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Abstract

Pattern-oriented modeling (POM) is a general strategy for modeling complex systems. In POM, multiple patterns observed
at different scales and hierarchical levels are used to optimize model structure, to test and select sub-models of key
processes, and for calibration. So far, POM has been used for developing new models and for models of low to moderate
complexity. It remains unclear, though, whether the basic idea of POM to utilize multiple patterns, could also be used to test
and possibly develop existing and established models of high complexity. Here, we use POM to test, calibrate, and further
develop an existing agent-based model of the field vole (Microtus agrestis), which was developed and tested within the
ALMaSS framework. This framework is complex because it includes a high-resolution representation of the landscape and its
dynamics, of the individual’s behavior, and of the interaction between landscape and individual behavior. Results of fitting
to the range of patterns chosen were generally very good, but the procedure required to achieve this was long and
complicated. To obtain good correspondence between model and the real world it was often necessary to model the real
world environment closely. We therefore conclude that post-hoc POM is a useful and viable way to test a highly complex
simulation model, but also warn against the dangers of over-fitting to real world patterns that lack details in their
explanatory driving factors. To overcome some of these obstacles we suggest the adoption of open-science and open-
source approaches to ecological simulation modeling.
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Introduction

Pattern-oriented modeling (POM) refers to the multi-criteria

design, selection, and calibration of models of complex systems [1].

The basic idea of POM corresponds to the overall strategy of

science, i.e. to use observed patterns, which are characteristic of a

certain system, for detecting the mechanisms that generate these

patterns and therefore are likely to be key elements of the system’s

internal organization [2]. For complex systems, single patterns are

usually not sufficient to narrow down the range of possible

generative mechanisms. Therefore, multiple patterns are used,

which are observed at different scales and hierarchical levels. For

example, cycles in the abundance of small mammals are a striking

pattern, but usually do not contain enough information to

unambiguously identify the mechanism which generates these

cycles in reality. Additional patterns are needed, for example

changes of cycle characteristics in response to weather, latitude,

type of predators, etc., or changes in behavior in high- and low-

density situations.

POM comprises three interrelated elements, which are briefly

explained in the following (more detailed descriptions are in

Grimm and Railsback [1] and Railsback and Grimm [3]). First,

for complex systems multiple patterns should be used for model

design, i.e. a model should not only include those factors which are

considered essential for the model’s purpose, but also entities and

processes that would allow patterns to emerge which are

considered characteristic for the system’s structure and function-

ing. Such patterns can be taken from empirical observations and

literature, from discussions with experts, and sometimes from

existing theory. These patterns can be complex or simple, striking

or relative weak, and possibly contain a lot of information or only

a limited amount. Then, criteria are defined for deciding whether

the model reproduces each pattern. Simple qualitative criteria

should be used first, for example visual inspection of trends or

whether or not average outputs are within confidence limits of

observed data. The model is then revised until the most important

patterns observed in reality also emerge in the model.

Second, patterns are used to contrast alternative sub-models

representing a certain key process. For this, the alternative sub-

models, for example of foraging, competition, or habitat selection,

are implemented one at a time in the full model. Then, the

alternatives are evaluated by testing how well the full model

reproduces the set of characteristic patterns defined before. Sub-

models that cannot reproduce one or more patterns are rejected.

This is repeated until the best sub-model has been identified,

which might require revising the original set of alternative sub-

models or using additional patterns to enhance the ability to

distinguish between sub-models.

Thirdly, multiple patterns can also be used for calibration of

entire sets of unknown parameters. This works the same way as

pattern-oriented model selection: each pattern is used as a
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criterion for acceptance but now it is parameter values being

accepted or rejected. This approach is similar to ‘‘inverse

modeling’’ or ‘‘Monte Carlo filtering’’ techniques used in other

disciplines. It includes the following steps: identify parameters that

need to be calibrated. These are particularly uncertain parameters,

and those to which the model is particularly sensitive; identify

calibration criteria, which often are categorical, i.e. it is checked

whether a certain model output falls within a certain range. Model

outputs should be observed in the same way as their real

counterparts. Then, create a large number of parameter sets by

varying the unknown parameters. Sampling techniques like Latin

hypercube sampling can be used. Finally, run the model for all

these parameter sets and discard those which ‘violate’ one or more

of the test patterns. Use the ‘surviving’ parameter sets to run the

model for addressing the model’s original questions.

POM is used implicitly by many experienced modelers, but it

has been suggested that it be made an explicit strategy for utilizing

observed patterns in a more systematic way [2–6]. The label

‘‘pattern-oriented modeling’’ is not common in the literature but

the underlying concepts of simultaneous inverse modeling using

multiple real-world and model data comparisons are increasingly

used in ecology and other disciplines for developing models [1].

The resulting models are usually of moderate complexity with

typically 10–20 parameters.

However, there are established and well-tested models of

ecological systems which were developed without referring to

POM and which are of high complexity, for example agent-based

models of shorebirds [7], individual-based models of tropical rain

forests [8], landscape succession models [9], or global vegetation

models [10]. These models are complex because their ultimate

purpose is prediction, accordingly they have to consider, e.g.,

multiple species, environmental drivers, heterogeneity in time and

space and among individuals, local interactions, low-level

processes like physiology, metabolism, or adaptive behavior, and

stochasticity. Could POM also be used to maintain, test, and even

develop such existing models? This would be highly desirable

because testing complex models is hard, and even harder to

communicate. POM could thus help to improve such models and

facilitate their acceptance by decision makers by showing that they

are able to correctly reproduce multiple patterns observed in

reality.

We therefore decided to try to use POM to parameterize an

existing complex model as well as to test the model’s ability to

recreate the real world patterns chosen. While POM is usually

aimed at building models of low to intermediate complexity, we

use it here as a post-hoc application to a complex model.

The POM approach used generally follows the concepts

developed by Latombe et al [11], in proposing a set of emergent

patterns and a more qualitative assessment, and bearing in mind

the intended domain of applicability. In this case the model chosen

was required to replicate a wide range of behaviors and operate in

a wide range of environmental conditions. As a consequence,

patterns with a high level of emergence were assessed. The aim

was thus to avoid constraining the flexibility of behavior of the

final model by over-fitting, identified as a potential problem with

simulation models by [12].

In contrast to established methods for design of simulation

experiments, model calibration, and sensitivity analysis e.g. [13,14]

our approach is experimental and largely based on experience. We

nevertheless believe it is important because standard methods for

model analysis do not work for complex simulation models, so that

specific pragmatic methods need to be developed. Many elements

of our approach, however, should be useful for analyzing any

complex simulation model. Moreover, we believe that virtually all

developers of complex but predictive models have their own

proven toolkit of tying their models to data. By explicitly

describing and publishing our approach we hope to contribute

to a culture of publishing these experimental methods, so that an

appropriate methodology for tuning and improving complex

simulation models will emerge from existing experience.

The ALMaSS System and the Vole Model
Here, we use POM to test and develop an agent-based model of

the field vole (Microtus agrestis), which was developed within the

ALMaSS framework [15].

The ALMaSS system. ALMaSS couples mechanistic rule-

based modeling of animal individuals (agents) with comprehensive

inputs of environmental drivers and dynamic landscapes to create

a flexible tool for evaluating scenarios that cannot be or should not

be tested in real life, e.g. policy changes, farming changes, risk

assessments [16–19], as well as more theoretical applications [20–

22]. The system contains animal models that simulate the ecology

and behavior of a range of species, including M. agrestis, at an

individual level (agents), together with the agent’s interactions with

conspecifics, predators and the environment.

The environment modeled in ALMaSS incorporates topogra-

phy as a GIS map of habitat elements, and historical weather data.

The map resolution is 1 m2 and the time-step for updating

vegetation and management information in the landscape is one

day. The structural landscape elements are divided into 40

different, extensible, classes including forests, buildings, roads and

roadside verges, water features, hedges, field boundaries, and

fields. These elements may have associated non-woody vegetation

which will grow dependent upon climate and management, such

as harvest or fertilizer application [23]. All agricultural manage-

ments are controlled by farmers who farm their virtual farms

within the landscape. These farmers will apply crop rotations to

their fields depending upon their farm type, which determine

which crops are grown, in what order and with what area

coverage. Management of these crops is via management plans

which determine the order and timing of agricultural operations.

These operations are again dependent upon probabilities,

weather, and the history of past decisions. Other important

human activities modeled include cutting of roadside verges in

summer. The result is a realistic simulation of spatially and

temporally located management events occurring in the landscape

which are available as spatially-related information for the animal

models which in turn can alter their behavior accordingly.

As an attempt to overcome the project life-time and size

limitations to complex model development and provide better

project accessibility, the ALMaSS system has been released as an

‘‘open science project’’ to provide: an opportunity for international

collaboration in modeling over the internet; transparency in

modeling and model testing; to facilitate the reproducibility of

scientific results; freely available source and public availability and

reusability of scientific data; and public accessibility and transpar-

ency of scientific communication.

This open project is in its infancy but the aim is to open the

ALMaSS models to all interested participants and provides a long-

term resource for bringing together data and models for iterative

testing and improvement (see http://ccpforge.cse.rl.ac.uk/gf/

project/almass/). Since this project is not contingent upon a

single person or research funding, it is hoped that it could grow as

a community based activity facilitating wider collaboration, model

improvement, and access to data.

The vole model. M. agrestis is one of the most well studied

small mammals with hundreds of studies covering molecular

ecology e.g. [24], behavioral ecology e.g. [25], predation [26,27],
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feeding ecology e.g. [28,29], habitat selection e.g. [30,31], and

cyclic dynamics in particular e.g. [32,33]. This, plus the fact that

this species is widespread geographically with predictable habitat

requirements, made it an ideal species for inclusion in ALMaSS.

The ALMaSS vole model was originally constructed in 1999–

2002 and has since been used in a range of pure and applied

studies e.g. [18,19,34–36]. Throughout development, the AL-

MaSS vole model has been subjected to plausibility tests, as well as

ad hoc tests involving visual debugging [37] and internal validity

and code testing [38]. However, until now the model has not been

subjected to a formalized set of tests. Partly this is due to the fact

that testing this type of model has generally been an ad hoc affair, if

done at all, and partly because extensive testing of complex models

is a time and data demanding process.

With a simple model framework it would be possible to attempt

a statistical assessment of model testing. This might be based on

AIC [39,40], maximum likelihood [41], or Approximate Bayesian

Statistics [42,43]. However, for the vole model, the high number

of parameters and long run-times make traditional statistical

testing unfeasible. Simplification was also ruled out, because we

wanted to keep the high flexibility and predictive power of the

model and its framework. Thus, even though simplification might

be possible for any given scenario, the cost would be a reduced

predictive ability for other scenarios; the ultimate result being the

need to develop and test multiple versions of the model for each

new scenario.

The vole model has undergone a number of small changes since

its original creation [15]; but here we adopt the version used by

Dalkvist et al [19]. A full description of the model is not presented

here, since a complete documentation of the model exists, using

ODdox [44], which is a merger of a standard format for describing

ABMs, ODD [45], and Doxygen, a software tool for directly

generating documentations from computer programs [46]. This

documentation is available at: http://www2.dmu.dk/ALMaSS/

ODdox/Field_Vole/V1_02/index.html.

Since a version of the ALMaSS field vole model already existed

prior to starting the POM procedure, it is useful to have a short

description of the original form of the model. Deviations from this

form are indicated as the results of the POM exercise.

A short description of the ALMaSS vole model prior to

POM testing. The modeled field voles consisted of three life-

stages, juveniles and adult females and males. During its life-cycle

a vole could engage in a number of behaviors based on

information obtained from its local environment and con-specifics.

The vole entered the simulation at the location of its mother’s nest

when it was weaned at day 14. It entered the simulation as either

female or male, assuming an even sex ratio and started off by

searching for a suitable territory. Voles could not deplete food

resources in the landscape, preventing bottom-up regulation from

food availability; however, density dependence was incorporated

through local competition for territories.

Each day in the simulation the vole would start by assessing the

local environment or its territory. Other behaviors could

subsequently follow dependent on the information received during

this process. A vole needed to have a territory in order to breed. A

male could mate with a female if his territory overlapped her

position. If this was the case for more than one male, she chose the

one closest. Younger voles that found themselves in an older vole’s

territory of the same gender with an overlap of more than 50%

were forced to move. The criteria for assessing territory quality

varied with the season and for the mature male during breeding

season included the presence of mature females.

The breeding season typically started 5th of April and ended 1st

of October. The start date was determined by the time at which

new green grass growth occurred. This was under the control of

vegetation models which were dependent upon the temperature.

Currently, this is the only weather/vole interaction incorporated

in the model. The length of the breeding season was varied by

changing the end date to the 1st of September or 1st of November

to simulate a short or long breeding season respectively. Mortality

was modeled as being the result of predation, starvation, if they

spent too much time in unsuitable habitat, or by reaching their

physiological lifespan limit of 1563 months. Mortality also

included infanticide attempts if the mature male moved beyond

the bounds of his original territory and encountered females with

un-weaned young. His success would depend on the age of the

young.

POM Procedure
The POM approach used here follows Topping et al [44] and

defines a number of real world data patterns to which the model

output is compared. The process is iterative: after defining a model

question it is necessary to traverse the complete POM process as

depicted in Fig. 1, at least once. This process includes fitting

parameter values as well as making structural code changes as

necessary. Thereafter, should the model performance meet the

performance criteria, the modeling cycle will be stopped,

sensitivity analysis and documentation performed, and the model

can be used for its intended purpose. In this iterative procedure,

we focused on 17 parameters related to the vole sub-model of

ALMaSS (see Table 1 in the Results section). Vole-unrelated

parameters in the ALMaSS model framework remained un-

touched by this process. In some cases the vole parameters have

been estimated by field studies and are available in the published

literature. Since the precise values of these parameters (e.g. male

territory size) are likely to be specific to a particular study or

method, the published values were considered to be guidelines

only. However, since the parameter values were not constrained in

the model testing processes these parameters provide a useful

secondary test of the model fit obtained, i.e. fitted values should fall

close to the published values.

Definition of model purpose. Here, the model’s purpose is

to model the population and spatial dynamics of voles as

accurately as possible. This model is intended for use in a range

of scenario analyses for pesticide impacts, land-use changes and

population dynamics studies, hence the aim was to obtain a broad

range of realistic responses rather than fit a narrow set of

conditions.

Choice of real world data patterns and modeling

approach. Patterns were selected to be non-trivial emergent

patterns, defined as ‘above comportment level 09 by Latombe et al

[11]. They were also selected to avoid redundancy (e.g. female

density was used as well as sex ratios thus making male densities

redundant). In order for real world data to be considered suitable

as a data pattern for model comparison it also needed to fulfill two

other basic criteria. Firstly it should be considered to be

representative of the system modeled; secondly it must be possible

to use ALMaSS to recreate similar conditions to those under

which it was collected. After reviewing the available literature

studies the following four sets of basic patterns were selected (see

also supporting information ‘File S1 Pattern Set Data.xlsx’):

Pattern set 1: age and sex structure of the

population. Myllymaki [47] carried out a study in southern

Finland in 1968 in which age and sex structure of the population

was monitored from May to September using live-trapping in a

population fluctuating with a four-year cycle. At the time of

sampling the population was in its increase phase. Voles were

trapped in areas of activity identified in the spring and the result is

Post-Hoc Testing and Tuning of a Complex Model
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a detailed, but non-spatial, picture of the population structure.

From this data five patterns were identified as suitable for fitting:

P1.1 Sex ratio on day 90 (1:1 M:F). Fitting criterion 62%.

P1.2 Sex ratio on day 200 (1:1.95 M:F). Fitting criterion 62%.

P1.3 Mean breeding season female density (75 Ha21). Fitting

criterion 62%.

P1.4 Male age structure with season. Fitting criterion - least

squares difference combined with other patterns and this overall

measure minimized.

P1.5 Female age structure with season. Fitting criterion - least

squares difference combined with other patterns and this overall

measure minimized.

The simulation approach for P1.1–P1.5 was to simulate a

population of voles living in a block of high quality habitat

surrounded by an equally large area of dispersal-only habitat. No

predators were included since the population was in its increase

phase in 1968 and hence specialist predation would be at its

lowest. Each simulation was run for 20 years, but for evaluation

the first 10 years were discarded to avoid including possible effects

of initial conditions. In order to adjust for the differing climate

regime in Finland the starting/stopping conditions for breeding

were allowed to vary and were included in the set of parameters

for fitting. After each run, mean sex-ratios on days 90 and 200

(615 days) were calculated, as was female population density at

day 200 (615 days). Deviation from the target pattern was

recorded for each simulation run.

Population structure in the middle of each month of May-

September was recorded and converted to a proportion. The

squared difference as a mean across all five months was used to

compare goodness of fit for both males and females to patterns

P1.4 and P1.5.

Pattern set 2: vole densities across multiple habitat

types. The literature was searched for densities of M. agrestis

for non-cyclic populations (Table 2). In cases where the data was

pooled with other species, or where a clear description of the

habitat was missing, or where the field voles where sampled in a

habitat type not represented in the model, the data was discarded.

In cases where the data was presented as field voles/100 trap

Figure 1. POM procedure for improving a model’s structure
and parameterization. This is done by comparing model output to
multiple patterns observed at different levels of organization and scales
(from [44]). Field data testing is checking the internal consistency of the
pattern data. Although not part of the traditional POM procedure this
has been found to be a very necessary precaution due to errors and lack
of detail in published data descriptions.
doi:10.1371/journal.pone.0045872.g001

Table 1. Parameters varied (variables) as a result of model-cycle testing and the parameterization resulting from the POM testing.

Parameter Ref Function Value 2003/2009 Value after POM

V1 Male minimum reproductive age (days) 40 30

V2 Female minimum reproductive age (days) 20 23

V3 A multiplier to get a quality score from area (e.g. 1.56minimum home range) 2.0 2.1

V4 Minimum female territory radius (m) 8 8

V5 Maximum female territory radius (m) 16 8

V6 Minimum male territory radius (m) 12 9

V7 Maximum male territory radius (m) 20 23

V8 Age difference needed before a male can ‘evict’ a younger male (days) 0 30

V9 Additional probability of mortality on dispersal 0 0.055

V10 Daily unattributed mortality probability 0.003 0.0025

V11** The date in autumn at which reproduction cannot be started (day) 273 230

V12 The probability of moving if there are no females over-lapping a male’s territory NA 0.0505

V13 Threshold number of voles in a territory for density dependence effects 1 4

V14 The temperature at which grass is assumed to grow (triggers breeding if achieved for 7 consecutive
days) (uC)

5 3.552

V15 The date before which breeding is impossible regardless of temperature (day) 70 80

V16* The number of consecutive days a vole can disperse without dying (days) 5 infinite

V17* Probability of infanticide attempt 100% 100%

*V1–V15 were subsequently utilized in the sensitivity analysis, V16–V17 were found to be insensitive and therefore the effect of varying these was not reported.
**V11 is a climate dependent parameter, fitted to Finnish conditions from Pattern Set 1. It should be adjusted when applied to other regions.
doi:10.1371/journal.pone.0045872.t001
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nights or catch per removal quadrat, we used the methods of

Wheeler [48] and Hansson [49], respectively, to convert the

measure into voles/ha. Densities from the literature were log10-

transformed to normalize them and calculated as a mean within

each of the seasons; spring (March, April, May), summer (June,

July, August) autumn (September, October, November) and

winter (December, January, February) and listed together with

their standard deviations. Due to limitations to the method of

Wheeler [48], densities of less than 9 voles Ha21 were lumped as a

categorical variable. Weather data used as input came from 1990–

1999 from a weather station in Central Jutland (UTM 32-

ED50:543, 6,244) and comprised daily temperature and precip-

itation.

Simulations were constructed using a typical Danish landscape

(Fig. 2). Each parameter configuration tested was simulated for 30

years, with the first 20 years of data discarded. Weather inputs

were for the years 1990–1999 from the area mapped. Mean

densities were calculated for all occupied habitat patches in the

map for each of the four seasons. Patches were considered only if

they were .1 ha in area. The exception to this was made for

unmanaged grassland and linear features (e.g. hedges), in which

case a lower limit of 1000 m2 was used, since these features were

rarely .1 ha in size. This prevented chance events of tiny patches

containing one vole from biasing the results. All in all there were

22 observations resulting from the combination of literature

studies, habitat and season. Deviation from these patterns was

assessed as the total absolute deviation on a natural log scale per

habitat and season. To provide a restrictive test an arbitrary pass

mark of 10.0 was used to assess whether the fit was acceptable

(which corresponds to a mean of ,0.5 [22 observations] on a loge

scale).

Pattern set 3: dispersal. Field vole dispersal was studied in

southern Sweden by Sandell et al. [50,51] in a homogenous wet

meadow using three 1467 grids of live-traps with 7 m between

traps, and 30 m between grids. Four main results were selected as

patterns for matching and criteria for fit were defined as:

P3.1– Strong adult philopatry. Dispersal was only greater than

two home-range diameters (males 90 m, females 70 m) for ,2%

for both males and females. Pattern fitted when both measures are

less than 2%.

P3.2– Mean distance moved between trapping was 10.2 m

(611.1 m) and 9.0 m (610.2 m), males and females respectively.

Pattern fitted when both measure lie within confidence limits.

P3.3– Mean maximum movement distances per individual were

greater in males than females (28.6 m 619.0 m cf 22.4 m

616.3 m). Pattern fitted when both measures lie within confidence

limits.

P3.4– Natal dispersal distances were high. Sandell et al. [50]

found 13.8% of natal dispersal to be over 2 home-ranges, and 60%

within 1 home range. Pattern fitted when both figures are matched

to within 65 & 10% respectively.

To simulate this study a homogenous area of grassland

500 m6400 m was simulated as being surrounded by forest.

Three grids of pitfall traps were simulated in the center of this area

and spaced as in the original study (see above). The simulation was

run for 10 years to allow the population to equilibrate. Following

this the simulation was run for a further two simulation years and

any vole within 1 meter of the trap location was identified on a

Table 2. Literature used to obtain density estimates for comparison to model outputs.

Reference Habitat Measured Recalculated to voles/100 trap nights

[68] Set-aside Voles/100 m transect Yes [48]

[68] Unmanaged grassland Voles/100 m transect Yes [48]

[68] Linear features Voles/100 m transect Yes [48]

[68] Pasture tussocky Voles/100 m transect Yes [48]

[68] Pasture low yield Voles/100 m transect Yes [48]

[68] Woodland Voles/100 m transect Yes [48]

[68] Field crop Voles/100 m transect Yes [48]

[48] Unmanaged grassland Density No

[69] Unmanaged grassland Density No

[69] Pasture tussocky Density No

[70] Unmanaged grassland Density No

[71] Unmanaged grassland Density No

[72] Unmanaged grassland Density No

[73] Unmanaged grassland Voles/100 trap nights Yes [48]

Olsen pers. comm. Unmanaged grassland Voles/100 trap nights Yes [48]

Olsen pers. comm. Linear features Voles/100 trap nights Yes [48]

Olsen pers. comm. Field crop Voles/100 trap nights Yes [48]

[74] Forest plantation Catch/SQ Yes [49]

[59] Pasture tussocky Catch/SQ Yes [49]

[75,76] Pasture tussocky Density No

[75,76] Pasture low yield Density No

[77] Woodland Voles/100 trap nights Yes [48]

doi:10.1371/journal.pone.0045872.t002
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daily basis. The trap location, natal location, date, unique

identification number, age, and sex of the vole were recorded.

Using the identification number to track voles in the same way

as the mark-release-recapture was done in the real study it was

possible to recreate the statistics provided by the original studies.

Natal dispersal measurements were, however, restricted to voles

born within the grid plus one home-range diameter to simulate the

same conditions as the original study.

Pattern set 4: the ability of the model to create realistic

predator-prey cycles. Vole multi-annual cycles is one of the

best known population patterns in ecology [32,52–56]. It was

therefore considered important that the vole model could simulate

these cycles as emergent properties of predator-prey and landscape

structural interactions. Two types of cycling and non-stable

fluctuations could be identified from the literature. The ability of

the model to create these cycles by varying predator numerical

response and landscape structure was therefore tested. To pass the

test, the model had to produce 3 types of fluctuations; 1) stable 5

year multi-annual fluctuations with amplitudes of around 3

(calculated as loge(max N/min N)), and a low phase of 2–4 years

in between; 2) less stable fluctuations with cycle length of 3–5 years

with lower amplitude (,2); 3) non-stable fluctuations with low

amplitudes (,1). Landscapes used for this test were structurally

simple (Fig. 3). Except for numerical response the predator

behavior was kept constant for each test. Specialist predators were

assumed which were characterized by a delayed numerical

response to changes in prey density. These were modeled to

require a relatively high number of voles in order to survive and a

low number of voles to reproduce. Predator dispersal would occur

within a few days of unsuccessful hunting. Their home range and

dispersal ability was relatively low in order to represent small

mammalian predators [22].

Results

Fitting the parameters and traversing the model cycle required

approximately 48,000 simulation runs. Stochasticity resulting from

decision processes in the model was reflected in the patterns [57],

hence, a minimum of ten replicates of any parameterization was

required during fitting to avoid using erroneous signal information

causing divergence from the best parameterization.

In the following, we first provide a summary description of the

changes in model structure and parameters that resulted from the

pattern-oriented calibration. Then, for each of the four pattern

sets, we describe in more detail the insights gained from the

Figure 2. The GIS map of the 10610 km landscape was used as the landscape for pattern set 2 testing. Exploded panels show the detail
of the map and screenshot of the ALMaSS vole model shows a) male and female locations (blue & green dots) in February, b) June locations. Note
some habitats have been recolonized or are occupied by dispersers in June.
doi:10.1371/journal.pone.0045872.g002
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process of model fitting. Finally, results of the sensitivity analysis

are presented.

Results of Applying the POM Cycle
Initial and final values of the 17 calibration parameters are

presented in Table 1. In addition, a number of structural changes

were made to the model structure to improve model behavior. It is

important to note that the POM process is not just a re-calibration,

but can, and did, also result in changes to the underlying model.

These changes were:

i. Introduction of an age difference requirement before an

older male could evict a younger male from a territory (V8;

V-references refer to corresponding variables in Table 1).

ii. The introduction of an additional mortality factor when

voles were dispersing as a probability of dispersal mortality

per dispersal event (V9).

iii. Introduction of a variable threshold number of voles, scaled

to sex-specific minimum territory size, below which density-

dependent effects were ignored. This was measured as a local

number of voles present within the bounds of the vole’s

territory. This addition altered the territory quality assess-

ment method compared to previous versions (V14).

iv. Allowing variability in the minimum reproductive age. This

was found to be necessary to provide a fit to the age

structure, which had previously been fixed at literature

values.

v. A restructuring of the code to allow the introduction of

juvenile male and juvenile female classes needed for the age-

structure outputs (Pattern set 1). This did not affect code

function but did increase code readability and was necessary

to obtain the differentiation of age classes in the model

outputs.

vi. Inclusion of variable habitat quality based on digestibility

already incorporated in the ALMaSS system [44]. Digest-

ibility was given as 0.7 plus the square root of the proportion

of new green biomass (,14 days old) out of total biomass,

with a ceiling of 1.0. This allowed a 30% variation in habitat

quality between fresh new growth and mature biomass.

Further refinement of this feature was not undertaken due to

a lack of suitable real world data for this species.

vii. Removal of starvation days as a concept (V16). This was

found to be redundant after inclusion of V8 in ‘ii’ above since

the additional dispersal mortality was more restrictive and on

the face of it more realistic than a simple starvation

threshold.

viii. Infanticide probability (V17) was also found to be insensitive,

but this was retained in the model because this factor is a

known feature of the ecology of this species and because it

was considered that other scenarios (e.g. genetic or dispersal

in low density populations) may require this feature to be

enabled.

ix. Code was added to simulate live-traps and to produce output

tailored for density and age-structure analyses. Although not

affecting the model behavior, this code was necessary to

produce the outputs needed for the dispersal evaluation

(Pattern set 3 below).

During the fitting process a number of observations were made

about the process as well as the final fit for each pattern set. These

are detailed for each pattern set below.

Pattern sets 1 (P1.1–1.5): age structure and density. One

important result was the inability to combine the results of the

simulation approach to age structure with density measurements

in large-scale landscapes. It was quite possible to obtain very good

fits to Myllymaki [47] data, but these fits resulted in completely

unacceptable fits to patterns of density across multiple habitat

types (pattern set 2 patterns). Incorrectly set dispersal mortality

parameters were identified as being the major cause of the

discrepancy, and as a consequence it was decided to attempt to

recreate a landscape structure similar to that sampled by

Myllymaki in the Ahtiala study area, and refit the parameters.

The landscape was created by identification of the island of the

study and subsequent mapping based on imagery from Google

Earth. A number of the habitats could be identified from tourist

route descriptions of old woodlands and orchards, and due to the

topography many landscape structures will have remained

constant since 1968 (e.g. rocky outcrops). The rest of the habitat

patches had to be assumed to be as they were in the original study.

Farming was considered to be cattle farms with pasture and crops

of cereals and fodder beet. The resultant map (Fig. 4) was

incorporated into ALMaSS and the model cycle re-started. Since

the original study only sampled from high vole density areas and

pooled all data, the same procedure was followed in ALMaSS.

Hence, all vole populations in old orchards were counted, and

densities were calculated as female voles per hectare orchard.

As the first stage in the testing cycle, based on the more realistic

map of Ahtiala sample site, both male and female age-structures

could be re-created with a high precision (Fig. 5). The best fit

measurement for males and females was 0.088 and 0.075

respectively (Fig. 5 C & D). However, the procedure used to fit

multiple patterns (pattern sets 2–4) resulted in sacrificing male and

female fit somewhat to obtain the optimal fits to density and sex

ratio patterns with fits of 0.298 and 0.121 (Fig. 5 E & F)

Figure 3. Three simplified landscapes used for testing the
model’s ability to produce vole population cycling. To test for
the emergence of cycles, predator characteristics were varied in
conjunction with these landscape structures.
doi:10.1371/journal.pone.0045872.g003
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respectively. Accepted deviation from fit for mean female density

was +0.4%, sex ratio day 90 was +2.1%, and sex ratio day 200 was

21.3%.

As a secondary test of the model it is worth considering the fits

of parameters for which we believe we know the approximate

ranges. V1, V2, V4–V7 (Table 1) represent minimum reproduc-

tive age and territory size parameters. These were allowed to vary

for fitting but we have good indications of expected values from

the literature. In all cases the resulting fitted value matches the

range of values reported from the literature well. In the case of

minimum male reproductive age, this deviates by 6 days from the

reported value [58], but this study did not look for earlier

maturation, so it can only be considered a guide.

Pattern set 2 (P2.1): vole densities in multiple

habitats. Using this configuration for fitting to the heteroge-

neous landscape provided a mean absolute fit deviation across all

habitats and dates of 0.4 (ln scale). The pattern of fits shows that

with the exception of unmanaged grass areas there was no obvious

bias for over or under estimating vole densities (Fig. 6).

Figure 4. GIS map of the island comprising the Ahtiala study area from which the real world data was obtained to test model vole
sex ratios and population age-structure.
doi:10.1371/journal.pone.0045872.g004

Figure 5. Age structure for males and females based on Myllymaki (1977) and the best fit model simulations, and final fit resulting
from the POM exercise (accepted fit). A) Actual male age structure; C) Best fit model male age structure; E) Accepted fit model male age
structure; B) Actual female age structure; D) Best fit model female age structure; F) Accepted fit model female age structure.
doi:10.1371/journal.pone.0045872.g005
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Pattern set 3 (P3.1–3.4): vole dispersal. The model

configuration found was capable of satisfying all pattern fitting

criteria 3.1–3.4 (Table 3). Similarly to patterns from pattern sets 1–

2, the dispersal fits were also found to be highly dependent on the

precise simulation conditions. For instance, in ALMaSS it is

straightforward to create natal dispersal statistics for the whole

population. This however was not how it was done in the field

study, where natal dispersal was assessed from data collected from

the grids. Hence, it was important to restrict the assessment of data

in the model test, disregarding any voles born further than one

territory diameter from the grid area. In this case it was clear from

the original research description what should be simulated, but

grassland or other boundary conditions also affected the fits as did

the conditions for assuming trap-captures. Increasing the area of

trap influence led to decreased maximum distances moved as it

became almost impossible for voles not to be caught in traps.

Hence, more precise fitting was not considered desirable without

better descriptions of the actual study area and conditions.

Pattern set 4 (P4.1): vole population cycling. The final

model configuration was able to satisfy the criteria for stable

multiannual cycles and non-stable population fluctuations. Simi-

larly to the other patterns evaluated, population cycles were found

to be highly dependent on landscape structure as well as predator

configuration. Increasing the level of heterogeneity generally

produced less stable cycles with lower amplitude whereas

increasing the predators numerical response to vole density

generated more stable fluctuations with high amplitudes (Fig. 7).

Sensitivity Analysis
Following fitting of the pattern sets 1–4, sensitivity analysis is a

natural progression, the main results of which are summarized in

Fig. 8, for pattern set 1. The model was sensitive to a number of

parameters, with V1–4, V6, V7, V11, V13, and V15 all causing

more variable responses (6100% change in at least one response

Figure 6. Real world means and model means for total vole density for a range of Danish habitats and sampling periods. X-axis
abbreviations: Spring (Spr.), Summer (Sum.), Autumn (Aut.), Winter (Win.), Unmanaged (Umgr.) Permanent (Perm.).
doi:10.1371/journal.pone.0045872.g006

Table 3. The final model configuration simulation results for
patterns 3.1–3.4 compared to those observed by Sandell et al.
[50,51].

Pattern Set 3 Pattern Sandell et al Model

Adult Male Philopatry (%) 1.4* 1.0

Adult Female Philopatry (%) 0.3

Mean Max. Male Dispersal (m) 28.6 41.9

Mean Max. Female Dispersal (m) 22.4 22.2

Mean Female Inter-trap Distance(m) 9 8.6

Mean Male Inter-trap Distance (m) 10.2 11.8

Mean Natal Dispersal Distance (m) 13.8 13.0

Natal Dispersal ,2 Home-ranges (%) 61.0 70.1

*Only pooled sex data provided.
doi:10.1371/journal.pone.0045872.t003
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Figure 7. Three examples of 50 years of simulation using the parameterized model on three different landscapes (see Fig. 3) A) 1
patch; B) three patches; C) 16 patches.
doi:10.1371/journal.pone.0045872.g007
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variable) at 680% of their fitted value. Of these V1, V4, V6 & V7

all represent parameters for which we believe the values chosen lie

within acceptable ranges. V2 is a model construct, essentially a

scaling factor relating habitat scores to final quality and can

therefore never be validated. V11 and V15 are both dates

controlling start and finish of reproduction. Since this is thought to

be primarily controlled by photoperiod [58], these dates are likely

to also be reasonably accurate in that they result in sensible within

season population dynamics. The model was only slightly sensitive

to mortality factors (V9 & V10), and the chance of dispersal by

males if there are no females present during the breeding season

(V12).

Although not part of the sensitivity analysis per se, the iterative

process of fitting to pattern sets 2–4 revealed further aspects of

sensitivity. Pattern set 2 fitting restricted the parameter sets with

respect to mortality, especially dispersal mortality parameters.

Likewise pattern set 3 (dispersal) patterns further restricted both

parameters related to dispersal and territory size. The vole cycles

were also highly sensitive to input settings, although not

parameters formally tested here. As thought to be the case in

the real world, the emergent population cycles were dependent

upon the landscape structure, predator specificity, and less so on

vole parameter settings [22].

Qualitative Changes in Model Behavior
The new post-POM version of the model still has an underlying

structure very similar to the previous version. However, both

model structure and parameter values have been altered, and

subsequent usage of the post-POM model highlights three

important differences compared to the pre-POM version. These

are 1) a difference in relative densities in different habitats, often

leading to much higher (26) densities in optimal habitats; 2) a

change in phenology with higher late summer numbers than

previously and earlier cessation of breeding; 3) increased within-

year dynamics in sex ratios. A number of toxicological impact

assessments, however, remained largely unaffected e.g. [19]. The

implication being that studies relying on changes in habitat

structure or requiring analysis of population structures will be most

affected by use of the new version.

Discussion

The ALMaSS vole model was, like probably most complex

models which are designed for making robust predictions,

implicitly designed to simultaneously reproduce multiple patterns.

Therefore we applied the POM approach to an existing model,

both to explicitly check how well multiple patterns can be

reproduced after calibration, and to see how the procedure could

help improve model structure.

The final fit between model outputs and real world patterns was

generally very good. The model was able to predict relative

densities in a wide range of habitats and seasons, simulate within

season population dynamics, natal and adult dispersal, and vole

cycling. This indicates a high level of structural realism of the

model. But it is important to keep in mind than even the best

model still is a model, which means it still ignores more features of

reality than it can include. Hence, we first discuss remaining issues

of model performance which indicate limitations in the model’s

structural realism. Only then do we discuss the pros and cons of

our post-hoc POM approach to calibrating and complex models

and improving and proving their structural realism.

Limitations of Fits to Real World Patterns
There are four main weaknesses in the observed fits that merit

discussion. The first is the generally high density prediction for

natural grass areas compared to real world measurements. This

was a consequence of the fit to pattern set 1 pattern set, i.e. mean

female density of 75 voles Ha21 at the peak of the breeding season

in the Ahtiala landscape. Whilst there is little doubt that this was

the case [47], the model assumes that all such areas are of equal

quality to those found in Finland. This is clearly erroneous, and

hence estimates of vole density are generally high. Clearly

differentiation of unmanaged grassland is a feature that should

be considered in future releases.

The second issue relates to changes in habitat quality. At least

one factor thought to be important in shaping vole densities is not

incorporated in the model, i.e. drought. Loss of high quality green

food in summer has been reported to dramatically affect vole

numbers [59]. The current model does allow for some variation in

quality as a result of the green/dry matter ratio of vegetation, but

this ratio is not yet altered by drought. Therefore, to improve the

vole model it will be necessary to consider significant improve-

ments to the ALMaSS unmanaged vegetation models.

The third point concerns the within-season changes in density.

In Myllymaki [47] there was a clear decline in density in later

summer, but this was not generally the case in the data from other

studies. Three drivers may have caused this: externally caused

increase in mortality (increased predation); internal birth and

death processes (disease, early cessation of breeding); and/or

changes in habitat quality (e.g. drought above). Externally altered

mortality can be included by altering predator settings from the

general background mortality to the coupled dynamics used to

recreate the vole cycles. This does, however, require information

about the prevalence of predator and their specificity. This is out

of scope for this paper, but may well have been an issue affecting

the differential fits between Finnish data source [47] and the

predominantly Danish based density studies.

The fourth point is that our manual fitting method does not

provide a description of the entire possible parameter space that

could provide suitable fits. The sequential nature of our iterative

fitting procedure means that fitting to a local optimum cannot be

ruled out. Naturally a Monte-Carlo approach would provide a

solution to this but would be logistically impossible due to the

dimensionality of the problem and the need for separate scenario

inputs for each pattern set. An alternative approach might be to

use Approximate Bayesian Computation [42,60] which might

both help in automation of the parameterization, and to describe

the resulting suitable parameter space. However, these techniques

are as yet untried on models as complex as the ALMaSS vole

model, and currently suffer from the long computation times

needed per replicate.

A more general point arises from the example of infanticide.

This behavior was found not to affect the fit to the observed

patterns, but was retained in the model nonetheless. The argument

following the common modeling practice would be that it should

be removed as unnecessary complexity. However, this is a

behavior that we believe to be part of the normal vole ecology

[61,62] and in certain circumstances (e.g. low density populations,

genetic studies), it can be important. Since the purpose of this

model requires it to have a wide domain of applicability, we

judged that removal of this process on the grounds that the

literature patterns we used do not support it, was not justified. In

this case the model is a better representation of reality than the test

data currently available and should not be constrained by this. An

alternate way to view this is that the fact that infanticide happens
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Figure 8. Graphs of sensitivity analysis for the 15 parameters tested. Fits to density, sex ratios and age structure are shown as proportion
deviation from target pattern. X-axis denotes the parameter values used in each case, and the vertical line the actual parameter value chosen
following POM testing (see Table 1). Overall measure of fit (black line) is the mean deviance and is capped at 1.0. All graphs are scaled to 61.0 for
proportion deviance from real world patterns (left y-axis), and 0–1.0 for measure of fit (zero being perfect fit) (right y-axis).
doi:10.1371/journal.pone.0045872.g008
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could be considered a pattern; the result of the POM test is then

obvious.

Evaluation of the POM Exercise
As the model cycle was applied to the vole model it became

apparent that the most difficult aspects of the fitting process were:

1) That the real world patterns were based on studies, the details of

which were not adequately described for simulation purposes; 2)

That the precise fit to the patterns was very much dependent upon

the precise simulation inputs; 3) The patterns although not

redundant were not independent either, nor should they be.

The first issue, inadequate empirical patterns, must be

considered a general problem when testing detailed models on

published studies. These studies were not conducted for POM

testing; they are often old, being carried out in a time when focus

was more on large long-term data sets rather than detailed

descriptions of context. Pooling of sample data, inconsistent

definitions, especially of habitat types, and uncertainty about the

reliability of densities based on live-trap methods all contributed to

the difficulties of interpreting and using old non-specific POM

studies in this and previous ALMaSS POM exercises [44,63]. To

some extent some of this bias can be compensated for by altering

the perspective for model sampling. For instance, the live-trap

simulation approach used for the pattern set 3 dispersal patterns is

an example of the ‘‘virtual ecologist’’ approach [64,65], as is the

restriction of sampling from high quality habitats on Ahtiala as

carried out by Myllymaki [47]. Many other idiosyncrasies of

pattern data cannot be dealt with in this manner and go

undetected as stochasticity, e.g. the decrease in density in late

season as discussed above.

The second issue, sensitivity of output to simulation input, is

both a positive and negative feature of the ALMaSS vole model.

The positive aspect is that the model exhibits behavior in response

to changes in sensible inputs (e.g. landscape structure). This is

clearly needed if we want to use to the model to evaluate factors

such as change in land-use and management e.g. [18,66]. The

negative aspects are a result of the requirement for specificity in

inputs, and the aforementioned problem of inadequate real world

descriptions. In the case of the structure of the landscape from

which our pattern set 1 data patterns originated, it was clear that

assuming a too simple structure for fitting these patterns made it

impossible to fit to the pattern set 2 patterns. This is precisely the

idea of incorporating a number of patterns, i.e. to reduce the

potential parameter space, but it also raises concerns of

uncertainty in the real world patterns (over-)influencing the final

model. In hindsight the map we constructed represented more

realistically the structure of the study area than a homogenous

block, but its precise details were probably inaccurate. Hence we

have an unquantifiable uncertainty not in the model or

parameters, but in the data we use to test the model. This

phenomenon might be considered a passive over-fitting of the

model and restriction of the effective domain of applicability.

The third issue, that patterns are not independent, can be

considered a strength of the patterns selected here. Although as

Latombe et al. [11] state, redundancy does not contribute to

validating the parameterization, the fact that the patterns are not

wholly independent is very important in limiting the potential

parameter space. Considering the alternative where patterns are

completely independent then it may be possible to adjust each

output signal to the corresponding pattern by manipulation of

independent variables. This would not improve confidence in the

model, although the fit may be excellent! This could be considered

to be analogous to an imposed response (sensu [67]), but at the

level of the whole model rather than individual responses. Patterns

observed in real systems are to be expected to be linked to each

other, if they indeed, as we assume, all reflect certain aspects of the

same overall internal organization of the real system. For example,

sex ratio, emergent sex-specific mortality, and age structure all

reflect the same processes, but emphasize different aspects. Getting

these interconnected patterns right simultaneously is thus more of

an insurance, or confirmation, that the model is on the right track,

than mere redundancy. Nevertheless, it is important to include

patterns from different scales and levels of organization.

Given the above considerations we would conclude that the

ALMaSS vole model in its current, post POM form, is able to

mimic many more or less independent patterns, many of them

observed at highly integrated levels. Thus we assume that the

model captures the internal mechanism of vole population

dynamics in heterogeneous and dynamic landscape sufficiently

well for the model’s intended purpose. The model is capable of a

range of realistic behaviors, and does not appear to have obvious

major flaws in matching the published vole study data. This does

not mean, however, that we consider the model even close to

perfect, but there is probably no vole-landscape model that has

higher structural realism.

To conclude, we found post-hoc testing and tuning of a complex

model a highly useful approach. Due to data constraints and lack

of previously developed standard protocols, many steps in our

approach required experimental decisions; being explicit about

these decisions and about the structural realism that can be

achieved with a model is, however, an important step towards

transparency in model testing. This will help to improve the

credibility of complex models. These are often dismissed not only

for being poorly communicated, but also because potential users

do not obtain sufficient information to assess whether or not the

model is good enough for its intended purpose. Post-hoc POM can

help close this gap, and once more complex models have been

tested and tuned in a similar way, less experimental, formal

protocols for this approach are likely to emerge.

Methods

Procedure for Applying Pattern Testing
Since each of the four main pattern sets were derived from

different studies it was necessary to define four separate ALMaSS

scenarios to test each of the four sets. Using the fitting criteria

described under POM Procedure above and iterative procedure

was carried out. Parameter fitting and code modification was

carried out by iterating comparisons to pattern set 1 (age structure

and density). When an acceptable pattern set 1 fit was obtained,

pattern set 2 (densities across multiple habitat types) was fitted,

subsequently rechecking pattern set 1 fits. Once both pattern set 1

and pattern set 2 patterns were adequately replicated, pattern set 3

(dispersal patterns) was incorporated into the cycle, and finally

pattern set 4 (the ability to create vole cycling). Due to the length of

time taken to run a single replicate (between 30 minutes and 12

hours) the number of replicates and iterations of the model cycle

needed to be kept to a minimum. Hence by necessity the precision

of fit to each successive pattern set was relaxed to prevent an

unfeasibly long fitting process, as well as over-fitting. The detailed

procedure is described below:

Detailed parameter fitting procedure. This procedure is

based on the experience with similar tests for other species

modeled within the ALMaSS framework [44,63]. The aim was to

achieve a fit to the parameters with as few iterations as possible,

whilst facilitating understanding of the model and the sensitivity

analysis. The procedure used for this study was divided into 5 steps

(1–5) each with a number of sub-steps and was as follows:
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1. Pattern set 1 patterns

1.1. Create a parameterization set and define a tolerance for

fitting (in this case with a deviation of ,2% for P.1–1 to

P1.3, and simultaneously minimizing deviance from P1.4

& P1.5).

1.2. Run the model varying each parameter in turn by e.g.

65, 10 and 20% of its initial value. Run a minimum

number of replicates of unique parameter set, usually 8–

12.

1.3. Create a set of diagrams describing the mean change in

model outputs (pattern set 1 patterns) with changing

parameter values (as Fig. 6, but with fewer points)

1.4. Identify the next set of parameters which will reduce the

mean across pattern deviation for the next iteration. This

could be done in two ways, either using simple hill

climbing, or by evaluating the responses on the charts and

estimating which combination of parameter values should

make a clear improvement to the fit. The latter approach

requires comparison of responses across two or more

parameters and then estimating the necessary change in

all parameters to achieve the desired fit. Both methods

were used depending on time constraints. Hill climbing

was primarily used for fine tuning and when long periods

of unattended model runs were possible, estimation

worked best when the parameter values were far from

optimum fit and rapid progress was needed.

1.5. Iterate this cycle (go to 1.1) until all model outputs match

their respective patterns within the given tolerance or until

it is apparent that a fit is impossible. In the latter case this

would manifest itself as the inability to find a combination

of patterns that met the tolerance criteria.

1.6. If a fit was possible go to 2, otherwise using charts from

1.3 and experience gained during the fitting to implement

changes to the model structure, and return to 1.

2. Pattern set 2 patterns

2.1. Test the parameterization set against pattern set 2

patterns. Tolerance was set as a mean deviation of ,0.5

ln scale, and no individual values of .1.0 ln scale.

2.2. If a fit could be obtained within acceptance limits using

the set of parameter values fitted in ‘1’ above then

parameter values were not altered, although the category

into which habitats were classified could be altered to

obtain better fits. Note it is possible to reach this point

from 2.5 via 1.1–1.6

2.3. If a fit was possible and any modifications to habitat

quality categories had been carried out, then return to 1, if

no modification and a fit obtained, then go to 3.1,

otherwise got to 2.4.

2.4. Alter parameter values until a fit was found or it was

determined that a fit was impossible. In this case since

there was only one type of pattern as a single metric to be

assessed (i.e. the summed deviation from a perfect fit on

natural log scale across all habitat season combinations for

which there were patterns). If a fit was found go to 2.5,

otherwise attempt code modification and return to 1.1.

2.5. Return to 1.1 with the new parameterization to check that

changes have not significantly altered the pattern set 1 fit,

then if not, proceed to 3.1, otherwise iterate 1.1–2.5 each

time restricting the parameter set for pattern set 1 to

prevent repeating a previous pattern found not to fit both

pattern sets.

3. Pattern set 3 patterns

3.1. Test outputs against pattern set 3 patterns (see individual

pattern set 3 criteria).

3.2. If a fit is achieved then go to 4, otherwise modify

parameters again to obtain a fit.*

3.3. Return to 1 with the constraints that previous fits to pattern

sets 1 & 2 were not allowed to be repeated to prevent

endless iterations.

4. Pattern set 4 patterns

4.1. Test outputs against pattern set 4 patterns (see individual

pattern set 3 criteria).

4.2. If a fit is achieved then go to 6, otherwise modify

parameters again to obtain a fit.*

4.3. Return to 1 with the constraints that previous fits to pattern

set 1, 2 & 3 were not allowed.

5. Create an extended version of the charts in 1.3 as sensitivity

plots of the final model configuration and parameterization.

*Program changes were not required for these steps in this

study. This was serendipitous since there was no reason to expect

this a priori.

Following parameterization, sensitivity analysis was carried out

primarily with those patterns derived from pattern set 1 [47]. This

restriction to pattern set 1 was for logistical reasons. The logistics

of multi-dimension testing of 15 parameters at 11 values and four

simulation types (each must be run separately for each parameter/

value combination) was simply too overwhelming.

Following sensitivity analysis, the ODdox documentation was

updated (see http://www2.dmu.dk/ALMaSS/ODDox/

Field_Vole/V2_0/index.html), and reference folders containing

executable files and input files needed for POM testing were

archived at http://ccpforge.cse.rl.ac.uk/gf/project/almass/frs.

Supporting Information

File S1 Numeric real world data used for pattern sets 1–
4.

(XLSX)
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det åbne land. Flora Fauna 109: 9–21.

69. Hansson L (1968) Population densities of small mammals in open field habitats

in South Sweden in 1964–1967. Oikos 19: 53-&.

70. Flowerdew JR, Shore RF, Poulton SMC, Sparks TH (2004) Live trapping to
monitor small mammals in Britain. Mamm Rev 34: 31–50.

Post-Hoc Testing and Tuning of a Complex Model

PLOS ONE | www.plosone.org 15 September 2012 | Volume 7 | Issue 9 | e45872



71. Lambin X, Petty SJ, MacKinnon JL (2000) Cyclic dynamics in field vole

populations and generalist predation. J Anim Ecol 69: 106–118.
72. Bierman SM, Fairbairn JP, Petty SJ, Elston DA, Tidhar D, et al. (2006) Changes

over time in the spatiotemporal dynamics of cyclic populations of field voles

(Microtus agrestis L.). Am Nat 167: 583–590.
73. Hammershøj M, Jensen TS (1998) Vejskråninger og småpattedyr. Flora Fauna
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