSUM62 score of ‘‘6’’ for a GRG change and a

score of ‘‘-3’’ for a CRG change as shown in Figure 1A). In a

different scenario when an amino acid variation causes a change in

the sequence alignment in the neighborhood area of the site of

variation (e.g. in gapped regions, Figure 1B, Homolog 2) or when

the neighborhood area is aligned with gaps (Figure 1B, Homolog

3), the delta score is determined by the alignment scores derived

from the flanking regions. In such cases, existing tools which base

on frequency distribution or identity count of the aligned amino
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acids can be misled by the poorly aligned residues in a gapped

alignment (Figure 1B, Homolog 2), or simply cannot make use of

the homologous protein alignment because no amino acid can be

aligned to derive count statistics (Figure 1B, Homolog 3).

Finally, the most important advantage of our method is that the

delta score approach considers alignment scores derived from the

neighborhood regions and therefore can be directly extended to all

classes of sequence variations including indels and multiple amino

acid replacements. That is, the delta scores for other types of

amino acid variations are computed in the same way as for single

amino acid substitutions. In the case of amino acid insertion or

deletion, the amino acids are inserted into or removed respectively

from the variant sequence prior to performing the pair-wise

sequence alignment and computing the alignment scores and delta

score (Figure 1C–F). Using the delta alignment score approach,

PROVEAN was developed to predict the effect of amino acid

variations on protein function. An overview of the PROVEAN

procedure is shown in Figure 2. The algorithm consists of (1)

collection of homologous sequences, and (2) computation of an

‘‘unbiased averaged delta score’’ for making a prediction (See

Methods for details). As an example, PROVEAN scores were

computed for the human protein TP53 for all possible single

amino acid substitutions, deletions, and insertions along the entire

length of the protein sequence to demonstrate that PROVEAN

scores indeed reflect and negatively correlate with amino acid

conservation (Figure S1).

New prediction tool PROVEAN
To test the predictive ability of PROVEAN, reference datasets

were obtained from annotated protein variations available from

the UniProtKB/Swiss-Prot database. For single amino acid

substitutions, the ‘‘Human Polymorphisms and Disease Muta-

tions’’ dataset (Release 2011_09) was used (will be referred to as

the ‘‘humsavar’’). In this dataset, single amino acid substitutions

have been classified as disease variants (n = 20,821), common

polymorphisms (n = 36,825), or unclassified. For the reference

dataset, we assumed that the human disease variants will have

deleterious effects on protein function and common polymor-

phisms will have neutral effects. Since the UniProt humsavar

dataset only contains single amino acid substitutions, additional

types of natural variation, including deletions, insertions, and

replacements (in-frame substitution of multiple amino acids) of

length up to 6 amino acids, were collected from the UniProtKB/

Swiss-Prot database. Each variant in this dataset was annotated in-

house as deleterious, neutral, or unknown based on keywords

found in the description provided in the UniProt record (see

Figure 1. Examples of computing and interpreting delta alignment scores for six different known variations, (A) deleterious
substitution (MIM:151623), (B) neutral substitution (dbSNP:rs1042522), (C) deleterious deletion (MIM:219700), (D) neutral deletion
(dbSNP:rs72471101), (E) deleterious insertion (MIM:164200), and (F) neutral insertion (dbSNP:rs10625857) with respect to the
selected homologous proteins. The amino acid residue replaced, deleted, or inserted is indicated by an arrow, and the difference between two
alignments is indicated by a rectangle. Low delta scores are interpreted as deleterious, and high delta scores are interpreted as neutral. The
BLOSUM62 and gap penalties of 10 for opening and 1 for extension were used.
doi:10.1371/journal.pone.0046688.g001

Functional Impacts of Amino Acid Variants
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Methods). A total of 729, 171, and 138 human protein variations

of deletions, insertions, and replacements were collected, respec-

tively. The number of UniProt human protein variants used in the

predictability test is shown in Table 1.

The PROVEAN tool was applied to the above dataset to

generate a PROVEAN score for each variant. As shown in

Figure 3, the score distribution shows a distinct separation between

the deleterious and neutral variants for all classes of variations.

This result shows that the PROVEAN score can be used as a

measure to distinguish disease variants and common polymor-

phisms.

To optimize the predictive ability of PROVEAN for binary

classification (the classification property is being deleterious), a

PROVEAN score threshold was chosen to allow for the best

balanced separation between the deleterious and neutral classes,

that is, a threshold that maximizes the minimum of sensitivity and

specificity. In the UniProt human variant dataset described above,

the maximum balanced separation is achieved at the score

threshold of 22.282. With this threshold the overall balanced

accuracy was 79% (i.e., the average of sensitivity and specificity)

(Table 2). The balanced separation and balanced accuracy were

used so that threshold selection and performance measurement

will not be affected by the sample size difference between the two

classes of deleterious and neutral variations. The default score

threshold and other parameters for PROVEAN (e.g. sequence

identity for clustering, number of clusters) were determined using

the UniProt human protein variant dataset (see Methods).

To determine whether the same parameters can be used

generally, non-human protein variants available in the Uni-

ProtKB/Swiss-Prot database including viruses, fungi, bacteria,

plants, etc. were collected. Each non-human variant was

annotated in-house as deleterious, neutral, or unknown based on

keywords in descriptions available in the UniProt record. When

applied to our UniProt non-human variant dataset, the balanced

accuracy of PROVEAN was about 77%, which is as high as that

obtained with the UniProt human variant dataset (Table 3).

As an additional validation of the PROVEAN parameters and

score threshold, indels of length up to 6 amino acids were collected

from the Human Gene Mutation Database (HGMD) and the 1000

Genomes Project (Table 4, see Methods). The HGMD and 1000

Genomes indel dataset provides additional validation since it is

more than four times larger than the human indels represented in

the UniProt human protein variant dataset (Table 1), which were

used for parameter selection. The average and median allele

frequencies of the indels collected from the 1000 Genomes were

10% and 2%, respectively, which are high compared to the

normal cutoff of 1–5% for defining common variations found in

the human population. Therefore, we expected that the two

datasets HGMD and 1000 Genomes will be well separated using

the PROVEAN score with the assumption that the HGMD

dataset represents disease-causing mutations and the 1000

Genomes dataset represents common polymorphisms. As expect-

ed, the indel variants collected from the HGMD and 1000 genome

datasets showed a different PROVEAN score distribution

(Figure 4). Using the default score threshold (22.282), the majority

of HGMD indel variants were predicted as deleterious, which

included 94.0% of deletion variants and 87.4% of insertion

variants. In contrast, for the 1000 Genome dataset, a much lower

Figure 2. An overview of the PROVEAN procedure.
doi:10.1371/journal.pone.0046688.g002

Table 1. Number of human protein variations collected from
the UniProt/Swiss-Prot database.

Variation type Deleterious Neutral Total

Single amino acid substitutions 20821 36825 57646

Deletions 652 77 729

Insertions 110 61 171

Replacements 79 59 138

Total 21662 37022 58684

doi:10.1371/journal.pone.0046688.t001

Functional Impacts of Amino Acid Variants
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fraction of indel variants was predicted as deleterious, which

included 40.1% of deletion variants and 22.5% of insertion

variants.

Comparison with other tools for single amino acid
substitutions

Many tools exist to predict the damaging effects of single amino

acid substitutions, but PROVEAN is the first to assess multiple

types of variation including indels. Here we compared the

predictive ability of PROVEAN for single amino acid substitutions

with existing tools (SIFT, PolyPhen-2, and Mutation Assessor). For

this comparison, we used the datasets of UniProt human and non-

human protein variants, which were introduced in the previous

section, and experimental datasets from mutagenesis experiments

previously carried out for the E.coli LacI protein and the human

tumor suppressor TP53 protein.

For the combined UniProt human and non-human protein

variant datasets containing 57,646 human and 30,615 non-human

single amino acid substitutions, PROVEAN shows a performance

similar to the three prediction tools tested. In the ROC (Receiver

Operating Characteristic) analysis, the AUC (Area Under Curve)

values for all tools including PROVEAN are ,0.85 (Figure 5).

The performance accuracy for the human and non-human

datasets was computed based on the prediction results obtained

from each tool (Table 5, see Methods). As shown in Table 5, for

single amino acid substitutions, PROVEAN performs as well as

other prediction tools tested. PROVEAN achieved a balanced

accuracy of 78–79%. As noted in the column of ‘‘No prediction’’,

unlike other tools which may fail to provide a prediction in cases

when only few homologous sequences exist or remain after

filtering, PROVEAN can still provide a prediction because a delta

score can be computed with respect to the query sequence itself

even if there is no other homologous sequence in the supporting

sequence set.

We also compared PROVEAN with other prediction tools using

two experimental datasets obtained from mutagenesis experiments

that had been performed on LacI and TP53 (see Methods).

Figure 6 shows that PROVEAN provides a good overall

performance consistently and is among the top two best

performers for both datasets based on the AUC values.

Figure 3. PROVEAN score distribution for deleterious and neutral human protein variations. For all classes of variations including
substitutions, indels, and replacements, the distribution shows a distinct separation between the deleterious and neutral variations.
doi:10.1371/journal.pone.0046688.g003

Table 2. Prediction accuracy for the UniProt human protein
variations given a PROVEAN score threshold of 22.282.

Variation type Sensitivity Specificity
Balanced
accuracy

Single amino acid substitutions 78.39 79.11 78.75

Deletions 95.86 67.53 81.70

Insertions 92.73 80.33 86.53

Replacements 92.41 61.02 76.71

Total 79.04 79.06 79.05

doi:10.1371/journal.pone.0046688.t002

Functional Impacts of Amino Acid Variants
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In addition, we also tested Condel, a tool which provides a

consensus prediction by combining results from multiple predic-

tion tools, for the human protein variant dataset used in this study

(see Methods). Condel provided a balanced accuracy of 70% and

76% respectively, when using the published default threshold

(0.469) and a threshold selected to maximize the balanced

accuracy (0.790) (Table S1).

Delta score correlates with biological activity of TP53 and
ABCA1 variations

In addition to binary classification, we also investigated if the

PROVEAN score can be used for predicting the degree of

deleteriousness of a protein variation. Two experimental datasets

obtained from the TP53 and ABCA1 (ATP-binding cassette

transporter 1 protein) genes were examined, both of which also

included the corresponding functional activity levels measured for

each mutation found in the protein sequence [18,19].

For the TP53 variation dataset, the single amino acid variations

were divided into 15 classes based on a functional assay which

measured the median transactivation level of the mutant protein.

The distribution of the PROVEAN scores was computed for each

class. As shown in Figure 7 and Figure S2, the PROVEAN score

increases and correlates with the reported transactivation level,

especially for those classified as either non-functional or partially

functional.

For the ABCA1 variation dataset, cholesterol efflux was

measured in 17 mutants and wild-type to assess ABCA1 functional

activity. PROVEAN scores were generated for all ABCA1

mutants. A total of 15 mutants (88%) were correctly predicted

by PROVEAN with reference to the UniProt disease versus

common polymorphism classification of the amino acid variants

(Table S2). Figure 8 shows that the PROVEAN score increases

and correlates with the level of cholesterol efflux (Pearson’s

correlation coefficient of 0.74). In general, an increase in score

correlates with an increased cholesterol efflux activity.

Discussion

Most existing prediction tools for coding variants extract

information from alignments with homologous sequences to define

amino acid residues and positions that are evolutionarily

conserved and therefore likely to be functionally important. In

this case, amino acid variants which deviate from the frequently

occurring residues are predicted as deleterious to protein function.

In addition to information such as amino acid frequency

distribution, log-odd scores from amino acid substitution matrices

Table 3. Number of the UniProt non-human protein variations and prediction accuracy given a PROVEAN score threshold of
22.282.

Number of variations Accuracy

Variation type Deleterious Neutral Total Sensitivity Specificity
Balanced
accuracy

Single amino acid substitutions 14117 16498 30615 80.22 75.33 77.75

Deletions 142 227 369 83.10 60.35 71.73

Insertions 34 137 171 76.47 73.72 75.10

Replacements 886 1029 1915 86.46 62.88 74.67

Total 15179 17891 33070 80.60 74.36 77.48

doi:10.1371/journal.pone.0046688.t003

Figure 4. PROVEAN score distribution of deletions and insertions collected from the Human Gene Mutation Database (HGMD) and
the 1000 Genomes Project. Only mutations annotated as ‘‘disease-causing’’ were collected from the HGMD. The distribution shows a distinct
separation between the two datasets.
doi:10.1371/journal.pone.0046688.g004
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have also been used as a metric to measure amino acid

conservation, and amino acid variants which correspond to non-

conserved substitutions are predicted as deleterious [21,22].

However, in all of the above approaches sequence alignment

information from the neighborhood amino acid residues sur-

rounding the position of interest is not directly taken into account

to compute the impact of amino acid variations on protein

function. Our approach introduced a region-based ‘‘delta align-

ment score’’ which measures the impact of an amino acid variation

not only based on the amino acid residue at the position of interest

but also the quality of sequence alignment derived from the

neighborhood flanking sequences. Because of the unique property

of the scoring scheme, the new approach can provide functional

predictions to assess the effects of all classes of protein sequence

variations beyond single amino acid substitutions, including in-

frame indels and multiple amino acid substitutions.

Using different protein databases to generate the
supporting sequence set

The prediction accuracy of PROVEAN is determined by the

supporting set of homologous sequences, which are in turn

determined by the choice of protein database and the method of

sequence collection. In determining the optimal prediction

accuracy, we have compared the performance of different protein

databases and sequence collection methods. We have compared

the performance of PROVEAN using two different protein

databases, the NCBI NR (non-redundant) protein database and

the UniProtKB/Swiss-Prot protein database. The UniProtKB/

Swiss-Prot database contains manually reviewed and curated high-

quality sequences. Our results showed a reduced accuracy of 7%

when using the UniProtKB/Swiss-Prot database instead of the

NCBI NR protein database. One speculation for the reduced

performance is that despite the high-quality protein sequences of

the UniProtKB/Swiss-Prot database, the number of orthologous

and distantly related sequences are not as sufficiently represented

as in the NCBI NR protein database. To support this idea, we

examined a set of 7,547 human protein variants (out of a total of

58,684) that were incorrectly predicted when using the Uni-

ProtKB/Swiss-Prot but correctly predicted using the NCBI NR

database. When using the UniProtKB/Swiss-Prot database, the

average number of supporting sequences was only 51 for the

incorrectly predicted variant set, which was lower than the average

number of 73 supporting sequences for the rest of the human

Table 4. Number of deletions and insertions collected from
the Human Gene Mutation Database and the 1000 Genomes
Project and used for validation of PROVEAN.

HGMD 1000 Genomes

Length (in AA) Deletion Insertion Deletion Insertion

1 1103 174 1007 311

2 185 75 103 71

3 164 64 59 28

4 105 28 58 9

5 73 31 25 3

6 79 32 17 5

Total 1709 404 1269 427

doi:10.1371/journal.pone.0046688.t004

Figure 5. ROC curves of four different prediction tools for single amino acid substitutions found in human and non-human
proteins. All tools show a similar predictive ability with the AUC value of ,0.85.
doi:10.1371/journal.pone.0046688.g005

Functional Impacts of Amino Acid Variants
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protein variants. We speculate that a lack of sequence information

as represented by the small supporting sequence set could be one

of the factors leading to a reduced accuracy when using the

UniProtKB/Swiss-Prot database to generate PROVEAN predic-

tions.

We also compared the prediction accuracy of PROVEAN by

directly supplying precomputed ortholog datasets obtained from

the Ensembl Compara or the OMA databases [23,24]. Our results

showed a reduced accuracy of 3–5% when using the precomputed

orthologs. Finally, BLASTP and PSI-BLAST (Position-Specific

Iterated BLAST) were compared for the collection of homologous

and related sequences from the NCBI NR protein database. No

significant difference in accuracy was observed when using

BLASTP or PSI-BLAST.

Number of supporting sequences used and prediction
accuracy

In order to demonstrate how many supporting sequences are

typically used for the prediction and whether prediction accuracy

depends on the number of supporting sequences, we counted the

number of supporting sequences used in generating PROVEAN

predictions for the 11,990 human protein dataset carrying

sequence variants. Our results showed that the majority uses

100–200 supporting sequences (average 229 sequences; median

155 sequences) (Figure 9A). The results also showed that the

balanced accuracy was consistently above 73% regardless of the

number of supporting sequences used except in cases when the

number of supporting sequences drops below 50 (Figure 9B).

Unbiased averaged delta alignment score
Different approaches can be used to combine delta alignment

scores and compute a final PROVEAN score from a set of

supporting sequences to generate PROVEAN prediction (e.g.

simple average, weighted average). The approach we took was to

first cluster the protein sequences by sequence similarity, then

compute a within-cluster average delta score for each cluster, and

finally compute a between-cluster average delta score among the

clusters so that all clusters are weighted equally (see Methods). This

Table 5. Binary classification performance of four different tools for single amino acid substitutions in human and non-human
proteins.

Human dataset Non-human dataset

Tool Threshold
Balanced
accuracy Sensitivity Specificity

No
prediction

Balanced
accuracy Sensitivity Specificity No prediction

PROVEAN 22.282 78.75 78.39 79.11 0 77.75 80.22 75.27 0

Mutation Assessor 0.800 68.57 96.54 40.59 317 (0.55%) 69.15 93.17 45.13 732 (2.39%)

1.900 78.15 85.29 71.02 74.23 81.30 67.16

SIFT 0.050 76.99 85.03 68.95 1147 (1.99%) 78.36 87.45 69.27 1539 (5.03%)

PolyPhen-2 0.432 75.56 88.68 62.45 2279 (3.95%) 76.79 87.77 65.81 1499 (4.90%)

‘‘Balanced accuracy’’ is a simple average of sensitivity and specificity, that is, (sensitivity+specificity)/2. The ‘‘No prediction’’ column shows the number of variants for
which the tool fails to provide a prediction.
doi:10.1371/journal.pone.0046688.t005

Figure 6. ROC curves of different prediction tools for single amino acid substitutions in (A) E. coli lac repressor protein and (B)
human TP53 tumor suppressor protein. The AUC values are shown in the legend. The top two performers for LacI were PolyPhen-2 and
PROVEAN, and those for TP53 were Mutation Assessor and PROVEAN.
doi:10.1371/journal.pone.0046688.g006
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approach of clustering and averaging prevents the final delta score

from being biased by a potentially large set of closely related

sequences that are overrepresented in a protein database. We have

also tested different weighting schemes systematically based on

different sequence similarity of the sequence clusters with respect

to the protein query (e.g. use higher weights for clusters more

similar to the query). However, we found that even with more

complicated weighting schemes, the overall accuracy was not

increased significantly.

Genome-wide application
Exome capture and high-throughput sequencing has become a

popular approach to discover and associate genetic variants with

common genetic diseases [25,26,27,28,29,30]. In such studies,

genetic variants are filtered based on population allele frequency

Figure 7. PROVEAN score distribution of TP53 variations binned into 15 classes based on transactivation levels. For each class, a box
plot is shown. The vertical line shows the whole range of delta scores, the thick horizontal line shows the median, and the gray rectangle shows the
interquartile range (25%–75%). The PROVEAN score increases and correlates with median transactivation level for the non-functional and partially
functional classes of variations.
doi:10.1371/journal.pone.0046688.g007

Figure 8. Correlation of cholesterol efflux values with the PROVEAN scores for ABCA1 variations. In general, an increase in score (i.e. less
deleterious effects) correlates with an increase in cholesterol efflux activity.
doi:10.1371/journal.pone.0046688.g008
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to remove commonly occurring polymorphisms in the human

populations, and prediction tools for coding variants are used to

provide assessments on the impact of the genetic variants on

protein function [25,27,29]. For example, candidate disease genes

can be prioritized by the total number of genetic variants that are

predicted as deleterious on a given gene sequence. For these

studies, PROVEAN can be used to identify deleterious single

nucleotide variants and variants that cause protein sequence

indels. In addition, the delta alignment score approach can

potentially be expanded to prioritize candidate disease gene by

combining the alignment scores across multiple point mutations

along the protein sequence.

Methods

Dataset collection
The UniProt human protein variation dataset used in this study

contains a single amino acid substitution dataset and a one to six

amino acid in-frame indel dataset. The human single amino acid

substitution dataset was obtained from the UniProt ‘‘Human

Polymorphisms and Disease Mutations’’ dataset (Release 2011_09;

http://www.uniprot.org/docs/humsavar), which contains 20,821

pre-annotated disease variants and 36,825 common polymor-

phisms. The human small in-frame indel dataset was built in-

house from additional types of natural variations including

deletions, insertions, and replacements (in-frame substitution of

multiple amino acids) of length up to 6 amino acids from the

UniProtKB/Swiss-Prot database (Dataset S1). Each variant was

annotated as deleterious, neutral, or unknown based on keywords

found in the biological feature descriptions in the UniProt record

using an automated script. Keywords such as ‘‘inhibit,’’ ‘‘affect,’’

‘‘abolish,’’ and ‘‘loss’’ are classified as deleterious and keywords

such as ‘‘does not affect,’’ ‘‘no loss,’’ and ‘‘does not reduce’’ are

classified as neutral. A total of 729, 171, and 138 human protein

variations of deletions, insertions, and replacements were col-

lected, respectively.

The UniProt non-human protein variation dataset was created

in-house from non-human organisms including viruses, fungi,

bacteria, plants, etc. available in UniProtKB/Swiss-Prot (Release

2011_09). The non-human dataset contains single amino acid

substitution and one to six amino acid in-frame indel datasets.

Each variant was annotated as deleterious, neutral, or unknown

using the same approach as in the UniProt human protein

variation dataset.

Figure 9. Number of supporting sequences used for the Uniprot human proteins carrying neutral or deleterious variants. (A)
Distribution of the 11,990 human proteins based on the number of supporting sequences used for PROVEAN prediction. (B) Prediction accuracy
achieved with respect to the number of supporting sequences. The observed accuracy is consistently above 73%, except in cases when the number
of supporting sequences drops below 50.
doi:10.1371/journal.pone.0046688.g009
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The HGMD small in-frame indel dataset was collected from the

HGMD database (Professional ver2011.3). The 1000 Genomes

small in-frame indel dataset (Dataset S2) was collected from the

1000 Genomes Project (August 2010 release, ftp://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/release/20100804). Indels clas-

sified as disease-causing mutations in the HGMD were first

collected. This dataset was further filtered to collect small in-frame

indels leading to one to six amino acid insertions or deletions using

Mutalyzer (https://mutalyzer.nl/) [31]. Indels were also collected

from the 1000 Genomes Project using a similar approach. A total

of 10 indels were represented in both the 1000 Genomes and the

HGMD datasets and were considered as deleterious.

The E. coli LacI amino acid mutation screening data was

originally generated by Markiewicz et al. [32]. In their study, a

total of 4,041 single amino acid substitutions of the E. coli lactose

operon repressor protein were assayed for the effect on LacI

function, and the resulting phenotypes were classified. For our

binary classification test, a compiled version of the mutation for

LacI function dataset was obtained from http://blocks.fhcrc.org/

sift/test_sets/ (Table S3) [5].

For the human tumor suppressor protein TP53, a set of 2,314

single point mutants and corresponding biological activity levels

were obtained from the IARC TP53 database [33]. The TP53

mutants had been functionally classified into four classes—non-

functional, partially-functional, functional (wild-type), and super-

trans (higher than wild-type activity)—based on the median of 8

promoter-specific activity levels. The functional assays were

performed in yeast by Kato et al. [18] and protein activity was

measured as percentage of wild-type activity. In the current

comparison, the ‘‘non-functional’’ mutations were classified as

deleterious variants and the other three functional mutation classes

were considered neutral variants (Table S4).

The ABCA1 protein mutants were created by Brunham et al.

[19] for a total of 17 single amino acid substitutions. Cholesterol

efflux was measured in all mutants and wild-type to assess ABCA1

function (Table S2).

PROVEAN prediction
PROVEAN consists of two main steps (a detailed flowchart in

Figure S3). In the first step, PROVEAN collects a set of

homologous and distantly related sequences from the NCBI NR

protein database (released August 2011) using BLASTP

(ver.2.2.25) with an E-value threshold of 0.1. The sequences are

clustered based on a sequence identity of 80% to remove

redundancy using the CD-HIT program (ver.4.5.5) [34]. Starting

from the sequence cluster most similar to the query sequence, the

clusters are added to the supporting sequence set one by one until

there is a sufficient number of clusters in the supporting set. We

currently used a cutoff of 45 clusters, that is, all sequences from up

to 45 clusters are used as the supporting sequence set. In the

second step, for each sequence in the supporting sequence set, a

delta score is computed using the BLOSUM62 substitution matrix

and gap penalties of 10 for opening and 1 for extension. Within

each cluster, an average delta score is computed. The averaged

delta scores are again averaged among all clusters so that each

cluster is weighted equally. This unbiased averaged delta score is

the final PROVEAN score. The equation for computing the

unbiased averaged delta score is shown in the equation below:

PROVEAN score~
1

N

XN

c~1

1

Nc

XNc

i~1

Dc,i

 !
,

where N is the number of clusters in the supporting set, Nc is the

number of supporting sequences in the c-th cluster, and Dc,i is the

delta score with respect to the i-th supporting sequence in the c-th

cluster. An example of computing a PROVEAN score is shown in

Figure 10. If the PROVEAN score is smaller than or equal to a

given threshold, the variation is predicted as deleterious.

Parameter selection for delta score computation
Parameters for computing delta scores include the choice of log-

odds scores from substitution matrix, gap penalties, percent

identity threshold for sequence clustering, and the number of

top clusters (most similar to query) to include supporting

homologous sequences for delta alignment score computation.

These parameters were optimized for the best performance of

PROVEAN. Here we describe how the parameters were selected.

For the substitution matrix, the BLOSUM62 matrix was chosen

since it is one of the most commonly used matrices. Our

preliminary results showed that the performance of PROVEAN

was similar when using other substitution matrices (BLOSUM80,

PAM matrices, and RBLOSUM64 [35]). The remaining three

parameters (gap penalties, percent identity, and number of

clusters) were tested systematically for a restricted number of

combinations to avoid over-fitting. The best balanced separation

of the deleterious and neutral classes in the UniProt human

protein variation dataset (Table 1) was measured in terms of

Figure 10. Computing the PROVEAN score. For simplicity, only the top three clusters were included in building the supporting sequence set in
this example.
doi:10.1371/journal.pone.0046688.g010
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balanced accuracy for each of 756 different combinations of

parameter values (6 different values for gap penalties, 7 for percent

identity for clustering, and 18 for number of clusters). The

parameter combination that gave the highest accuracy of 79.05%

was chosen as the default parameter values. However, we observed

that for a wide range of combinations the accuracy was highly

similar (Figure S4, Table S5). The optimal parameters for gap

opening/extension penalties, percent identity, and number of

clusters are 10/1, 80%, and 45, respectively.

Comparison with other prediction tools
Several prediction tools provide classification of coding variants

into more than two classes. Mutation Assessor classifies variants

into four classes (high impact, medium impact, low impact, and

neutral). In the current comparison, we used two thresholds, 0.8

(between neutral class and the rest) and 1.9 (between low impact

and medium impact classes) to compute accuracy. PolyPhen-2

generates three outcomes of predictions (probably damaging,

possibly damaging, and benign). In the current comparison, the

threshold of 0.432 (between benign class and the other two

damaging classes) was used to compute accuracy.

To obtain SIFT predictions, we installed the SIFT program

(ver.4.0.3, http://sift.jcvi.org/) locally and ran it using the NCBI

NR protein database (released August 2011). For other prediction

tools, we generated prediction output using the corresponding

public web servers and published score threshold as suggested by

the authors. The PolyPhen-2 web server (http://genetics.bwh.

harvard.edu/pph2/) supports version 2.1.0 and uses protein

sequences from UniProtKB/UniRef100 Release 2011_0, and

protein structures from PDB/DSSP Snapshot 06-Apr-2011. The

HumVar model was used for generating prediction results for the

LacI and TP53 datasets. Since the HumVar model was originally

trained with UniProt human variations and most of which

overlapped with our datasets, the HumDiv model was used to

generate PolyPhen-2 predictions for our UniProt human and non-

human protein variation datasets. The Mutation Assessor web

server (version 1.0, http://mutationassessor.org/v1/) uses Pfam 25

(March 2011), PDB (August 2011), UniProtKB/Swiss-Prot and

UniProtKB/TrEMBL (2011_05). The Condel scores for human

protein variations were obtained from the Condel web server,

which integrates the outputs of SIFT, PolyPhen-2, and Mutation

Assessor (version 1.4, http://bg.upf.edu/condel/) and provides a

consensus prediction. The MAPP scores for LacI and TP53 were

obtained from the supplementary data of the original publication

(http://mendel.stanford.edu/supplementarydata/

stone_MAPP_2005/).

Supporting Information

Figure S1 PROVEAN scores were generated for all
possible single amino acid substitutions, deletions,
and insertions at each position in the human protein
TP53. The scores are represented as a color intensity scale from

218 to 5 (bottom right). For substitutions and insertions, each row

represents one of 20 amino acids in the variant. The amino acid

residues are grouped by polarity and charge. From the top, polar

acidic (D,E), polar basic (H,R,K), polar uncharged

(Q,N,Y,C,T,S,G), and non-polar hydrophobic (A,V,L,I,F,W,M,P).

In general, low PROVEAN scores are found in conserved regions

or domains, and high scores are found in non-conserved regions.

(TIF)

Figure S2 Correlation of the PROVEAN score and
median transactivation activity level of human TP53.
Each dot represents a point mutation of the TP53 protein. The

dataset contains 2,314 single amino acid mutants and activities on

eight p53 response-elements measured in a yeast assay (Pearson’s

correlation coefficient of 0.556). TP53 mutation and activity

originally produced in [18].

(TIF)

Figure S3 A flowchart to describe the PROVEAN
procedure.
(TIF)

Figure S4 Balanced accuracy for different parameter
values for clustering with fixed gap penalties of 10 for
opening and 1 for extension. The highest accuracy, 79.05%,

was achieved at the combination of 45 clusters and 80% identity

denoted by an arrow. The accuracy is higher than 78% for a wide

range of parameter combinations.

(TIF)

Table S1 Binary classification performance of Condel for single

amino acid substitutions in human proteins.

(DOCX)

Table S2 PROVEAN score and cholesterol efflux for ABCA1

variations.

(DOCX)

Table S3 LacI mutation dataset used for assessing PROVEAN

performance.

(DOCX)

Table S4 TP53 mutation dataset used for assessing PROVEAN

performance.

(DOCX)

Table S5 Assessment of different parameter combinations for

PROVEAN.

(DOCX)

Dataset S1 Human indel variants collected from the
UniProt/Swiss-Prot database.
(XLSX)

Dataset S2 Human indel variants collected from the
1000 Genomes Project.
(XLSX)
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