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Abstract

PICARA is an analytical pipeline designed to systematically summarize observed SNP/trait associations identified by genome
wide association studies (GWAS) and to identify candidate genes involved in the regulation of complex trait variation. The
pipeline provides probabilistic inference about a priori candidate genes using integrated information derived from genome-
wide association signals, gene homology, and curated gene sets embedded in pathway descriptions. In this paper, we
demonstrate the performance of PICARA using data for flowering time variation in maize – a key trait for geographical and
seasonal adaption of plants. Among 406 curated flowering time-related genes from Arabidopsis, we identify 61 orthologs in
maize that are significantly enriched for GWAS SNP signals, including key regulators such as FT (Flowering Locus T) and GI
(GIGANTEA), and genes centered in the Arabidopsis circadian pathway, including TOC1 (Timing of CAB Expression 1) and LHY
(Late Elongated Hypocotyl). In addition, we discover a regulatory feature that is characteristic of these a priori flowering time
candidates in maize. This new probabilistic analytical pipeline helps researchers infer the functional significance of
candidate genes associated with complex traits and helps guide future experiments by providing statistical support for
gene candidates based on the integration of heterogeneous biological information.
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Introduction

Genome wide association studies (GWAS) have shed new light

on the genetic basis of complex trait variation in diverse species

[1–7], and contributed to our understanding of how natural allelic

variation affects trait expression in diverse genetic backgrounds

[8,9]. A key objective of most association mapping studies is to

identify quantitative trait loci (QTL) and ultimately to discover the

genes or causal genetic variants that contribute to the observed

phenotypic variation. In many species and populations, extended

linkage equilibrium (LD) limits the resolution of GWAS, making it

difficult to pinpoint which genes and casual variants are

responsible for the observed phenotypic variation without

additional genetic analysis [5,10].

To facilitate the identification of genes underlying GWAS-

QTLs in humans where controlled crosses and transgenic

experiments are not feasible, a variety of statistical tools have

been developed ([11]; ALIGATOR [12]; DAVID [13]; Con-

sensusPathDB [14] and ToppGene Suite [15]). These tools utilize

enrichment statistics to search for candidate genes and functional

polymorphisms associated with human disease. For example,

genetic susceptibility alleles of CRC (Colorectal Cancer) were

identified by the significant enrichment of GWAS SNPs in the

MAPK (Mitogen-Activated Protein Kinase) signaling pathway [16]; also,

the discovery of TCF7L2 (Transcription Factor 7-Like 2), a human

type 2 diabetes and cancer related genetic locus, was primarily

driven by identifying the overrepresentation of significantly

associated loci within 5 kb region of the target gene [17]. These

examples in human medical research suggest that a systematic

search for a priori candidate genes and rigorous methods for

identifying underlying causal genetic variants would greatly

enhance the power and efficiency of GWAS for the plant research

community.

In plants, detailed studies of genetic mechanisms underlying

diverse phenotypes have been undertaken using both forward and

reverse genetics. In Arabidopsis and a few model crop species, these

studies have productively utilized functional genomics populations

developed in a limited number of genetic backgrounds using either

chemical mutagenesis or transgenic activation of mobile elements

[18–20]. Parallel studies have been undertaken using QTL

mapping and positional cloning of natural alleles [21–25]. These

studies are often complemented by expression analysis where

targeted or global gene expression profiles are compared between
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a mutant and a wild type, in response to a particular stress or other

treatment [26–30]. Such genetic information has been thoroughly

reviewed and further organized using ontologies and controlled

vocabulary in genome databases [31,32]. Building on this

foundation, it is essential to implement an analytical platform to

facilitate the interpretation of GWAS results, and to systematically

integrate all available genetic information pertaining to the same

biological phenomena.

Recently, several large GWAS projects have been reported in

plants [5,6,8,9]. Co-localization of GWAS peaks (significant SNPs)

and candidate genes associated with a common set of phenotypes

have driven the interpretation of results. In most cases, GWAS

SNPs located within 20–200 kb of a priori candidate genes have

been specified as significantly associated with trait variation

[5,6,8,9]. Though the findings in these studies are encouraging,

the lack of a dynamic and systematic approach for integrating

relevant information across species and domains of biology

warrants further investigation. Ultimately, the challenge is to

associate naturally occurring variation (SNPs and indels) identified

in significant GWAS regions of the genome with mechanisms that

can explain and predict the observed phenotypic variation.

In this paper we present PICARA, a new probabilistic approach

designed to efficiently search for and validate a priori candidates

that are predicted to play a role in regulating quantitative variation

and to integrate these candidates with information derived from

GWAS signals (Figure 1). We address limitations of fixed window

approaches that are either unlikely to capture distantly located

trans-acting regulators, or falsely include potential candidates by

overestimating the sizes of target haplotypes. This is accomplished

by developing a dynamic algorithm that estimates linkage block

size (or window size) around a priori candidate genes according to

their local SNP distributions. The resulting linkage block size is

then used to delineate the target haplotype containing SNP

variants and potential a priori candidate genes of interest. With a

Bayesian posterior probability that describes the likelihood of

candidates co-localizing with significant GWAS association

signals, PICARA generates a probabilistic inference for assessing

a priori candidates with GWAS enrichment. In addition, the

functional characteristics of a priori candidates are determined by a

phylogeny-based multiple species gene homology search. Not only

are the various LD patterns of a genome dynamically implement-

ed in the pipeline, this new probabilistic inference also reckons the

functional characteristics of candidates from distantly related

species. The statistical support provided by PICARA’s approach

can further assist in prioritizing candidate gene experiments based

on reliable resource identification and integrated expert knowl-

edge.

To demonstrate PICARA, we examine GWAS associations for

days-to-silk flowering time variation in maize NAM (Nested

Association Mapping) populations [33], provide a detailed

description of the statistical framework in the PICARA pipeline,

and then identify a priori candidates predicted to play regulatory

roles mediating maize flowering time variation in the field. Our

choice of flowering time in maize to illustrate the strength of this

new tool is based on the importance of flowering time as a basic

component of plant development, survival and fitness, the fact that

a great deal is known about the genes and gene networks that

mediate flowering time, and the fact that it is significantly

correlated with many other traits of agronomic importance in

crops [34].

Our probabilistic approach to investigate the functional

implications of GWAS associations is designed to more efficiently

utilize the wealth of knowledge that has been generated in

reference species, including Arabidopsis and other economically and

phylogenetically important plant species. Our case study of

flowering time serves as an example to demonstrate how GWAS

results focusing on natural variation of complex traits can be

systematically integrated with information derived from basic

genetic research. We highlight the value of information derived

from functional characterization of genes based on mutagenesis

and expressional profiling, and demonstrate how a deep under-

standing of basic biological processes can accelerate the applica-

tion of this knowledge to the fields of plant breeding and

agriculture. Our immediate goal is to promote the effective and

systematic integration of heterogeneous biological data sets and to

facilitate the formulation of readily testable hypotheses of interest

to a broad range of life scientists.

Results

Maize days-to-silk GWAS
The number of days-to-silk (flowering time) varies by 32 days

among NAM founder lines. A total of 613 associations responsible

for days-to-silk variation were identified in the maize NAM

populations based on a model re-sampling technique (RIMP $2,

[6]). When applying a more stringent significance cut-off of RIMP

$5, though the number of associated SNP was reduced to 229, a

polygenic model with numerous associations is thus suggested. To

summarize the overall distribution of associations across maize

chromosomes, a Manhattan plot displaying all significant GWAS

days-to-silk associations at RIMP $2 is shown in Figure S1.

The SNP with the largest allelic effect was PZE10102590312 on

chromosome 10, and it was associated a delay in flowering of

Figure 1. Enrichment analysis pipeline, and the data that is
required in the procedure.
doi:10.1371/journal.pone.0046596.g001

PICARA Enrichment of Flowering Time GWAS in Maize
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1.09 days compared to B73 (3.4% of overall variation); the SNP

with the second largest effect, PZE10109543539, was also found

on chromosome 10 (Table S2). With the majority of the allelic

effects clustered within the range of 0.2 days, a polygenic model

with many QTL associations is supported. The distribution of

association effects is shown in Figure 2.

In a joint linkage analysis, Buckler et al. [35] found that 2 QTLs

showed an effect in only in three NAM families, while most of the

maize flowering time QTLs were shared among multiple families;

over 30% of QTLs were shared among seven or eight families.

With a higher resolution of 1.6 million SNP markers, we identified

a few cases of family-specific associations; 27 associations were

shared between 2 families, while over 55% of associations were

shared among at least eight families. In comparison to the findings

in Buckler et al. [35], a pattern of a large number of associations

and QTLs shared among multiple NAM families is illustrated in

Figure 3.

Maize grows from the tropics into both northern and southern

temperate zones, which can be differentiated with maize HapMap

version 1 SNPs. We separated the NAM populations into tropical

and temperate lines, according to Gore et al. [36], and found no

difference in allelic effects controlling days-to-silk variation

(Figure 4).

Maize flowering time homologs
Across the genome as a whole, the Ensembl Compara pipeline

identified 206,535 homology relationships between Arabidopsis and

maize genes: 158,496 in the between-species-paralogous relation-

ships, 33,931 in many-to-many orthologous relationships, 9,974 in

one-to-many orthologous relationships, 4,073 one-to-one orthologs

and 61 in the category of apparent one-to-one orthologous

relationships.

When a curated set of 406 flowering time-related genes from

Arabidopsis studies were used as the query (Table S1), 4,601 maize

homologs were obtained from Compara results, including

apparent orthologs (3 maize genes, on chromosomes 1, 4 and 5),

one-to-one (53 maize genes), one-to-many (209 maize genes) and

many-to-many orthologous relationships (621 maize genes)

(Figure 5). Also, 3,715 maize genes were identified as multiple

species paralogs, using Arabidopsis as the query. We then eliminated

the duplicated maize homologs and finally compiled a set of 1,536

unique maize genes that were in any of the above described

homology relationships with Arabidopsis flowering time candidates.

Because of the conserved domains in genes from large gene

families, like the MADS domain transcription factors AGL1-

AGL18, the AGAMOUS-like gene family, or PHYTOCHROME

INTERACTING FACTOR 3-like genes, PIL2, PIL5, PIL6 and PIL7,

over 60% of the a priori candidates (37 enriched maize homologs)

were found to be in more than one homology relationship with

multiple Arabidopsis flowering time candidates. In addition, as

expected in the highly duplicated genome of maize [37,38], the

number of maize genes identified in paralogous homology

relationships with Arabidopsis genes is also greater than those in

orthologous homology relationships.

Important flowering time homologs were identified in maize. For

example, FT, FLOWERING TIME LOCUS T (AT1G65480), a floral

promoter situated in the center of Arabidopsis flowering time pathway

Figure 2. The distribution of allelic effects in maize days-to-silk associations. The unit of allelic effect is in day(s).
doi:10.1371/journal.pone.0046596.g002
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as an integrator, is found to have 19 copies of between-species

paralogs and 7 copies of many-to-many orthologs, distributed on

almost all of the maize chromosomes. LHY, LATE ELONGATE

(AT1G01060), has 13 homologs in the maize genome. Two

important long-day pathway genes, CO (CONSTANS) and GI

(GIGANTEA), are also duplicated in maize. We have identified 22

homologous copies of the Arabidopsis CO gene in maize, including the

putative orthologue, GRMZM2G405368 on chromosome 2. There

are, however, only two orthologous copies of Arabidopsis GI genes,

GRMZM2G062262 and GRMZM2G107101, respectively, on

maize chromosomes 3 and 8.

Linkage block size estimations
Linkage block size estimates for chromosome 1 range from 2 bp

to 855,908 bp, with a median of 3,055 bp and the 90% quantile

estimated at 83,414 bp. Maize chromosome 4 has the largest

linkage blocks (median = 10,164 bp) while chromosome 8 has the

smallest (median = 2,294 bp). On the same chromosome, linkage

block size estimates are similar where SNPs are in perfect linkage

disequlibrium (LD) (r2 = 1) or high LD (1.r2$0.8), and linkage

block size estimates start to increase at r2 values ,0.8. Figure 6

shows an example of the distribution of linkage block sizes on

chromosome 10, for linkage blocks with SNPs in perfect LD

(r2 = 1), in intermediate to low LD (1.r2$0.4 and 1.r2$0.2), in

intermediate LD (1.r2$0.6), and in high LD (1.r2$0.8). In this

study, only SNPs in perfect LD (r2 = 1) were used to estimate

linkage block sizes for a given a priori candidate gene. Though the

LD block sizes do not vary dramatically for the first generation

maize HapMap, the PIARA algorithm provides flexibility for

recombination coefficients for use in analysis.

Figure 3. The distribution of association QTLs across NAM families. NAM GWAS associations identify a few cases of family specific QTL, while
QTL found in previous joint-linkage analysis are mostly shared by 7 or 8 families.
doi:10.1371/journal.pone.0046596.g003

Figure 4. Averaged positive and negative allelic effects and their standard deviations in tropical versus temperate NAM
populations.
doi:10.1371/journal.pone.0046596.g004
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Probabilistic model in maize flowering time GWAS
association enrichments

With a curated set of 406 Arabidopsis flowering time-related

genes, 61 maize homologs were significantly over-represented by

days-to-silk flowering time GWAS associations, and 21 flowering

time genes orthologous to curated gene sets from Arabidopsis studies

were enriched with significant GWAS SNPs. The only enriched a

priori candidate gene that is in one-to-one orthologous relationship

with its Arabidopsis counterpart was a PHP (Plant Homologous

Parafibromin) gene. This gene encoded a subunit in the Paf1c

complex (RNA polymerase II associated complex), and the effect

of the cdc73 (Cell Division Cycle73) mutation on the Arabidopsis

PHP gene was to strongly suppress the late flowering phenotype of

FRIGIDA. This Arabidopsis Paf1c was also shown to participate in

the modification of FLC (Flowering Locus C) chromatin and to affect

CO (CONSTANS), TSF (Twin Sister of FT), SOC1 (Suppressor of

Overexpression of CO) and AGL24 (Agamous-like 24) [39], suggesting a

regulatory role of PHP gene in affecting flowering time pathway

integrators.

Figure 7 shows all maize flowering time a priori candidate genes,

and the annotations of maize a priori candidates derived from

Arabidopsis orthologs, when the orthologous relationship can be

identified. The highest count of association signals in a single

linkage block corresponds to the maize candidate gene,

GRMZM2G115960 on chromosome 3, a duplicated homolog of

transcription factor PIF3 (Phytochrome Interacting Factor 3) that

interacts with PHYA (Phytochtome A) and PHYB (Phytochrome B) in

the Arabidopsis circadian pathway [40,41]. With the linkage block

size estimated at 141,762 bp, six GWAS associations were found

significantly co-localizing with maize GRMZM2G115960; among

them, two highly significant associations were found at 396 bp (in

the 59 UTR) and 1,268 bp downstream of the gene (with RIMP

count of 15 and 12, respectively) (Figure 8(b)).

Chromosome 2 showed the greatest number of associations and

the largest number of candidate genes enriched for significant

SNPs. Twelve flowering time-related a priori candidate genes were

enriched for significant associations on this chromosome. Chro-

mosome 6 had the least number of associations (39 significant

associations with RIMP .1), as well as the least number of

enriched flowering time a priori candidates (two genes). Two of the

most significant SNPs (PZE10102590312 associated with an allelic

effect = 1.09 days to silking and PZE10109543539 associated with

1.06 days) were found on chromosome 10, but were not associated

with any flowering time a priori candidate genes, both being at least

1 million base pairs away from the closest potential a priori

Figure 5. Maize flowering time related homologs, resulted
from the comparison between Arabidopsis and maize genes by
Compara pipeline.
doi:10.1371/journal.pone.0046596.g005

Figure 6. The comparison of estimated linkage block sizes with perfect linkage (r2 = 1), high linkage (1.r2$0.8), intermediate
linkage (1.r2$0.6 and 0.4) and low linkage (1.r2$0.2).
doi:10.1371/journal.pone.0046596.g006
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candidate. These are likely to represent novel loci and warrant

further investigation.

A few major flowering time pathway integrators were found in

association with significant SNPs using our analytical pipeline.

These include a maize homolog of the Arabidopsis FT (Flowering

Locus T) gene, GRMZM2G103666, a CONSTANS homolog,

GRMZM2G2G041991, a homologous CONSTANS-like gene,

GRMZM2G041991, and a homologue of the Arabidopsis STO

(Salt Tolerance Protein) gene that interacts with the COP1 (Constitutive

Photomorphogenic 1) gene in light signaling, GRMZM2G422644, as

well as several genes involved in floral transition, such as the maize

homolog of LHY, GRMZM2G029850.

In addition, we found a majority of a priori candidate genes is

involved in the regulation of the circadian pathway. Examples

include the maize gene, GRMZM2G365688 on chromosome 3,

an ortholog of TOC1 (Timing of CAB Expression 1) (Figure 7), maize

GRMZM2G080054, a PIF and PIL (Phytochrome Interaction Factor

Like) homolog that is involved in photo-morphogenesis in

Arabidopsis, maize GRMZM2G479110, a homolog of the Arabi-

dopsis phyto-clock-like genes, PCL1 (Phytoclock 1) and LUX (LUX

ARRHYTHMO). It is noteworthy that PCL1 and LUX promoters

are required in the regulation of TOC1, CCA1 (Circadian Clock

Associated 1) and LHY. Details of enriched flowering time a priori

candidate genes in maize are listed in Table S3, along with

annotation evidence taken from Arabidopsis experiments.

To compare the strength of PICARA with the synteny

comparison, we conduct a flowering time QTL search using the

Gramene QTL database [42]. To show an example, in the

chromosome 7 region containing the maize CIB1 (Cryptochrome-

Interacting Basic-Helix-Loop-Helix) homolog, there are no previously

defined maize QTL. The nearest days-to-silk QTL (at 63.7 cM on

chromosome 7, associated with marker m798, as reported in

Buckler et al. [35] is about 1 MB upstream from the PICARA

identified CIB1 maize homolog. We then complete a synteny

search using 685 flowering time QTLs from rice studies (search

includes the trait names: days to heading, days to flowering and

days to maturity). With the CMap tool [43], we identify the

corresponding syntenic region, defined by the location of m798 on

the maize 2008 NAM map, which lies in the region flanking

RM242 and RM108 on rice chromosome 9 (QTL Accession ID:

AQGP041 on Gramene database) [44,45]. The possible flowering

time-related QTL from the comparative synteny analysis was

found about 10 MB away from the position of the maize CIB1

homolog.

In addition to examining candidate genes associated with

flowering time GWAS signals, we also re-analyzed upper leaf

angle GWAS results and compared the output of PICARA, with

the list of potential a priori candidates provided in [6] (Supple-

mentary Table 7). Tian et al. [6] identified two candidate genes

with significant enrichments of GWAS SNPS for upper leaf angle,

lg1 (liguless1) and lg2 (liguleless2), on chromosomes 2 and 3,

respectively. With our new probabilistic approach, in addition to

lg1 and lg2, we also found significant support for GWAS SNP

enrichment at lg4 (liguleless4) on chromosome 8, which had been

considered insignificant based on the original cumulative RIMP

count [6]. The linkage block containing maize lg4

(GRMZM2G094241) is about 78 KB long, slightly larger than

reported previously, and contains a significant SNP association

(RIMP = 3) at 41 KB upstream of the gene.

To further validate results from PICARA, we first excluded the

1,539 maize flowering time-related candidates from the release 5a

filtered gene set of the maize genome [38], and we generated 100

pseudo-candidate gene sets of 1,539 randomly selected maize

genes for each set and searched for days-to-silk enrichment via

PICARA. The average LOD score from these 100 pseudo-

candidate sets was ,0.01.

Gene ontology (GO) analysis
Using a GO-annotated maize genome as a background

reference, we identified 39 GO terms that were over-represented

Figure 7. Maize flowering time priori candidate genes. Maize flowering time priori candidate genes are identified via enrichment of GWAS
associations; and, the annotations are taken from their orthologous relationship to Arabidopsis genes.
doi:10.1371/journal.pone.0046596.g007
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by our maize flowering time a priori candidate genes; of these, 32

were associated with biological process, 6 with molecular function

and 1 with cellular component (Table S4). As for molecular

function (GO:0005554), the PICARA-identified maize flowering

time a priori candidate genes show an overrepresentation in

GO:0030528, GO:0043565, GO:0003677, GO:0003676,

GO:0003700 and GO:0005488, all classified using transcriptional

regulatory activity and sequence-specific DNA binding parent

terms. In the category ‘biological process’ (GO:0008150), a

number of parent GO terms, such as GO:0065007 (regulation

of transcription), GO:0019219 (regulation of nucleobase, nucleo-

tide, and nucleic acid metabolic process), GO:0051171 (regulation

of nitrogen compound metabolic process) and GO:0006350

(transcription) and GO:0009889 (regulation of biosynthetic

process), were also highlighted (Figure 9, Table S4).

While the list of potential a priori candidate genes can be created

based on other knowledge, such as BLAST searches for sequence

similarities, pathway analyses or ontology terms, our list of

flowering time a priori candidates was assembled based on genes

that were experimentally supported from Arabidopsis studies. To

summarize the effectiveness of our enrichment analysis in targeting

a priori candidates, we compiled a similar list of maize orthologs to

Arabidopsis candidate genes identified in nine other GO categories,

and compared the level of GWAS SNP enrichment across these

categories in our flowering time study (Arabidopsis gene IDs and

ontology terms are listed in Table S5). Figure 9 summarizes the

results of this comparison, and while most categories show

negligible levels of enrichment, we do observe a close relationship

of days-to-silk GWAS associations with genes involved in plant

growth (GO:0040007) and, again, with transcription regulator

activity (GO:0030528). The high average LOD score found in the

growth (GO:0040007) category is due to the overrepresentation of

GWAS associations in GRMZM2G117935, an ortholog of the

Arabidopsis SAL1 gene (Supernumerary Aleurone Layer 1) that is known

to play a key role in seed development in Arabidopsis [46] and

barley [47].

Figure 8. SNPs, GWAS associations, flowering time homologs and gene density on maize chromosome 3. In (a), the top panel shows
the days-to-silk GWAS signals; blue triangles are the positive QTLs, the red are negative ones and the light blue ones at the bottom indicative of
insignificant SNPs that did not pass RMIP test. SNP density along the chromosome is in grey bars in the background and significance level of RIMP
scores is in the axis on the left. The gene density, calculated from the number of maize gene in every 200K bp, are in the lower panel, while the black
triangles on the bottom of the density distribution mark the positions of maize flowering time homologs. Two dashed vertical lines indicate the
positions of the examples in two top enriched flowering time maize homologs. (b) The enrichment of maize flowering time priori candidate:
GRMZM2G115960. In this case, the co-localizing significant QTLs found in GWAS are all within the linkage block of the a priori candidate. (c) The
enrichment of maize flowering time priori candidate: GRMZM2G365688. Three (solid red dots) of 6 significantly QTLs reside within linkage block of a
priori candidate; the 3 unfilled red dots outside of the dashed red lines are significant, but unlinked, GWAS associations, while black dots being maize
Hapmap 1 SNPs.
doi:10.1371/journal.pone.0046596.g008
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Discussion

With this paper, we present PICARA, a new analytical pipeline

that can systematically and dynamically integrate genomic

knowledge derived from heterogeneous sources and provide a

probabilistic reference of functional characteristics for a priori

candidates. The probabilistic inference presented by PICARA also

provides a platform that accounts for the uncertainty in co-

localizing GWAS signals with potential gene candidates and

functions inferred from a distantly related model system. In the

comparison with other enrichment analyses [8,48,49], the

flexibility and strength of PICARA are enhanced by the

implementation of a method for calculating local LD structure,

as well as a procedure for weighting significance levels derived

from GWAS associations. Calculated from SNPs that are locally

distributed around potential candidate genes, PICARA allows the

variation of a genome’s linkage structure to be analyzed locally,

instead of using an arbitrary, fixed window size as in previous

methods. In our flowering time example, recombination ratios

vary dramatically along the maize chromosomes, as calculated

from first generation maize Hapmap data (roughly one variant

every 44 bp, [36]) Assuming causative polymorphisms would co-

locate in high LD regions with a priori candidate genes, as shown in

Figure 8(c), our probabilistic approach is able to determine the

linkage block size locally and then successfully eliminates unlinked

GWAS signals that might be improperly included in other fixed

window analyses.

In addition, rather than only focus on the counts of significant

associations, PICARA’s weighting procedures incorporate the

strength of associations to determine significance levels in its re-

sampling statistics of GWAS. In other words, the weighting

procedure carried out in PICARA represents a measure of the

magnitude of GWAS effects. We use a posterior probability that

describes whether or not an a priori candidate gene co-localizes

with a significant magnitude of GWAS enrichment signals.

PICARA’s probabilistic inference assisted in finding the SNP

enrichment for GRMZM2G37956 on maize chromosome 1,

where there are only 75 SNPs in the region and the high linkage

disequilibrium structure is less perceptible because of a relatively

low level of marker resolution.

Through comparative QTL analyses, convergent selection was

suggested to influence independent domestication processes of

several closely related cereal crops, where variation for agronom-

ically important phenotypes, such as flowering time, is thought to

be governed by a limited number of common QTLs that are

detectable due to conserved synteny even after millions of years of

divergence [50]. This conservation of genomic colinearity among

evolutionarily related species has enabled us to detect functional

alternations associated with particular marker haplotypes [51,52],

as well as to predict and annotate mapped genes [53]. With the

most comprehensive comparative genomic data coming from the

grass family, synteny analysis tool such as CMap have been useful

in translating genomic information among family member species

[43]. However, the difficulty in identifying regions of co-linearity

among highly divergent species underscores the limitations of

synteny comparisons [54]. As the most in-depth genetic knowledge

in plant research can be found in Arabidopsis systems, PICARA has

exploited functional evidence and orthologous relationships in

maize derived from the distantly related Arabidopsis study system.

This work has been greatly facilitated by the development of a

comparative genomics tool, namely, Ensembl COMPARA com-

parative genomics pipeline [55], allowing us to readily explore the

genetic functionality that characterizes the underlying genetic

architecture of quantitative trait variations in important cereal

crops as outlined in the example for AC233869.1_FG0003, where

we identify a maize ortholog of the CIB1 gene (in Results and

Table S3).

Together with the identification of the maize CIB1 homolog,

PICARA’s probabilistic inference also provides a confidence

measure in the functional interpretation of GWAS associations:

in the case of the maize CIB1 homolog, where SNP polymorphism

is found tightly linked with an a priori candidate (the linkage block

Figure 9. Flowering time variation association enrichment LOD scores comparison in different curation categories. 1: maize flowering
time orthologs; 2: maize leaf genes (in Feng et al. 2010); 3: maize miRNA target leaf genes; 4: biosynthetic process (GO:0009058); 5: developmental
process (GO:0032502); 6: enzyme regulator activity (GO:0030234); 7: growth (GO:0040007); 8: negative regulation of response to stimulus
(GO:0048585); 9: positive regulation of response to stimulus (GO:0050729) and 10: transcription regulator activity (GO:0030528). GO terms in 6 and 10
are from molecular function GO terms, while the rest of the GO terms come from biological process.
doi:10.1371/journal.pone.0046596.g009
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size is estimated as small as 4,335 base pairs, Table S3), the

GWAS data immediately suggests a possible causative role of the

maize CIB1 homolog. This functional interpretation of genetic

architecture of flowering time variation, however, would have

been missed by comparative synteny analysis, owing to its low

resolution and lack of comparability with a distantly related study

system.

In this paper, we adopt functional inferences derived from the

foundation of molecular biology: a protein’s sequence determines

its structure, which in turn determines how the protein functions.

These sequence-structure-function dependencies allow us to assess

the functional similarity of maize genes via sequence and structure

similarity with distantly related reference systems. Although the

likelihood that orthologs and paralogs retain functional similarity is

still an under-studied area, in a large comparison of 284,459

pairwise structure-based alignments of 12,634 unique domains

from a protein database, Peterson et al. [56] reported that

orthologs with high sequence similarity (.70% target-template

sequence identity) are generally considered to retain function, and

share greater structural similarity with a reference protein than are

paralogs. Due to the redundancy inherent in gene duplication,

functional characteristics of paralogs are often relaxed, allowing

for more significant sequence changes to alter their structure, and

in turn resulting in a higher probability of functional diversification

among paralogs [57,58].

When we focus only on the 21 a priori candidate genes that

were orthologous to curated gene sets from Arabidopsis

(Figure 7), it is notable that nearly half of them were involved

in the regulation of light signaling pathways, including the

maize orthologous copy of TOC1, genes in the PIL gene family

as well as the only one-to-one orthologous CDC73. Single gene

analysis may miss important unifying biological impacts that

can be more difficult to interpret, especially when each allelic

substitution governs a minor fraction of the observable

quantitative variation. Using a GO-annotated maize genome

as a background reference, maize a priori candidate genes can

be summarized to be largely involved in transcriptional

regulatory activity and sequence-specific DNA binding (parent

terms: GO:0008150), and these same regulatory terms are also

highlighted by a priori candidate genes associated with

biological process. This emergent property of a priori candidate

genes identified by PICARA (Figure 9, Table S4), namely the

regulatory nature of maize flowering time GWAS associations

may also provide insight into the evolution of the highly

polygenic genetic architecture of maize flowering time varia-

tion. Compared to the GWAS findings in Arabidopsis flowering

time studies, where nearly 50% of observed variation was

explained by 12 major QTLs and their interaction with the

growing environment [59], maize flowering time variation is

determined by many more alleles with individually small

effects (235 highly significant associations and the strongest

allele effect is no larger than 3.4% in Table 2S).

Theoretically, the accumulation of small mutations that lead

populations toward the optimum in a phenotypic hyperspace is the

essence of Fisher’s genetic adaptation model [60], whereas Motoo

Kimura has pointed out that in Fisher’s geometrical model,

mutations with intermediate effect would have a higher probability

of becoming fixed [61]. In a simulation study aiming to revise

Fisher’s infinitesimal model, Orr [62] further argued that the

absolute distribution of fixed mutational effects was exponential,

such that a small number of sizable mutations occur early while

the population mean is distant from the adaptive optimum, and

then a large number of small mutations arrive as populations

progress toward adaptive peaks. Given a relatively simple genome,

a greater degree of phenotypic differentiation (from 11 to 117 days

to flowering) [59] and a deeper coalescence history among

Arabidopsis strains than among maize varieties (A. thaliana and its

close relative A. lyrata separated about 3.0–5.8 mya) [63], a larger

distance between adaptive valleys and peaks in the fitness

landscape created by Arabidopsis accessions can then be expected,

and that consequently allows mutations with large effects to be

favorable.

As for maize, it has a larger genome, and was domesticated

relatively recently (6,000 to 10,000 years ago, [64]). Though a

large amount of genetic diversity has been reported in maize

inbred lines [35], maize NAM populations may establish a

wider distribution of inter-connected demes in a fitness

landscape, with relatively lower adaptive peaks. As a result,

fixation of mutations with large effects is theoretically unlikely

because they tend to overshoot the optimum from the adaptive

space and hence they become deleterious. Small and regula-

tory mutations are thus favored in the maize adaptive process.

Large numbers of mutations of small magnitude may also

reduce the opportunity for unpredictable and sub-optimal

epistasis to occur.

Materials and Methods

Maize NAM-GWAS on days-to-silk flowering time
variation

The Maize NAM (nested association mapping) population

consists of 5,000 recombinant inbred lines derived from each of

the 25 crosses between diverse parents and B73 maize varieties

[65]. In this paper, we also included the public maize intermated

IBM population, MO17xB73, totaled 26 families in the flowering

time GWAS analysis. Details about the design of maize NAM can

be seen in Yu et al. [33] and Buckler et al. [35]. Maize NAM RIL

lines and parents were then genotyped with the 1.6 million SNPs

from Maize HapMapV1 [36].

In flowering time phenotyping, details for the days-to-silk

(female flowering) phenotypes, the best linear unbiased predictors

(BLUPs) of flowering time phenotypes for all NAM lines and the

cross means are available in the supporting material of Buckler

et al. [35]. Genotypes and phenotypes used in this research are all

available and searchable through Panzea database (www.panzea.

org), home of genetic architecture of maize and teosinte.

The complete details of missing genotype imputations, joint

linkage model by stepwise regressions, GWAS association analyses

with correction of population sub-structure and relatedness among

NAM RIL lines and RIMP significance test of GWAS association

can be seen in in Buckler et al. [35] and Tian et al. [6].

Flowering time gene curation
The identification of Arabidopsis genes responsible for phenotypic

variations via TAIR database (www.arabidopsis.org) has become a

convenient and important resource for gene discovery. In addition

to genes documented on the TAIR database, we also assembled

curated information from the published literatures. In total, for our

analysis, 406 Arabidopsis candidate genes are curated with evidence

supported from enzyme and binding assays, functional, genetic

and hybrid interactions, expression profiling, and mutagenesis

experiments. The gene IDs, position information, annotation notes

and references for the candidates are listed in Table S1.

Compara homologs search
Using the reference list of 406 curated Arabidopsis genes, we

performed a global search on maize AGPv1 filter gene set based

on coverage in homology relationships, duplication consistency
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score and consistency of a multiple species phylogenetic frame-

work, provided by Ensembl Compara comparative genomic

pipeline [55]. Input for Compara pipeline consists of the longest

translation for each gene locus, filtered for transponsons and other

low-confidence genes from available whole genome sequences;

clustering was performed by all-versus-all BLASTP followed by

the extraction of genes linked either by best reciprocal BLAST, or

BLAST score ratio larger than the threshold of 0.33. For each

resulting cluster, we conducted multiple alignment based on

protein sequences, inferred the evolutionary relationship by

reconciling gene trees with the established species tree topology

and determine ortholog/paralog calling based on the internal

nodes annotated to distinguish speciation/duplication events of a

rooted phylogeny [38,55].

This orthology pipeline that we used in searching flowering time

homologs in maize, rice or related species based on curated

Arabidopsis flowering time candidate genes is currently hosted both

on Gramene database (www.gramene.org) and Maizesequence

(www.maizesequence.org). The resulting list of maize homologs is

then used as the potential a priori candidate genes for later analyses.

Linkage disequilibrium (LD) calculations
All 1.6 millions of SNP loci from maize first generation hapmap

were first filtered for MAF (minimum allele frequency) larger than

or equal to 0.05. Pair-wise linkage disequilibria of the filtered SNPs

are estimated by the correlation coefficients (r2) between alleles at

any given two polymorphic SNP loci [66]. SNP MAF filtering and

LD calculations were conducted using TASSEL [67].

Linkage block size estimations
Though average LD (linkage disequilibrium) in maize declines

rapidly with distance [68], patterns of linkage disequilibria (LD) in

the maize genome vary greatly within and among chromosomes

[69]. The global estimate of linkage block size of a chromosome

was calculated by taking the median of all distances in base pairs

(bp) between all filtered SNP pairs that are in a perfect LD (r2 = 1)

with each other.

To preserve such LD structure in the analysis, we also

estimated linkage block sizes for every a priori candidate gene,

using the local LD information from the SNP loci that are

located within and around the genes. Suppose that the Gk

denotes the selected list of potential a priori candidate genes

(k = 1, 2, 3,… k) on a chromosome, and Si (i = 1,2,3,… i) is the

polymorphic SNPs on the same chromosome. For each of the a

priori candidate genes (k-th a priori candidate on a chromo-

some), a list of SNP loci (Sk), including the SNP loci in the gene

as well as the loci flanking it, is generated based on the map

physical coordinates. A priori candidate gene block sizes are

defined by the distances (dik) between the SNP loci in (Si; Si=[Sk)

that appear to be in a perfect LD (r2 = 1.0) with (Sk), from both

upstream and downstream.

LD Block Size,LDSk~maxupstream dikf gzmaxdownstream dikf g

For the prior candidate genes that are located in SNP poor

regions, where we cannot generate (Sk) for the a priori candidate,

we use the genome-wide estimates to compute the linkage block

size. This whole genome-wide estimation would likely lead to an

overestimate of the number of associations for such a priori

candidate genes. We further filtered association signals with the

co-localization analysis.

Co-localization of a priori candidates and GWAS
association signals with RIMP score weighting

For every prior candidate gene, an empirical cumulative

probability distribution was computed, taking the physical

distances from the center of the gene (Gk) to all the SNPs (Si)

on the same chromosome. Let Qm (m = 1, 2, 3,… m) be the

GWAS associations identified for a given trait on a chromosome.

Given the distance between a potential a priori candidate gene to

a significant association signal, the conditional probability

(P ColkmDdistkmð Þ) of the gene (Gk) and the association (Qm) co-

localizing can then be generated from the function of the

empirical cumulative probability function of the a priori

candidate.

In general, data from association studies screen thousands of

SNP loci and most studies have corrected the significance levels

with Bonferroni correction or false discovery rate procedures. In

order not to overemphasize association signals while still retaining

reliable information of the importance of hypotheses, we describe

a procedure of weighting the posterior probability of co-

localization with the ranking of significance levels p-values.

Treating all insignificant SNP loci (that did not pass the cutoff

threshold) the same, we ordered GWAS association p-values by

Pi = (p0, p1, p2, …pi), where p1,p2,…pi; and, p0 denotes the

insignificant p-values for all insignificant SNP loci, and then

ranked them by Ri = (1, 2, … ri). The weights are:

wi~
ri

r1
,

ri

r2
,

ri

r3
,:::

ri

ri

� ��
Ri:

For flowering time associations in maize, the weights of

association signals were given from the order of counts computed

with the procedure of bootstrap posterior probability, where

RIMP $2 (re-sampling model inclusion probability) indicates the

significance of GWAS signals. For other cases, p-value significance

levels can be used in this weighing procedure.

Finally, the posterior probability of weighted probability of co-

localizations, which in turn gives rise to the probabilistic

observation of a given potential priors candidate gene with

significant GWAS signals, is then given as:

P ColkmDdistkmð Þ|Wm

,Xm

m~1

P ColkmDdistkmð Þ|Wm

Permutation for the significance of weighted probability
of co-localizations

To adjust multiple testing, we used a permutation procedure to

assess the significance of the significance level weighted proba-

bility of co-localizations, which then were converted to adjusted

p-values. For each prior candidate gene, we first generated 1,000

randomized association sets each containing the same number of

associations as the true data, sampled without replacement from

all SNP loci on a chromosome. We then assigned each set of

associations with the p-values (or RIMP counts, in this study)

from the true associations and computed their posterior

probability of co-localizations with each of the prior candidate

genes. The lowest p-value from each permutation set was

recorded as Pej
(random, i) = {Pej1, Pej2, …Pej1000}, for the jth prior

candidate gene, the vector that serves as the distribution of null

distribution of co-localization. The adjusted threshold was set to

the 5% quantile of the Pej
(random, i).
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Enrichment score calculation
In this study, we developed a statistical significance test for the

observed enrichment, while preserving the structure of linkage

disequilibrium in maize genome with linkage block and co-

localization. For each prior candidate gene, the enrichment score

Ei is calculated by: Ei~log10

Gt

gi

� �
St{Gt

xi{gi

� �
St

xi

� � where St is the

total number of the SNP loci on a chromosome; Gt is the total

number of associations; xi is the number of SNP loci that are

located in the linkage block of a prior candidate genes; and gi is the

number of associations identified in the linkage block and also

significantly co-locating with the target prior candidate gene.

Assuming every SNP locus on the chromosome has an equal

probability to be in an association, we assessed the null hypothesis

by randomizing association results with respect to SNP positions,

while retaining the number of the associations. Enrichment scores

are then compared with the null probability distribution of the

target prior candidate genes. The cutoff threshold is preliminarily

selected at LOD = 2.

Gene ontology (GO) analysis
To further characterize the functionalities of maize flowering

time a priori candidates, we conducted the GO analysis with a

community tool, agriGO (www.bioinfo.cau.edu.cn/argiGO) that

is built specifically for plant species [70]. All significantly enriched

maize a priori candidates were input as the query list, and then

maize genome loci were selected as the background references for

the comparison. Both p-values converted from Z-scores and false

discovery rates (FDR) for multiple tests correction are reported.

Supporting Information

Figure S1 Manhattan plot of maize days-to-silk GWAS
associations. The y-axis is in RMIP (re-sampling model

inclusion probability) counts. Triangles pointing up are the QTLs

that increase the days to silk flowering time in the comparison with

B73, while triangles pointing down decrease the flowering time.

Only significant associations showed.

(TIF)

Table S1 Arabidopsis flowering time related genes.

(PDF)

Table S2 Days-to-silk GWAS associations of maize NAM

populations, RIMP$2.

(PDF)

Table S3 Maize flowering time priori candidates and the

annotation from their Arabidopsis homologs.

(PDF)

Table S4 GO analysis of maize flowering time priori candidate

genes.

(PDF)

Table S5 Arabidopsis gene IDs for GO terms.

(PDF)
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