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Andrea Bravi1*, Geoffrey Green2, André Longtin3, Andrew J. E. Seely1,2,4,5

1 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, 2 Therapeutic Monitoring Systems Inc., Ottawa, Ontario, Canada,

3 Department of Physics, University of Ottawa, Ottawa, Ontario, Canada, 4 Division of Thoracic Surgery, University of Ottawa, Ottawa, Ontario, Canada, 5 Department of

Critical Care Medicine, University of Ottawa, Ottawa, Ontario, Canada

Abstract

Tracking the physiological conditions of a patient developing infection is of utmost importance to provide optimal care at
an early stage. This work presents a procedure to integrate multiple measures of heart rate variability into a unique measure
for the tracking of sepsis development. An early warning system is used to illustrate its potential clinical value. The study
involved 17 adults (age median 51 (interquartile range 46–62)) who experienced a period of neutropenia following
chemoradiotherapy and bone marrow transplant; 14 developed sepsis, and 3 did not. A comprehensive panel (N = 92) of
variability measures was calculated for 5 min-windows throughout the period of monitoring (1264 days). Variability
measures underwent filtering and two steps of data reduction with the objective of enhancing the information related to
the greatest degree of change. The proposed composite measure was capable of tracking the development of sepsis in 12
out of 14 patients. Simulating a real-time monitoring setting, the sum of the energy over the very low frequency range of
the composite measure was used to classify the probability of developing sepsis. The composite revealed information about
the onset of sepsis about 60 hours (median value) before of sepsis diagnosis. In a real monitoring setting this quicker
detection time would be associated to increased efficacy in the treatment of sepsis, therefore highlighting the potential
clinical utility of a composite measure of variability.
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Introduction

Tracking the physiological conditions of a patient is of utmost

importance in a clinical setting. Treatments provided at an early

stage of development of disease are indeed more likely to be

effective, and the effectiveness is related to higher chances of

survival and lower healthcare costs. Considering the development

of severe sepsis, a retrospective study on 2,731 subjects showed

that each hour of delay in the initiation of effective antimicrobial

therapy is associated with a mean decrease in survival of 7.6% [1].

Furthermore, severe sepsis and septic shock are the most common

causes of mortality in critically ill patients, with a mortality of

approximately 50% and an average annual cost of $16.7 billion in

the USA [2].

Despite the intensive research for the management of severe

sepsis and septic shock, there is the lack of a tool capable to

continuously monitor its development. In the domain of neonatal

sepsis identification, Moorman et al. proposed the Heart Rate

Characteristic [3,4], a logistic regression model combining

variability measures applied to R-R interval time. Their approach

demonstrated a remarkable reduction in all cause infant mortality

in a 3000 patient randomized controlled trial [5], and is leading to

commercial applications. However, stepping from neonatal to

adult monitoring the scenario changes. Infection remains a clinical

diagnosis confirmed in a delayed and insensitive matter by blood

cultures, still the gold standard [6,7]. We first reported on

continuous heart rate variability (HRV) measurements during the

onset and resolution of clinically diagnosed infection in immuno-

compromised ambulatory patients, finding altered HRV in

different HRV metrics occurring ,24–40 hours in advance [8].

In this study we re-analyze the data using a novel method to

integrate altered variability.

The present article proposes a novel method, a composite

measure of variability, to be used for the identification and

tracking of sepsis development. The composite measure was

created by applying a sequence of signal processing steps

designed to enhance the change from a baseline of health, and

integrate the clinically relevant information collected from 92

measures of variability. This broad number of measures was used

to maximize the probability to detect clinically useful information

from the R-R interval time series. These steps produced a unique,

composite measure, which has potential to enrich clinical

monitoring.
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Materials and Methods

Dataset
The study included 21 ambulatory outpatients (age median 51

(interquartile range 46–62)) who underwent bone marrow

transplant (BMT) for hematological malignancy or other disorders.

Sepsis was defined as systemic inflammatory response syndrome

along with clinically suspected infection requiring treatment. Over

50% of the patients had sepsis diagnosed based on the presence of

fever, defined a priori as one recording greater than 38.5 degrees

centigrade or two recordings greater than 38.0 degrees centigrade

within 12 hours. Inclusion criteria were treatment with myeloa-

blative chemoradiotherapy followed by an allogeneic or autolo-

gous BMT, and informed consent. Exclusion criteria were pre-

existing cardiopulmonary disease, taking beta-blockers or calcium-

channel blockers, pre-existing arrhythmia (e.g. atrial fibrillation,

atrial bigeminy), contraindication to electrocardiogram adhesives

(e.g. allergy, severe psoriasis). Continuous Holter ECG data was

collected (average 12 [SD 4] days of monitoring) for all patients in

the study, starting approximately 24 h before their BMT and

continuing through neutropenia until its resolution or until

withdrawal from the study. The used Holter system, a Zymed

DigiTrak-Plus (Philips Healthcare, Markham, Ontario, Canada),

sampled the ECG at 175 Hz with 10-bit amplitude resolution, and

annotated all normal QRS peaks and arrhythmias, including

premature atrial and ventricular beats. Only the beats that

characterized normal sinus rhythm (NSR) were included, while all

premature beats were excluded. RR intervals were derived from R

wave annotations. Among the 21 patients, four patients dropped

out within 24 h of initiation of monitoring due to discomfort or

other reasons, leaving 17 subjects for analysis, 14 of which

developed sepsis. Sepsis was defined as systemic inflammatory

response syndrome along with clinically suspected infection

requiring treatment. Written informed consent was obtained from

all participants, and the Ottawa Hospital Research Ethics Board

authorized the study. For further details refer to [8].

Signal Processing
Through a windowed analysis (5 minutes window size, 2.5

minutes overlap) of the RR interval time series, 92 variability time

series were extracted for each subject. From now on we will refer

to the variability time series with the word ‘‘measures’’, for

simplicity. All the subjects who developed sepsis, developed it after

6 days after admission (median value). Therefore, to reduce the

fluctuations with time scales shorter than the time scale of sepsis

development, the measures were filtered through a Savitzky-Golay

zeroth-order filter (length of 577 samples, i.e. ,24 hour). Given

their considerable number, two data reduction steps were applied:

one with the aim of selecting only the relevant information for this

specific application, and the other with the aim of reducing the

redundant information.

In the first step, the Spearman correlation coefficient (SCC)

between the measures and a prototype function representing the

expected trend during the development of sepsis was computed.

The type of prototype function was arbitrarily chosen as a straight

line going from +1 at admission time to 21 to the time of

administration of antibiotics. The set of values [21.+1] is

arbitrary, because the SCC is a nonlinear operator which

compares only the order between the values of the line and one

measure of variability. Those values were specified only to

highlight that the correlation between this line and a variability

measure is positive only when there is a monotone negative

relationship between the two (i.e. the measure is decreasing over

time). The values of correlation were then bootstrapped 1000

times to get an estimate of the average population correlation for

each measure. Then, 11 measures with the highest average

correlation were selected (the number of measures that were

selected is arbitrary, and due to keep only ,10% of the available

measures).

In the second step of data reduction, the 11 survived measures

(per patient) were processed through Principal Component

Analysis (PCA) after admission condition normalization. This

normalization transforms the value of the measures into a

percentage of change with respect to the first 24 hours after

admission, according to the formula ÄHRV = [current – base-

line]/range, where ‘‘baseline’’ is the mean variability for the first

24 hours after admission, and ‘‘range’’ is the maximum variability

less the minimum variability within the same time frame. PCA is

separately applied to each patient, taking the set of 11 measures,

and computing the loading coefficients of the first principal

component, which is the component oriented in the direction of

maximum variance of the dataset [9]. Recalling that the loading

coefficients represent the components of a vector, it is possible to

create a unique population reference coordinate system by taking

the median for each set of loading coefficients across the

population. Given the population reference system, the projection

of all the measures for each subject is computed, obtaining one

time series per subject, which we call a composite measure of

variability, or ‘‘composite’’. To make the model more robust, the

population medians of the loading coefficients were computed by

bootstrapping 1000 times their distributions.

To motivate the choice of creating a composite measure, for

each subject we compared the changes in the composite composite

variability with the relative changes (i.e. after admission condition

normalization) of the single measures composing it.

To create an alert system identifying when a patient is

developing sepsis, the information obtained from the composite

measure time series was further reduced by extracting the sum of

the energy of the series at very low frequencies, which represent

those frequencies with the time scale of sepsis development (i.e.

days). This summed energy, which we call Es for simplicity, was

computed in the interval (0,6.3] mHz. This interval was selected to

include the peak frequency characterizing each composite

measure (see Figure S1). The energy was extracted by computing

the Discrete Fourier Transform of the composite and summing the

absolute value of the transform in the specified frequential interval.

Approaching the alert system creation from a classification

perspective, two classes were introduced; the first one is the Es

during the second day after admission (we remind that the first day

was used to pursue the admission condition normalization),

namely Es1, the second one is the Es from the second day from

admission to the moment of administration of antibiotics, namely

Es2. Then, in the training phase a logistic regression was used to

create the decision boundary between the two classes, providing

the probability of being developing sepsis; only the subjects who

developed sepsis were considered in this phase.

Using a leave-one-out cross-validation, we tested the decision

boundary for both subjects who developed and did not develop

sepsis. To reproduce a standard monitoring situation, the

probability of developing sepsis was assessed continuously over

time by computing Es over increasingly long intervals. This means

that the same RR interval time series was analyzed taking multiple

incremental windows (e.g. the probability is computed by taking

the first 30 minutes of data, then the first 60 minutes, then 90,

etc…) and reproducing the processing steps described above. To

better simulate a monitoring situation, a new value of the

probability was computed every 2.5 minutes (i.e. the window step

of the windowed analysis). A diagram of the entire processing is

Composite Measure of Variability to Track Sepsis
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reported in Figure 1. Because the Es is a feature that increases

either when variability is decreasing or increasing with frequencies

lower than 6.3 mHz, we imposed the probability to be zero when

the tested composite measure from which Es is extracted was

increasing or its last value in time was positive (the composite was

considered increasing if the SCC with a line going from 21 to +1

was higher than zero). This approach, based on the idea that only

a decrease in variability corresponds to physiological impairment,

is justified by the fact that the composite measures were found

positive and increasing for the subjects who did not develop sepsis

(Figure S2), and negative and decreasing when sepsis was

developed (Figure 2) (see also Discussion).

Results

Composite Measure of Variability
To create a measure tracking the physiological condition of

patients undergoing sepsis development, two major signal

processing steps are introduced after the computation of 92

variability measures: 1) selection of the informative measures based

on nonlinear correlation assessed with a prototype function

reflecting decreasing variability, and 2) projection of the selected

variability measures onto the first principal component of the

population. In the first step, the Spearman’s nonlinear correlation

between the time course of the measure and the prototype

function is computed for every measure from every subject; then,

the average population correlation was computed through

bootstrap. The thresholding procedure (see Methods), which aims

to retain 10% of the measures with the higher correlation, resulted

in 11 surviving variability measures (see Table 1 for details).

The survived techniques were projected onto the population

first principal component, which on average accounted for 95.6%

of the variance of the measures. Those techniques found different

relevance inside the first principal component, as showed in Figure

S3. Looking at the median of the loading coefficients across the

population, the area under the curve of the detrended fluctuation

analysis (selected measure number 4), the wavelet area under the

curve (measure number 5) and the Shannon entropy (measure

number 6) were identified as having the highest values. However,

no real major contributor to the principal component was found,

because all the techniques had close loading coefficients.

The composite measure of variability created through this

process presented a clear decline over time for patients who

developed sepsis (see Figure 2). The decline started on average

around 140 hours prior the administration of antibiotics,

increasing its speed at about 42 hours prior. For comparison we

also show the composite for the three subjects who did not develop

sepsis in Figure S2. The composite in that case showed positive

values, and was either increasing or oscillating around positive

values. The comparison of the composite variability with its single

components showed that the projection on the principal compo-

nent produced changes 2 to 3 times larger than any single

measure. For simplicity we reported only the change of the

detrendended fluctuation analysis area under the curve (DFA

AUC, i.e. measure #4), being the measure with a higher weight in

the PCA model, and therefore a major contributor to the

composite (see Figure 2).

Detection of Sepsis Development
To detect sepsis development the summed energy at the very

low frequencies (Es) was extracted from the composite. This

feature represents the energy at the frequencies with the same

time scale of sepsis development. The detection of sepsis

development was achieved by training a logistic regression with

two classes of data, one representing early health conditions (Es

of the second day after admission, called Es1), the other

representing sepsis at its most advanced stage (Es from second

day to administration of antibiotics, called Es2). The two classes

show considerably different values (Figure S4), making the

classification task easier. We also computed the energy at the

very low frequency for the single measures of variability

composing the composite, after admission condition normaliza-

Figure 1. Signal processing diagram. Block diagram showing how
to create the composite measure of variability and the likelihood of
developing sepsis. The time window [0,t] is increased at every iteration
of 2.5 minutes. This allows to reproduce a monitoring situation where
new R-R intervals are continuously analyzed. Having the variability up to
at a certain time t, we can compute the composite, and from the
composite the probability of developing sepsis.
doi:10.1371/journal.pone.0045666.g001
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tion. All of them showed a considerably lower separation

between the two classes. Nevertheless, in all cases (composite

and single measures) the differences between Es1 and Es2

allowed rapid detection of the development of sepsis when

tracking over time the probability estimated from the logistic

regression (Figure 3). This was true for all the subjects except

subjects 4 and 13; this result is discussed below. The median

time of detection of sepsis development was 60 hours in

advance (the values for each subject are reported in Table 2).

Sepsis development was considered ‘‘detected’’ when the

probability reached values higher than 0.99. The transition

time from probability zero to detection had a median value of 3.3

hours. The early warning system was run also on the three subjects

who did not develop sepsis; as expectable, the estimated probability

of developing sepsis remained stable at zero for all of them. The

classification performances of the system were: sensitivity 86% (12/

14), specificity 100% (3/3), positive predictive value 100% (12/12),

and negative predictive value 60% (3/5).

Discussion

In this paper a procedure to create a composite measure

tracking the change in variability during the development of sepsis

Figure 2. Average composite measure of variability. In red are displayed the results of the composite; for comparison, in black are displayed
the results of the detrended fluctuation analysis area under the curve, after admission condition normalization. The continuous lines represent the
average value of the time series across the population, and the dashed lines represent plus or minus the standard error of the mean. The two vertical
dotted lines highlight when, on average, the composite variability started to drop. Before averaging, for each of the 14 subjects developing sepsis the
time series of either the composite or the detrended fluctuation analysis were aligned to the time of administration of antibiotics (t = 0). The picture
shows the higher sensitivity of the composite to sepsis development, respect to the sensitivity of a single HRV measure.
doi:10.1371/journal.pone.0045666.g002

Table 1. Selected measures of variability.

Measure number Measure name Short description

1 Standard deviation Measure the dispersion of the data from its mean value.

2 Coefficient of variation Ratio between the standard deviation and the mean of the distribution.

3 Power law Y intercept After the power spectrum of the time series is computed, a line is fitted in the frequency range
[1024,1022] Hz. This measure is the value of the intercept of the y-axis of that line. The power
spectrum was computed using the Welch’s method on the interpolated R-R interval, after spline
interpolation at 4 Hz.

4 Detrended fluctuation analysis
area under the curve

This measure computes how the variance of the signal change within certain time scales. The area
under the curve is the trapezoid integral of the variance-time scales curve.

5 Wavelet area under the curve Area under the curve of the Wavelet spectral density [14].

6 Shannon entropy Measure of the degree of complexity of a time series, is based on a weighted sum of the probability of
occurrence of a certain.

7 Plotkin-Swamy average energy The PS energy operator provides a nonlinear estimate of the energy of the signal at a given time. This
measure is the average over that energy.

8 Fuzzy entropy Similarly to sample entropy, fuzzy entropy computes the conditional probability that a pattern seen in
an m-dimensional space, could be seen in a (m+1)-dimensional space. The difference is that, to assess
whether two points in the phase space are close, a fuzzy membership function is used instead of a
Heaviside step function.

9 Correlation dimension Global Measure of the dimensionality of a time series attractor.

10 Cardiac vagal index This measure is a combination of the two orthogonal spreads in the Poincaré plot.

11 Largest Lyapunov exponent Measure quantifying the chaoticity of a system.

For further details about these measures refer to [10]. The specific parameters used to compute the measures are available upon request.
doi:10.1371/journal.pone.0045666.t001
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was presented. Being based on a dataset of ambulatory outpa-

tients, the procedure makes the major assumption that a patient

started being monitored before he actually developed sepsis, or at

an early stage of sepsis development. This assumption limits the

applicability of the procedure to only a patient population which

starts from a ‘‘baseline of health’’. However, this specificity is

expected to provide improved outcome because taking advantage

of a piece of information, i.e. the drop in variability, which would

not be present if the patient was already in critical conditions,

maybe because of multiple organ dysfunction syndrome (therefore

presenting already a low variability).

The creation of the composite measure targeted to sepsis

development required two major steps: 1) a selection based on

nonlinear correlation with a prototype function representing

decreasing variability, which we hypothesize is related to altered

clinical physiological state; and 2) the projection on the first

principal component of the population of the selected measures,

which magnified the information relative to the change in

variability. Comparing the trends of the composite measure for

both subjects who did (Figure 2) and did not develop sepsis (Figure

S2) a distinction appeared, both from the point of view of the

trends (the former decreasing, the latter increasing or stable), and

of the values of the measure (the former negative, the latter

positive). Our system was able to properly identify 15 subjects out

of 17, both developing and not developing sepsis. As discussed

previously, these results are supported by a growing literature

documenting a reduction in HRV correlates with infection and its

Figure 3. Probability of development of sepsis. This set of double graphs show the composite measure of variability (blue solid line) and the
probability of developing sepsis (green dotted line) at a given time, for each subject. As reported for the plot of subject 1, the x-axis is the time with
respect to the administration of antibiotics (t = 0).
doi:10.1371/journal.pone.0045666.g003

Table 2. Detection of sepsis development through
composite variability.

Subject number
Detection time
[hours in advance]

Transition time
[hours]

1 45.42 7.91

2 84.17 0.41

3 144.2 2.9

4 0 –

5 96.25 3.33

6 27.25 2.33

7 121.7 2.1

8 133.3 1.7

9 27.92 2.5

10 37.5 2.08

11 147.5 2.5

12 96.25 1.25

13 0 –

14 29.17 1.25

Median value of detection 64.7 hours in advance, with a transition time from
probability zero to probability higher than 0.99 of 3.3 hours (median value).
doi:10.1371/journal.pone.0045666.t002
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severity [11]. Other recent examples include the use of short-term

heart and respiratory rate variability, combined with other

physiological parameters, to predict the risk of severe morbidity

due to infection on 138 preterm infants [12], and the use of HRV

to predict post-stroke infection [13].

To motivate the creation of the composite measure, for each

subject we compared the relative change (i.e. after admission

condition normalization) in the composite with the relative

changes of the single measures composing it. We found the

composites showed larger changes respect to the single measures.

This is not surprising given that the first principal component is a

weighted sum of those single changes. The result was confirmed

also by the comparison of the sum of the energy at the very low

frequencies. This makes the principal component analysis a

preferred tool to create a composite measure of variability for this

specific application.

To further illustrate the potential clinical utility of the composite

measure, we also proposed an early warning system based on the

sum of the energy of the composite. We selected the sum of the

energy of the composite as the feature of interest after the

extraction of a variety of other features, which however did not

provide the same results in terms of quality of the prediction of

sepsis (see next). Indeed, the chosen system provided in the

majority of the cases smooth probability transitions, detecting

several hours in advance the development of sepsis. An exception

was subject 4, the one with the lowest Es (Figure S4). Because his

Es was not presented to the logistic regression at the time of

creation of the model (we used the leave-one-out cross validation),

the decision boundary of the classifier resulted in a value higher

than his Es; this produced a probability of zero. Therefore, this

false negative represents an effect of the small sample size. The

second exception is subject 13, and is due to the fact that his

composite measure had for the majority of the recording positive,

and increasing values (Figure 3). In this case a drop in variability

did not correspond to physiological deterioration, rather the

opposite. Further investigations are needed to explain why this

subject expressed a different trend in HRV. Nevertheless, the

present study shows how the hypothesis of direct proportionality

between variability and health might be usefully employed for

individual patients.

The composite measure showed improved results (i.e. faster

detection time and shorter transition time) respect to the measures

with a lower weight in the PCA, and results comparable to the

ones of the measures with a large weight in the PCA (such as DFA

AUC). This is related to the fact that the observed changes in

HRV associated to sepsis resulted large enough not to require the

increased sensitivity of the composite (i.e. there was a significant

separation between the distributions of Figure S4). Nevertheless,

this sensitivity would prove useful in detecting sepsis development

when more subtle changes in HRV appeared. For instance

subjects developing sepsis faster than what we observed with this

dataset would present a smaller energy at the very low frequencies,

therefore making the increased sensitivity of the composite useful

in better detecting sepsis development.

There are several limitations to this study. While its purpose is

principally to introduce a method to integrate numerous

variability metrics into a single composite measure, the clinical

evaluation is limited to a small pilot dataset. Furthermore, during

the design we made a few arbitrary choices which require

validation. Some were justified by intuition, such as the choice of

the frequency range to compute the Es, identified by inspection of

Figure S1. Others were justified based on results across multiple

trials. For example, we selected different filter lengths, types of

normalization and number of variability measures to include in

the principal component model to improve the smoothness of the

profiles of the composite measure and of the probability of

developing sepsis. A wider analysis that better motivates these

choices would be beneficial not only in further improving the

performance, but also in understanding the independent value of

each measure of variability. Furthermore, as mentioned, the

proposed results are based on a pilot study, involving only few

patients. Thus, the usefulness of the proposed approach needs to

be proven on larger datasets.

In summary, the composite measure here proposed represents

a tool which joins the clinically valuable information of several

measures of variability, in a specific way targeted to enhance

the sensitivity to sepsis development. This approach addresses a

key challenge in variability analysis, which is the reduction of

the dimensionality of the analysis, given by the large number of

measures currently available [10]. The idea of merging the

information from different measures through data reduction

techniques could be applied in future studies to merge

information streams from multiple organs. This study, for the

first time, presents a methodology with which to combine

multiple variability metrics in a feasible and potentially clinically

useful manner.

Supporting Information

Figure S1 Fourier transform of the composite. The figure

shows the Fourier transform of the composite measure of

variability for each subject. The black vertical line represents the

threshold of 6.3 mHz, which was arbitrarly chosen to include the

majority of the energy of the signals (i.e. the peaks in the

transform). The energy at the very low frequency Es was defined as

the sum of the energy in the frequency interval (0, 6.3] mHz. A

different selection of the threshold did not produce any change in

the results, as long as those peaks were included.

(TIF)

Figure S2 Composite of subjects who did not develop
sepsis. These time series represent the composite measures

computed for the three subjects who did not develop sepsis.

Because the admission condition normalization takes out the first

day of recording, the composite starts from 24 hours after

admission. The constant value at the end of the composite is due to

the transient of the Savitzky-Golay filter.

(TIF)

Figure S3 Population PCA. These panels summarize the

model built from the PCA. The list of the eleven variability

measures employed in the model, together with their relative

number and short description, is reported in Table 1. The upper

panel above shows the values of the loading coefficients of the first

component for each of the 14 subjects who developed sepsis, and

each of the 11 measures which survived the nonlinear correlation

selection. Each measure contributed slightly differently to the

PCA, depending on the patient. The lower panel represents the

same data in the form of median and interquartile error after

bootstrapping 1000 times the loading coefficients distributions.

Please note that the number identifying the subjects in the figure

above (y-axis) do not correspond to the subject numbers reported

in [8]; indeed this numbering excludes the subjects who did not

develop sepsis.

(TIF)

Figure S4 Energy of the composite. The bars represent the

energy at the very low frequencies (Es) of the composite measures

for all the subjects during the second day, i.e. Es1, and from the

second day to antibiotics administration, i.e. Es2. In colors are the

Composite Measure of Variability to Track Sepsis
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energies extracted from the composite measure of variability, in

black are over-imposed the energies extracted from the detrended

fluctuation analysis area under the curve after admission condition

normalization. The composite showed a larger separation between

the two classes, and therefore increased sensitivity to sepsis

development. A Wilcoxon signed-rank test showed that the null

hypothesis of equal median between Es1 and Es2 is rejected, for

both the composite and the single measure of variability (p-value

,1024).

(TIF)
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