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Abstract

Neurotree is an online database that documents the lineage of academic mentorship in neuroscience. Modeled on the tree
format typically used to describe biological genealogies, the Neurotree web site provides a concise summary of the
intellectual history of neuroscience and relationships between individuals in the current neuroscience community. The
contents of the database are entirely crowd-sourced: any internet user can add information about researchers and the
connections between them. As of July 2012, Neurotree has collected information from 10,000 users about 35,000
researchers and 50,000 mentor relationships, and continues to grow. The present report serves to highlight the utility of
Neurotree as a resource for academic research and to summarize some basic analysis of its data. The tree structure of the
database permits a variety of graphical analyses. We find that the connectivity and graphical distance between researchers
entered into Neurotree early has stabilized and thus appears to be mostly complete. The connectivity of more recent entries
continues to mature. A ranking of researcher fecundity based on their mentorship reveals a sustained period of influential
researchers from 1850–1950, with the most influential individuals active at the later end of that period. Finally, a clustering
analysis reveals that some subfields of neuroscience are reflected in tightly interconnected mentor-trainee groups.
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Introduction

Neuroscience is a highly interdisciplinary field that draws

researchers from a variety of backgrounds ranging across the

sciences and humanities. Understanding how ideas are drawn into

neuroscience from other fields and how they interact is of central

interest to the history of science. Given the large size of the field

(the annual meeting of the Society for Neuroscience regularly

draws over 30,000 attendees), it is becoming increasingly difficult

even for active neuroscientists to simply observe and describe the

trends governing the field. These problems are ripe for compu-

tational tools that enable systematic organization and study of

large data sets containing information about individual neurosci-

ence researchers.

An academic mentorship database provides several additional

benefits to a research community, allowing new members to learn

the lay of the land and to place themselves within the context of

their field. Several fields of science have published their own

mentorship history in some form or another, including mathe-

matics, computer science, primatology and physics [1–3]. Analysis

of academic genealogies has provided useful insight into training

environments that produce the most productive researchers in

their later careers [4].

This report describes Neurotree [5], an online database that

documents mentor relationships within the field of neuroscience

and with scientists in related fields. Information about mentorship

is presented in an intuitive family tree format that enables

straightforward visualization and navigation of the database [3].

Data in Neurotree have been provided by several thousand

volunteer users since the site went live in 2005, and the database

continues to grow daily. In addition to traditional neuroscientists,

Neurotree contains information about physiologists, philosophers,

physicists, computer scientists, economists and others who have

either trained neuroscientists or performed neuroscience research

themselves. Some users have expanded the historical reach of the

database, allowing the majority of researchers in the database to

trace their mentorship in several chains back to the earliest days of

the University in the twelfth century or earlier.

The dataset contained in Neurotree provides a valuable

resource for quantitative study of the individuals and disciplines

that have influenced neuroscience throughout its development.

Because mentors often train multiple students, understanding

academic mentorship also allows one to follow the divergence of

theories and techniques through different descending branches of

the tree. Here we describe the data that constitutes Neurotree,

assess how completely and accurately it documents mentorships,

and illustrate how it can be used to understand large-scale trends

in the field of neuroscience.

Methods

Neurotree is accessed through a public website at http://

neurotree.org/ [5]. The site is built using a set of custom-

programmed scripts that present information about mentor

relationships between neuroscience researchers and allow site

visitors to edit and add to that information. Mentor relationships
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are presented graphically in a tree format (Figure 1) and in a more

detailed biographical format (Figure 2). In addition to the database

itself, Neurotree contains a search feature, a FAQ, a discussion

board, and dynamically updated analyses of the database contents.

As a service to the neuroscience community, we have made the

data in Neurotree available to interested researchers (see below).

Database architecture
The core of Neurotree is a relational database consisting of two

main tables (Figure 3A). Each row in the person table contains

information about an individual researcher (name, most recent

institution, research areas), identified by a numerical index, pid.

Mentorship relationships between two people are then recorded in

the connection table. Each row of the connection table links to two

nodes by pid1 and pid2. The nature of the relationship is identified

by a connection type. For example, a connection type of 1 indicates

that node pid1 was a graduate student of pid2. Implicit in the

relationship code is directionality, indicating that pid1 was the

trainee of pid2 (Figure 3B). The types of relationship are detailed

in Table 1.

Additional database tables are designed to link researchers to a

set of institutions and research areas. We have imposed no

restrictions on the contents of these auxiliary tables. Thus if a new

institution or research area is entered by a user, this will result in

the addition of a new entry to the respective table.

The simple architecture of the tree reflects an attempt to

incorporate information into the Neurotree database using an

organic, unrestricted approach. The field defining an individual’s

research area is not restricted to a fixed set of terms and, instead,

can be whatever the user adding data to the site considers

appropriate. This approach leads to an obvious potential for lack

of consistency, but at the same time permits a very flexible and

dynamic catalog of research areas in neuroscience, which evolve

rapidly. Most importantly, the flexible structure of the Neurotree

database means that future researchers can amend, improve, and

augment this structure in the future.

Ambiguities in cataloging an academic discipline
As it has grown, Neurotree has been confronted with

ambiguities over the precise definition of mentoring relationships,

relying on modern terms such as ‘‘research assistant’’ and

‘‘postdoctoral fellow.’’ Such designations have evolved over the

course of history, and differences persist between countries today.

In addition, many influential individual careers have taken

idiosyncratic paths that do not reduce easily to a simple set of

relationships. Our preference is to be pragmatic and suggest that

contributors use the term that seems most appropriate based on

the stage of an individual’s career and to document all

relationships that substantially influenced the trainee’s work (see

Table 1).

Another technical problem is that some scientists have multiple

home institutions. We have adopted a policy that the most recent

home institution should be the official institution. We acknowledge

that this leads to some confusion, as when a scientist is closely

associated with one location and then, near retirement, moves to

Figure 1. Example mentorship diagram. This plot shows a typical mentorship tree diagram for one researcher in Neurotree, Robert Yerkes,
modified to fit in print format and to display extra details from the database. The tree mimics the style of biological family trees, in which the central
node is linked downward to children (trainees) and up to parents (mentors). Each node in this graph is annotated with the year in which it was added
to Neurotree (e.g., ‘‘added 2006’’), illustrating how the tree has filled in over time. Numbers (e.g., ‘‘+37’’) on nodes at the top and bottom of the tree
indicate the number of ancestors and descendents, respectively, from that node.
doi:10.1371/journal.pone.0046608.g001

Neurotree
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another one. We plan to revise the database structure to track

institutional affiliation over time.

Reliability of Neurotree
Like Wikipedia and other crowd-sourced projects, Neurotree is

publicly editable, and, as a consequence, is not guaranteed to be

accurate. Formal documentation is not required for submissions,

but we have implemented a simple reporting system for flagging

and resolving possible errors. Error reports can be submitted by

any site visitor. A volunteer group of editors validates these reports

and makes appropriate changes to the database. Generally error

reports can be checked against information publically available on

the Internet. If the need arises for a more extensive discussion,

editors may choose to contact the individuals who entered the

information in question or to open the discussion with other

editors. In the case of discrepancies that cannot be definitively

resolved (typically in the case of historical figures whose

biographies may be incomplete), the information in the tree is

labeled as potentially unreliable.

In addition to inaccuracies in data, an additional issue is that

information in the database may not be complete, as only a subset

of mentors or trainees may be listed for any given individual. In

this study, we explore how several statistical properties of the tree

Figure 2. Example biographical information page. Information about each researcher in Neurotree can also be displayed in a more detailed
format, as in the example of Robert Yerkes shown here. Detailed information, when available, includes a photo or drawing, links out to various
analyses on the Neurotree site, biographical notes and a link to a relevant off-site web page. In addition, dates and locations of mentor relationships
are provided when available.
doi:10.1371/journal.pone.0046608.g002

Neurotree
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have evolved over time in order to understand how complete

information is in the current tree.

Graphical analysis of the Neurotree database
Neurotree can be described as a graph composed of nodes

(researchers) and directional edges (mentor relationships,

Figure 3B). This very simple model permits a number of analytical

approaches based on graph theory. Here we describe examples of

analysis that can be applied to the data. The results described in

this study are based on the contents of the Neurotree database as

of March 31, 2012, 87 months after the database was established.

Distance metrics. The distance, d(a,b) between researchers a

and b can be measured as the smallest number of edges between

nodes, either in a signed direction (e.g., mentor to trainee) or

independent of direction. Most nodes are connected in a single

graph, but if a connection does not exist, then the distance is

defined as infinite. In order to factor in infinite connection

distances, the average distance between one node and N other

nodes is defined as the mean of reciprocals,

da~11Ni~1N1da,bi

For infinite d, the reciprocal is defined as zero and permits a

numerical solution for average distance.

Fecundity. In order to characterize how prolific one individ-

ual has been in training researchers who have themselves been

productive, it is possible to count offspring using the directional

information in the graph. A mentorship tree is defined as the

graph of nodes along the mentor-to-trainee axis from an individual

researcher. In this way, the total impact, I, with n1 trainees, can be

measured recursively by traveling down the mentorship tree,

1~n1zcn2z:::zcm{1nmz:::

where n2 is the total number of trainees of the n1 trainees, and nm is

the number of trainees stepping down through m successive

generations. In the case that the normalization factor, c, is 1, this

simply reduces to counting the total number of offspring. For

c = 1/2, trainee counts from subsequent generations are weighted

Figure 3. Architecture of Neurotree. A, Mentorship information is stored in a relational database with two core tables. The person table contains
information about individual researchers, identified by a unique pid. The connection table contains information about the relationship between two
people in which pid1was trained by pid2. Supplementary tables index information about institutions and research areas associated with researchers.
B, The mentor relationships in Neurotree can be described as a directional tree in which an arrow connects a mentor to a trainee. In nearly all cases,
the graph flows in a single direction without loops. In the case of collaboration, the relationship may be bi-directional. Collaborations currently
represent a very small portion of the data in Neurotree.
doi:10.1371/journal.pone.0046608.g003

Table 1. Connection types (stored in the connection table, Figure 3A) defining mentor relationships between pairs of researchers
in Neurotree.

Connection type Description

0 Research assistant. Undergraduate, pre-bachelor’s degree.

1 Graduate student. Work lead to master’s or doctoral dissertation.

2 Postdoctoral fellow. Short-term employment after earning doctorate.

3 Research scientist. Long-term employment after doctorate.

4 Collaborator. Non-directional, work together influenced each other’s thinking.

doi:10.1371/journal.pone.0046608.t001

Neurotree
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by one-half, allowing for a more balanced comparison between

researchers at different points in the past. Mentorship trees are

often interconnected (i.e., in biological terms, incestuous), and

individuals may appear multiple times in a single tree. To avoid

bias from such repeats, individuals are counted only once, at the

point of closest proximity to a.

An alternative metric has been proposed for studying fecundity

based only on the researchers trained directly by a mentor rather

than iteratively across generations [4], equivalent to c = 0 here.

Both metrics are helpful for understanding the impact of a

researcher on a field. The iterative statistic used here is specifically

helpful as a measure of long-term impact on the field, as it

accounts for whether the mentorship was effective enough to

produce trainees with a high impact of their own.

Clustering. Given that neuroscience, like any academic

discipline, contains a number of sub-fields, one might expect

clustering, in which researchers tend to train others who continue

work within their subfield rather than in a new, completely

unrelated field. We studied this problem by clustering the

Neurotree database according to mentorship relationships. A

sparse connection matrix was defined, C(a,b), with a value of 1

when a relationship existed between researchers a and b, and a

value of 0 otherwise. The matrix was divided into 60 partitions

using spectral factorization, an effective algorithm for clustering

large, sparse data sets [6]. This procedure computed the 60 largest

eigenvectors of the matrix and then applied k-means clustering

(cosine distance) to the projection of C into the eigenvector space.

The k-means algorithm produces clusters with minimum distance

between each researcher and the centroid of their cluster in the

eigenvector subspace.

Clusters were assigned numbers based roughly on chronology,

ordered by the average generation of each group. In order to

characterize their basic features, each cluster was labeled with two

representative researchers (the two individuals with shortest

distance to other members of the cluster) and two representative

research areas (the most common research areas across all

members of the cluster). The clusters were plotted using open

source software (Graphviz, [7]). An interactive version of the

cluster map is available on the Neurotree web site.

The single parameter required by the spectral factorization

algorithm, cluster count, was not identified by objective criteria.

The value of 60 produces a number of clusters that could be

plotted on a single graph and which demonstrated the variable

topology of clusters identified by spectral factorization (large versus

small, tightly versus loosely connected, etc., see Results). Changing

the number of clusters over a range of 40–80 did not have a major

impact on the patterns observed in these properties.

It is likely that other, more advanced clustering algorithms may

provide cleaner and more interpretable results. We chose the

spectral factorization method for this study as a compromise

between a more standard k-means analysis and several more

complex possibilities. The k-means algorithm was unable to

converge to a stable solution, given the sparse structure of the

connection matrix. More complex algorithms may prove effective

at elucidating important clusters. However, differences between

such algorithms effectively represent hypotheses about the

structure of the mentorship network. The comparison of different

clustering algorithms is an important problem in itself that should

be addressed in future studies. The analysis in this study provides a

demonstration that clustering can reveal structure in the Neurotree

graph.

Tracking tree features over time. Neuroscience is an

evolving field, and many features of the graph are likely also to

evolve over time. Thus to understand the tree, it can be helpful to

measure statistics as a function of the time at which researchers

performed their work. The database has a capacity for logging the

dates of mentor relationships, but this information is often

incomplete. As an alternative to using absolute dates, we labeled

each researcher with their generation, which counted the minimum

number of steps from one individual back to their oldest ancestor.

The majority of researchers in the tree could trace their

mentorship directly back to a single individual (Florentius

Radewyn). Thus we could align researchers in this group along

a single temporal axis. The analysis of historical dynamics focused

on this subset of the Neurotree database.

Citations and data export
Data contained in Neurotree are available for export under the

Creative Commons License 3.0. The data may be used freely by

other researchers, and publications using the data should cite this

publication as a source. Instructions for requesting the data are

included in the site FAQ at http://neurotree.org/neurotree/faq.

php [5].

Ethics statement
Data in Neurotree are collected from publicly available web

sites and databases. Thus this study represents an analysis of

information in the public domain. In order to respect potential

privacy concerns, we have given individuals the opportunity to

have their information removed from the Neurotree simply by

submitting an error report or contacting the site administrators.

Results

Neurotree’s seeding and growth
Neurotree [5] was born out of the authors’ attempt to map out

the mentoring relationships in the subfield of visual systems

neuroscience. Although its original form was a large piece of

paper, the problem turned out to be too complex for paper and

was translated in 2005 into a relational database (Figure 3A) that

could be displayed dynamically in a family tree format through a

set of PHP scripts (Figure 1). Because the information was thought

to be of interest to a broader community, the initial database of

several hundred researchers was made publicly accessible online,

with an interface for adding data.

As the site was indexed by search engines and subsequently

discovered by researchers with related interests, the scope of the

database grew unexpectedly beyond its original focus. An example

illustrates how the tree filled in around one researcher in the

database, Robert Yerkes, a comparative psychologist (Figure 1). As

is typical for neuroscience, the number of trainees is larger than

the number of mentors, reflecting the expansion of the field in

recent decades. More detailed information can also be displayed in

a biographical format that includes links to additional information

on the Internet and dates of mentor relationships, when this

information is available (Figure 2).

The site has also taken on a number of new functions in

addition to its original design as an education resource. Neurotree

can serve as a tool for disambiguating between researchers with

the same name, a problem that occurs frequently in such a large

field. It is also used as a professional networking tool, enabling

journal editors, employers and potential collaborators to learn

more about individuals they encounter in the community.

As the site has grown, we have taken a broad view of the term

‘‘neuroscience’’, and have chosen to err on the side of

inclusiveness. Neuroscience has been and continues to be a highly

interdisciplinary field, and maintaining information about the

relationship between neuroscience and related fields is valuable in

Neurotree
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and of itself. Thus we have deliberately encouraged people to

submit information about connections between neuroscientists and

well-known individuals in other fields. This information provides

insight into connections across a broader academic community

and with the historical roots of the field.

The site continues to grow and, as of January 2012, draws an

average of 25,000 unique visitors each month. The original

database was seeded with about 500 researchers and has since

grown to 35,000, with about 300 added each month (Figure 4).

Basic graphical properties
One of the benefits of any genealogical database is the ability to

map the connections linking members of the tree. Neurotree can

be described mathematically as a graph, with nodes (researchers)

connected by edges (mentor relationships, Figure 3B). Currently,

30055/35953 (84%) of researchers in the tree are linked in a single

large graph, and 22970 of those researchers (64%) can trace their

academic roots directly back to a single ancestor (Florentius

Radewyn of Deventer, Holland). As discussed in the Methods, it is

sometimes difficult to make an exact designation of neuroscientist

versus philosopher. Regardless of his field of study, a clear line of

mentorship can be drawn to this individual (and back many more

generations in other fields). The difference between the total

number of linked researchers versus the number of direct

descendents reflects individuals who are linked to the main graph

as mentors (arrows going down, Figure 3B), but who themselves do

not currently have a record of their mentorship linking back to the

main graph (arrows arriving from above).

The graphical structure of Neurotree permits a number of

analyses, some of which we demonstrate below. Because the

database depends on contributions of volunteer users, however,

the results of any analysis must be interpreted with the caveat that

information in the database is not complete. As the tree matures

and fills in, we expect the data to become increasingly more

reliable.

Accuracy and completeness of the Neurotree database
In order to assess the reliability of the current database, we

performed simple spot checks on its content. First we examined the

accuracy of 100 randomly selected researchers in Neurotree

compared to information available elsewhere on the Internet. Of

these, 72 were verified to have correct institutional affiliation, 13

Figure 4. Five years of Neurotree’s growth. A, Curves show the monthly total of researchers (blue) and mentor relationships (green) recorded in
Neurotree since it was established in January 2005. B, Average monthly growth of Neurotree, plotted as in A. Growth has slowed from the initial rise
and currently averages 300–400 new researchers per month.
doi:10.1371/journal.pone.0046608.g004

Table 2. Spot check of departmental representation in Neurotree for three departments varying in size and location.

Department Count Listed in Neurotree Correct institution

Hebrew University, ICNC 27 22 20

Reed College, Psychology 9 6 6

University of Michigan, Neuroscience 114 67 58

Totals 150 95/150 84/95

Percent 63% 88%

doi:10.1371/journal.pone.0046608.t002

Neurotree
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had positively identified errors, and no information was available

about the accuracy of the final 15. Given that information is

subject to change sporadically during a career, one less stringent

concern is that information be accurate for researchers who are

retired or no longer active in research. Of the 85 individuals

identified outside of the database, 13 were no longer active, and 12

of these were accurately documented in Neurotree.

To assess how completely Neurotree represents the field, we also

compared faculty rosters between Neurotree and three depart-

mental web sites in institutions that varied in size and geography

(Table 2). In all three cases, about two-thirds (63%) of

departmental faculty were listed in Neurotree. Of those listed,

88% had correct institutional affiliation. Because departmental

web sites are generally kept up to date, this analysis is likely to

provide a reasonably accurate measure of representation of

researchers in Neuroscience-oriented departments.

Finally, we assessed how accurately and completely mentorship

records were documented for five research groups by comparing

trainee lists from public web pages and information in Neurotree

(Table 3). For these groups, 75% of trainees listed on the web sites

appeared in Neurotree. Of trainees listed in Neurotree, 30% did

not appear on the lab websites. In all the cases studied, these

mentor relationships could be verified by identifying at least one

publication in Medline for which the mentor and trainee were co-

authors. These results should be interpreted with caution. Because

labs that maintain training records online might be more likely to

also maintain Neurotree records, there may be a bias toward more

complete representation of mentor relationships for these research

groups. However, it is interesting to note that in many cases,

Neurotree contained more up-to-date information than the most

accurate alternative resource.

Quantitative analysis of growth and connectivity
For a more quantitative analysis of the maturity of Neurotree’s

connectivity, we measured on the temporal dynamics of three

statistics: the fraction of researchers linked in the main graph

(Figure 5A), the average distance between researchers (Figure 5B),

and the average number of connections per researcher (Figure 5C).

Because data about researchers added to the tree earlier are likely

to be more complete than later entries, we compared these

statistics for the first 1000 nodes entered into the tree and for the

entire tree.

The trajectory of statistics for the first 1000 nodes follows a

distinct pattern from that of the entire tree. The 1000th researcher

was added when Neurotree had been online for 10 months. After

that time, the fraction of these nodes connected to the main graph

steadily increased until about month 60, at which point the

fraction reached an asymptote of 96%. Simultaneously, the

average distance between each pair of these nodes dropped and

Table 3. Spot check of trainee listing accuracy for individual mentors.

Mentor Institution In lab web site In Neurotree In Neurotree, not lab site

C. Daniel Salzman Columbia University 14 8 0

Patricia Kuhl University of Washington 15 5 1

Barbara Chapman University of California, Davis 7 8 2

Robert Malenka Stanford University 15 25 14

Lynn Robertson University of California, Berkeley 16 11 0

Totals 67 40/67 17/57

Percent 75% 30%

Lists of trainees (postdoctoral fellows only for Malenka, graduate students and postdoctoral fellows for all others) were compared between the websites of principal
investigators who publish this information and mentorship data in Neurotree. In a few cases, Neurotree documented relationships that did not appear in the lab web
sites (right column). All of these relationships were confirmed as accurate by a Medline publication record.
doi:10.1371/journal.pone.0046608.t003

Figure 5. Basic connection properties of Neurotree. A, Fraction
of researchers (nodes) connected to the main tree graph through
mentor relationships, as a function of months since Neurotree was
established. The blue line shows data for the subset of the first 1000
researchers added to the tree (starting in month 10, when the one-
thousandth research was added) while the green line shows data for
the entire tree. Error bars indicate one standard error on the mean,
calculated by jackknifing. B, Mean distance between nodes over time,
either within the subset of the first 1000 researchers or across the entire
tree, plotted as in A. C, Average number of connections per node,
plotted as in A.
doi:10.1371/journal.pone.0046608.g005

Neurotree
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also reached an asymptote of 5.5 steps. The average number of

connections per researcher to other researchers, finally, stabilized

at 2.5. A slight ongoing rise in number of connections appears to

reflect new connections that continue to form between members of

the group. The fact that the number of connections within the first

1000 entries has stabilized does not mean that connections of these

nodes with the rest of the tree have done the same. The average

number of connections from this group to the entire tree has

grown to 10, and continues to grown at a rate of 0.8 connection

per year (data not shown). This ongoing growth likely reflects both

the entry of new researchers into the field as well as the filling in of

earlier connections.

In contrast to the first 1000 entries, we observed that the

statistics of the full tree have remained more or less flat since the

first year online. The fraction of nodes connected to the main

graph has remained stable at about 80%. The mean distance

between nodes has very slowly risen from 10 to 11 steps. Finally,

the average number of connections per node has remained nearly

constant at 2.2. This suggests a balance between the rate at which

new entries are added and connections between older entries are

filled in more completely.

Identifying the founders of neuroscience
As illustrated by the example tree (Figure 1), individual

researchers, through their trainees and the subsequent trainees

of those trainees, can influence a large number of subsequent

researchers. Measuring the fecundity of researchers according to

their number of trainees provides a means of comparing their

relative influence and determining which individuals have had the

greatest influence on the field. Of course, fecundity is not a direct

measure of influence, but rather a useful and readily quantifiable

proxy.

We measured a fecundity index by counting iteratively the

number of trainees and trainees of those trainees, normalized

exponentially by the number of steps from the original mentor (see

Methods, c = 1/2). Normalization was critical to prevent attribut-

ing the most influence to the very earliest researchers, who would

always have the most offspring in a non-normalized count (i,e.,

c = 1). At the other extreme, a strong normalization factor (e.g.,

c#1/10) would place the most weight on the mentor’s immediate

trainees and would simply equate fecundity with large research

groups.

The 25 researchers with the highest fecundity index appear in

Table 4. On this list are a number of individuals typically

Table 4. The founders of neuroscience, as ranked by fecundity measured from the Neurotree database (normalization factor, c = 1/
2, see Methods).

Rank (c = 1/2) Name Institution Year Gen Rank (Alt c)

1 1/4 1/10

1. John Eccles Australian National University 1937 20 153 1 11

2. Charles Sherrington University of Oxford 1901 19 117 8 168

3. Stephen Kuffler Harvard University 1962 21 167 2 26

4. Karl Lashley Harvard University 1924 20 159 5 80

5. John Langley University of Cambridge 1900 19 113 111 849

6. Michael Foster University of Cambridge 1870 18 109 162 1342

7. Edgar Adrian University of Cambridge 1923 20 155 43 273

8. Donald Hebb McGill University 1952 21 199 9 58

9. Robert Yerkes Yale University 1918 19 154 105 645

10. Johannes Müller Humboldt Universität zu Berlin 1842 16 75 81 178

11. Wilhelm Wundt University of Leipzig 1886 17 111 106 206

12. Bernard Katz University College London 1952 21 204 19 82

13. Torsten Wiesel Rockefeller University 1974 22 267 4 14

14. Keith Lucas University of Cambridge 1904 19 136 236 1826

15. Hans- Lukas Teuber Mass. Inst. of Technology 1965 21 231 13 85

16. John Black Johnston University of Minnesota 1907 22 157 231 2077

17. John Watson Johns Hopkins University 1916 19 158 234 2095

18. Clinton Woolsey University of Wisconsin 1964 21 230 25 141

19. Philip Bard Johns Hopkins University 1928 20 197 77 701

20. Hugo Munsterberg Harvard University 1902 18 137 193 738

21. John Fulton Yale University 1932 20 168 62 255

22. Wilder Penfield McGill University 1952 20 181 91 535

23. Hallowell Davis Harvard University 1935 21 170 118 598

24. Archibald Hill University College London 1915 20 171 82 264

25. Julius Axelrod National Inst. of Mental Health 1962 22 255 12 44

Year refers to first year a degree was awarded to a trainee of this mentor. Generation (Gen) refers to the number mentorship steps back to the oldest common ancestor.
Rankings for these individuals based on measures with alternative (Alt) normalization factors appear in the columns at right. At the extremes, c = 1 weighs all offspring
equally, regardless of generation, and c = 1/10 counts primarily the number of direct trainees and gives very little weight to later generations.
doi:10.1371/journal.pone.0046608.t004
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associated with critical advances in the field. The majority of these

individuals were active mentors (based on their first mentoring

year, i.e., the first year a student of theirs was awarded a degree)

between 1900 and 1950, though the remainder range broadly

from 1842 (Johannes Müller) to 1974 (Torsten Wiesel).

To illustrate the importance of appropriate normalization in the

fecundity calculation, Table 4 also lists rankings for these 25

individuals computed using different normalization factors in to

compute fecundity. At the extreme of c = 1 (no normalization), it is

clear that rankings are much higher for researchers in earlier

generations, as this metric simply gives highest rank to the earliest

connected researchers. At the other extreme of c = 1/10 (strong

normalization), more recent researchers are ranked much higher,

reflecting the recent trend toward larger research groups (at least

as documented in Neurotree). The differences are not so extreme

for a more modest adjustment, c = 1/4. It is interesting to note,

however, that even for this adjustment, historical figures who did

not themselves have large groups but did train a small number of

influential researchers (e.g., Michael Foster, Wilhelm Wundt) fall

substantially in rank.

Growth and development of the field of neuroscience
One challenge to precise interpretation of the temporal features

of these data is that dates are not recorded for a substantial

number of connections in Neurotree. In order to include a larger

pool of researchers in the analysis of temporal dynamics, we

computed the mentorship generation for each researcher by

counting the number of steps back directly to their oldest ancestor.

As discussed above, 64% of researchers in Neurotree can trace

their mentorship back to a single individual. When we compared

generation versus first mentoring year for the subset of researchers

with appropriate data, we found a very strong correspondence

(Figure 6A).

Using mentorship generation as a proxy measurement for time,

we could then study the timecourse of fecundity across the field

(Figure 6B). This analysis shows that average fecundity was

greatest around generation 16, although the researchers with

greatest fecundity tended to fall later, in generations 19–21. All

these influential researchers largely predate the vast expansion of

the field, which was just beginning in generation 21 (green line,

Figure 6B).

To confirm that mentorship generation captures the essential

features of a more strictly defined temporal analysis, we repeated

the analysis of fecundity over time, but now focused only on the

subset of 4654 researchers for which mentorship dates were

available (Figure 6C). This analysis, while noisier, revealed similar

trends. The period of greatest fecundity ranged from 1840–1950,

with the most influential individuals appearing at the later end.

The huge growth of the field can also be observed in the spike in

the number of newly documented mentors that currently peaks for

the period 2005–2010.

Mentorship-based cluster analysis
In order to study the relationship between mentorship groups

and research areas within neuroscience, the entire set of connected

nodes (30055/35953 researchers) was clustered into 60 groups

based on the strength of mentorship connections (see [6] and

Methods). Results are plotted (Figure 7), sorted on the y-axis

roughly by time (i.e., by the mean generation of researchers

contained in each cluster). An interactive version of this analysis is

available online at http://neurotree.org/neurotree/clusters.php

[5].

Each cluster was labeled with the names of the two researchers

with the lowest mean distance to other researchers in that cluster

and by the two research areas most frequently occurring across the

cluster. Despite being derived through independent metrics,

research areas representing a cluster typically show an obvious

relationship to the representative researchers. For example, in

cluster 10, Donald Hebb and Richard Thompson are both

associated with the study of memory. Likewise, for cluster 13,

Terrence Sejnowski and Torsten Wiesel are associated with visual

and systems neuroscience. The information in Neurotree about

research areas is not complete, as it depends on unconstrained

choices by users entering the data. This incomplete information

could lead to some of the apparent discrepancies (e.g., cluster 26,

Rakic and Greenberg are not immediately associated with pain

research).

Some neighboring clusters identify logical divisions between

research areas. For example, cluster 15 (Schiller/Merzenich)

captures a number of researchers who study sensory processing in

non-human primates while cluster 23 (Gabrieli/D’Esposito)

includes researchers who study similar problems of representation

in humans.

When the clusters were studied more quantitatively, a few

additional features were noteworthy. First, the size of clusters

varied substantially (Figure 8A). This distribution suggests that

Figure 6. Historical influence of neuroscience researchers
through mentorship. A, Comparison of researcher generation, the
number of mentorship steps back to a common ancestor, versus the
year the researcher began mentoring, for the subset of researchers for
which this information is available. Gray dots indicate individuals and
the blue curve indicates the average year for each generation (r = 0.88).
B, Fecundity index (the number of descendents per researcher
normalized exponentially by the number of steps from that researcher)
as a function of generation. Gray dots and blue curve plotted as in A.
Green curve indicates the number of researchers per generation. C,
Fecundity index and average number of new researchers per year for
the subset of nodes with mentorship year data, plotted as in B.
doi:10.1371/journal.pone.0046608.g006
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some subfields of neuroscience may partition off more easily than

others. Very large clusters are problematic, as they encompass a

large variety of work and may require more elaborate procedures

in order to be segmented effectively.

A more informative analysis may be to study how tightly

coupled clusters are, relative to their average distance from other

clusters (Figure 8B). Small within-cluster distance and large

between-cluster distance represent highly interconnected and

easily partitioned groups. The most striking examples of these

appear to be more clinically-oriented groups. For example, cluster

14 (mean distance within 3.1, between 9.2) focuses on neuropa-

thology and cluster 32 (within 3.7, between 9.8) focuses on

neuropsychology. Groups with large within-cluster distances can

result from number of factors. Clusters 1 and 2 are likely to have

large within-cluster distance simply because they contain research-

ers spread out over long historical periods.

Discussion

Data documenting the tradition of academic mentorship

naturally provoke curiosity to most people who have participated

in the system. Each of us has received training from someone, who

in turn was trained by someone else, and the whole process

continues, iteratively, into the unknown past. An understanding of

one’s academic mentorship allows one to connect oneself to the

historical development of a field. A genealogical tree also provides

the opportunity to see otherwise invisible links between ourselves

and our colleagues, our friends, and important figures in the field.

For these reasons, academic genealogies have been created for

many fields. Neurotree is an attempt to do so for the large and

diverse field of neuroscience.

Good mentoring is a skill that can differentiate successful from

unsuccessful lab leaders. As of yet, very little is known about how

important mentorship skills are in producing successful progeny

[4]. Although most experts rely on judgments informed by

anecdotal evidence, it is difficult to separate out the effects of

Figure 7. Mentorship-derived clusters. Clusters were derived by spectral factorization of the sparse matrix of mentor relationships between all
researchers connected in the main Neurotree graph. Each box describes a cluster, numbered according to the average generation of researchers in
the cluster. Clusters are plotted in roughly chronological order from top to bottom. Each cluster is labeled with the names of the two researchers with
the smallest mean distance to other researchers in the cluster and by the two most common research areas in the cluster. Lines connecting clusters
indicate the relative strength of connections between them (dotted: 1–5, solid: 6–20, bold: 21+).
doi:10.1371/journal.pone.0046608.g007
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institution, age, and serendipity from individual skill. Neurotree

provides quantitative data that can be used to develop more

sophisticated understanding of the influence of mentorship on

progeny success. This information can help identify the qualities

that make good mentors, which can in turn be used to direct

training of mentors, guide hiring decisions, and help students

choose mentors.

More generally, Neurotree provides an important tool for the

study of the birth, life, and death, of ideas. Central to the function

of academic mentorship is the transmission of ideas from mentor

to trainee. Thus having a clear and full database of individuals and

their relationships can serve as a tool for studying the life cycle of

ideas.

We argue that Neurotree has a specific role in the field of

neuroscience. It provides a single repository for valuable informa-

tion that is both highly specific and well-defined (such as mentor-

trainee relationships) and that is more open-ended (such as field of

interest). Additionally, Neurotree presents an opportunity to sort

out potential confusion regarding multiple researchers with the

same name. While there is no current widely accepted unique

identifier for individual scientists, the Neurotree database can help

discriminate among individuals.

Maturing of Neurotree
As an experiment in crowd-sourcing the acquisition of data,

Neurotree has been successful thus far. The Society for

Neuroscience, whose academic focus encompasses a similar scope

to that of Neurotree, lists 41,000 current members. This number

does not include historical figures or neuroscientists who have not

joined the Society, but the order of magnitude of this number

matches that of the number of researchers listed in Neurotree.

Given its record of growth, we expect Neurotree to develop a

progressively more complete description of the field, thereby

allowing reliable and unbiased sampling of mentorship relation-

ships, and increasingly more accurate measures of progeny counts

and connection distances. We have identified limitations to the

scope of the dataset, both in its accuracy and completeness, and it

remains an open question as to how completely these gaps can be

filled with the current crowd-sourcing approach.

In addition to the general problem of sampling, crowd-sourcing

efforts face the additional challenge of possible bias in how data is

sampled [8]. Bias in gender, institution, geography, etc. can distort

results in ways that are more difficult to correct than random

sampling errors. Our initial analysis of accuracy revealed generally

consistent levels of accuracy across institutions and labs, and

Neurotree may benefit from the fact that a complete mentor-

trainee record is well-defined. However, a more extensive analysis

is required to determine if any systematic sampling bias exists.

Even with an incomplete data set, we have demonstrated

approaches for approximating missing data from the database

(e.g., using generation as a substitute for first year of mentoring).

This has permitted us to include a much larger data set into the

analysis of historically influential figures in the field.

Potential for expanded scope and depth
Neurotree can serve a number of functions, all of which would

be improved if data in the tree were more complete and accurate.

Substantial data sources exist in the public sphere online that

could be used to automatically or semi-automatically fill in gaps in

institutional affiliation, mentorship dates, and research areas in the

current database. These resources include structured databases

(e.g., [9]) and less structured on-line content such as departmental

web sites and the CVs of individual researchers.

Numerous additional data resources exist that can be incorpo-

rated into Neurotree. Information about the contents of publica-

tions (methods, preparations, scientific questions) can be linked to

individual researchers, providing a means of systematically

studying the relationship between mentorship and the experimen-

tal approaches adopted by trainees. As expanded scientific content

is linked to researchers, Neurotree will provide an increasingly

powerful tool for studying the evolution of the field.

A complete, interdisciplinary academic genealogy
The software that forms the basis for Neurotree can be readily

adjusted to make a database for any academic field. Based on

unsolicited requests, we have created academic trees for other

disciplines that, as far as we know, lack one of their own. These

other trees include history, linguistics, and marine ecology, as well

as a dozen others. Although they are given their own tree for

display, they draw from the same database. This shared database

permits cross-listing researchers between trees in different disci-

plines, so that, as the trees fill in, it will be possible to trace the

larger-scale linkages between fields. Furthermore, it will be

possible to study not only the graphical properties of mentor

relationships within neuroscience but also how ideas and trends

have traveled between fields.
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Figure 8. Quantitative analysis of mentorship clusters. A, Curve
shows the number of researchers in clusters 1–60, plotted on a
logarithmic axis. The very large clusters (.3000 researchers) suggest
that some groups, which often appear centrally in Figure 6, are difficult
to partition with the current algorithm. B, Average distance between
nodes within each cluster (blue) and with nodes in other clusters
(green). Small within-cluster distance and large between-cluster
distance indicate groups that were well partitioned from the main
Neurotree graph.
doi:10.1371/journal.pone.0046608.g008
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