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Abstract

Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains
unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result
from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful
but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with
event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which
allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for
transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model.
Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high
frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced
power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the
Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of
ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes
in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore,
provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-
frequency information processing.
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Introduction

The electroencephalogram (EEG) has made a very significant

contribution towards our understanding of human sensory and

cognitive processes, and foremost in this regard have been studies

investigating changes to the EEG resulting from the presentation

of a stimulus or the making of a movement. Event-related

potentials (ERPs) are a widely used tool for this purpose but

despite their undoubted success, there remains a fundamental

uncertainty as to what they are and how they are generated. The

core uncertainty is whether the ERP is an evoked signal (i.e. a

signal super-imposed upon and independent of the ongoing EEG),

a phase alignment of the ongoing EEG, or some combination of

the two.

This is no arcane debate as the nature of the ERP goes to the

heart of numerous central issues in the field. If the ERP is an

evoked signal, it makes perfect sense to measure the amplitude and

latency of ERP maxima and minima and to try and localise the

sources of ERP components and identify their functions. If instead

the ERP emerges from a phase alignment of the ongoing EEG,

then the maxima and minima of the ERP may have no real

significance and the idea that ERP components have clearly

identifiable sources and functions might prove illusory.

Induced and Evoked Responses
The controversy over the nature of the ERP is significantly

complicated by the fact that there are two classes of event-related

change in the EEG that invariably accompany each other but

which appear to be largely independent [1]: induced and evoked

responses. The physiological mechanisms that generate evoked

and induced event-related changes in the EEG have not been fully

characterised but a clear conceptual exposition of the difference is

provided by Pfurtscheller & Lopes da Silva [2]. Essentially,

induced changes are power changes in the ongoing EEG whereas

evoked changes are event-related transients generated by the

temporary synchronization of networks of neurones and are

independent of the ongoing EEG.

As induced changes involve event-related power changes in the

ongoing EEG, they are time-locked to the event but do not show a

consistent phase response. An example of this is the classic Berger

effect, whereby the alpha rhythm, an EEG oscillation of around

10 Hz seen over the posterior scalp during waking, is attenuated

by opening the eyes. The Berger effect is time-locked in that it

occurs at the time the eyes are opened but it is not phase-locked

because the alpha rhythm is attenuated regardless of what phase

the alpha rhythm happens to be in at the time the eyes are closed.

Induced changes go under a variety of names including event-

related synchronization (ERS) and event-related desynchroniza-

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45630



tion (ERD) depending upon whether the power increases

(synchronization) or decreases (desynchronization) [2] and more

generally as ‘event-related spectral perturbations’ [3,4].

If, as is widely assumed, evoked changes are responses generated

by the temporary synchronization of networks of neurones that are

independent of the ongoing EEG, then they would be both phase-

locked and time-locked to the event. Phase-locked is a term best

suited to describing oscillatory phenomena and means that the

event induces a consistent phase in the ongoing oscillation. The

term is curiously inappropriate when referring to changes that are

non-oscillatory but the terminology is well-established and will be

maintained here. Phase-locked in this context simply means that

the generated field has a consistent shape and time course from

one trial to the next.

EEG Frequency Bands
At this stage, it is worth considering the frequency distribution

of the oscillations observed in the spontaneous EEG. By

convention, the waking EEG is divided into five distinct frequency

bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) beta (13–

30 Hz) and gamma (.30 Hz). Each of these bands may be further

subdivided so, for example, the beta band is often subdivided into

beta1 (13–20 Hz) and beta2 (20–30 Hz) and so on. With the

exception of alpha, these frequency bands are not associated with

identifiable peaks in the power spectrum. Indeed, the distribution

of power in the EEG is approximately proportional to 1/

frequency, except for the alpha peak (,10 Hz) which is most

prominent at rest with the eyes closed.

Induced responses involve power changes to the amplitude of

the ongoing EEG but the direction of change depends upon the

frequency band in question. Presentation of a visual stimulus, for

example, will typically result in a decrease in the amplitude of

alpha (i.e. desynchronization) but an increase in amplitude in theta

(i.e. synchronization) [5,6], Why cortical oscillations in some

frequency ranges synchronize whereas others desynchronize has

never been adequately explained before but a possible answer to

this question will be provided later.

The observation that the type of induced power changes seen in

the EEG are frequency dependent and are differentially responsive

to experimental manipulation, has often been interpreted to mean

that different EEG frequency bands have specific functions (see,

for example [6]). However, although the search for specific

functions for specific frequency bands has a long history it has not

been overburdened by success. Nevertheless, if distinct frequency

bands exist it makes sense to ask how many there are and what

frequency ranges they occupy. The answers to these questions

remain uncertain but evidence from both human and in vitro

studies point to as many as 8 distinct frequency bands between 1.5

and 80 Hz [7,8]. It has also been noted that the spacing of the

frequency bands follows a mathematical pattern that is optimal for

minimizing cross-frequency interference between them [7–9]. If

so, it suggests that the cortex may use frequency-division

multiplexing with each frequency band conveying its own

independent stream of information. Complete informational

encapsulation, however, would be of little use unless there were

some additional mechanism for communicating between frequen-

cies [10] and there is good evidence that such communication

exists [11–13] A novel mechanism for how cross-frequency

communication may be achieved will be proposed later.

Figure 1. Schematic Representation of the Evoked Model of ERP Generation. In this model the ERP is conceptualised as being an evoked
signal superimposed upon, and independent of, the background EEG. Panel a) represents multiple segments of the ongoing EEG in which an event
occurred such as the presentation of a stimulus or initiation of a movement. The time of the event is indicated by the vertical dotted line. In this
model the ongoing EEG is treated as noise. Panel b) is the average of the multiple segments of EEG and shows that the oscillations tend to cancel out
producing a flat line. Panel c) shows the signal evoked by the event which is consistent across all segments and d) represents the average of those
evoked signals. Panel e) shows the recorded EEG which is the sum of a) and c). Finally, panel f) shows that the mean of the segments of recorded EEG
from e) provides an accurate reconstruction of the evoked signal.
doi:10.1371/journal.pone.0045630.g001
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What is an Event-related Potential?
For nearly forty years, two competing mechanisms have been

proposed to account for the generation of ERPs: the evoked model

and the phase-alignment model. As will become clear, neither

model is entirely satisfactory nor are they mutually exclusive.

The evoked model of the ERP is illustrated in Figure 1. In this

model, the ERP is an evoked signal superimposed upon the

ongoing EEG and averaging across trials is simply a means of

increasing the signal to noise ratio; the evoked components (signal)

which are phase-locked are kept whilst the ongoing EEG (noise),

which is not phase-locked’* cancels out. If the evoked model is

correct, it has many useful properties. It is, for example, the

underlying assumption that justifies the search for the functional

significance of ERP components and their anatomical substrates.

One limitation of the evoked model is that it provides no

satisfactory explanation for the characteristic shape of ERPs. The

evoked model explains the ERP as being the summation of

multiple, evoked responses generated from different sources with

different time courses. In principle, such a model can explain the

time course of any possible ERP. Because it can explain

everything, however, in an important sense it explains nothing.

Sensory and cognitive ERPs, for example, typically have the

appearance of an amplitude modulated ‘down-chirp’. A down-

chirp is a signal in which the frequency decreases with time and, in

the case of sensory and cognitive ERPs, the amplitude is

modulated such that it is inversely proportional to frequency.

This pattern suggests that ERPs have an underlying structure in

the frequency domain and it is a pattern that cannot easily be

accounted for by the evoked model.

The initial challenge to the evoked model came from Sayers,

Beagley, & Henshall [14] who argued that if ERPs are generated

by evoked signals superimposed on the ongoing EEG, then the

power in the EEG signal post-stimulus should be higher than that

in the pre-stimulus period. Having measured pre- and post-

stimulus power, and finding no evidence of an increase in power,

Sayers et al.[14] argued that the evoked model was not sustainable

and proposed instead that the ERP emerged from a phase re-

organisation of the ongoing EEG. As the EEG consists of

oscillations across a range of frequencies, summations of the

signal will average to zero because the positive and negative peaks

will cancel out. However, in the phase alignment model, the

presentation of a stimulus causes the oscillations to shift phase in

such a way that positive and negative peaks align. In such

circumstances, the positive and negative peaks will not cancel out

but will summate to form an ERP (Figure 2a). In this model, both

phase-locked and non-phase-locked changes in the EEG arise

from modifications of the underlying ongoing oscillations and

there is no need to invoke an evoked signal at all. Further support

for this idea comes from an extensive body of evidence showing a

link between the magnitude of ERP components and the power of

the EEG in the pre-stimulus period [15].

One limitation of the original phase re-alignment model was

that it was never fully specified [14] In fact, the model illustrated in

Figure 2a), known as the phase re-setting model because at some

point post stimulus onset the oscillations in the EEG are abruptly

forced to the same phase, is only one of a number of models that

attempt to explain the ERP in terms of re-organisation of the

phases of the ongoing EEG. The phase-resetting model assumes

an instantaneous, or at least a very rapid, shift in phase. If instead,

there is a progressive shift over time, then phase alignment can be

achieved by the change of phase either increasing or decreasing

(Figure 2b&c), or some combination of the two. Other phase

alignment models have been proposed [16] and no doubt others

could be conceived.

One immediate consequence of all the variants of the phase-

alignment model is that the peaks and troughs of the ERP are

simply artefacts of the phase-re-organisation of the oscillatory

components of the EEG. This means that instead of having a

localised source, the peaks and troughs emerge from the phase

alignment of neural oscillations across what is most likely to be a

large area of cortex. Whereas the evoked model generates an easily

visualisable mental picture in which a localised area of cortex

increases its activity as it performs a specific function and in

consequence generates an ERP peak (e.g. face processing and the

N170), the phase-alignment model provides no such comforting

picture. There is no change in power, just a phase-alignment and,

worse still, rather than occurring in a well-defined location, there is

good reason to think that this phase-alignment spreads across the

cortex like a travelling wave [17–19]).

There are two problems with all of the phase-alignment models

that are usually overlooked. Illustrations like that in Figure 2

invariably show phase re-organisation in oscillations with a single

initial frequency and when averaged over many trials, they do

generate an event-related response. The first problem is that the

model predicts that there is phase synchronization between trials

but not within a single trial. This means that the ERP does not

exist in any individual trial but is an emergent property of multiple

trials.

The second problem, which is closely allied to the first, is how

does the model work with oscillations spanning a broad range of

frequencies? If each frequency component synchronizes at the

same phase and time, the average does not look ERP-like at all.

Alternatively, if the frequencies are aligned to random phases, then

the oscillations cancel out and no ERP is formed. Clearly, if these

models are to be made to work, then either the phase-alignment

must either be restricted to a narrow frequency band or there must

be some systematic arrangement of phases across frequencies. One

clue for what this arrangement might be comes from the

amplitude-modulated chirp-like shape of sensory and cognitive

ERPs. This chirp-like structure suggests that phase alignment is

frequency dependent with lower frequencies taking longer to align

than higher frequencies. The amplitude modulation suggests that

power is inversely proportional to frequency, just like the ongoing

EEG which is surely no coincidence.

The solution to the second problem, if it can be found, may

answer the first problem too. If there is some systematic phase

alignment across frequencies, then the issue of phase alignment

across trials does not arise; the alignment is within-trial. It also

means that the ERP is no longer an emergent property of multiple

trials but can exist in individual trials as well. This will come as

some relief, if not surprise, to those who study single trial ERPs.

Although the phase alignment model of ERPs has never

achieved the widespread acceptance of the evoked model it has

never gone away and interest in it has grown, particularly over the

last decade. This renaissance of interest is perhaps unsurprising

because the phase alignment model has a number of attractive

features. Most importantly, it offers a unifying perspective on

event-related changes in the EEG in several ways. First, it unifies

the study of the EEG which for several decades has followed two

largely independent paths. One path has focused on the study of

the ongoing EEG and emphasised the clinical and the physiolog-

ical. The other path has focused on ERPs, largely from a

psychological perspective and considered the EEG to be noise. All

too often these paths have been treated as independent lines of

investigation, often conducted by separate groups of researchers. If

the phase-alignment model is correct, this distinction would no

longer be sustainable. Second, the phase-alignment model

reconnects ERP studies with the broader field of neuroscience,

A Unified Model of Event-Related EEG Changes
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particularly with electrophysiology where the importance of

cortical oscillations and how they are generated has long been

an important area of study. Finally, the phase-alignment

interpretation of ERPs makes potentially important links with

the study of complex systems (e.g. synergetics, [20]) where phase

relationships have been found to be so important.

Although the evoked and phase-alignment models have

dominated discussions about the nature of the ERP for several

decades, they are no longer the only candidate mechanisms.

Recently, a completely new mechanism based on asymmetric

amplitude modulation (AAM) of the alpha rhythm, has been

postulated [21,22]. The AAM model has a number of attractive

features. First, it is based on empirical observation, derived from

ICA decomposition of the ongoing EEG that the peaks and

troughs of the alpha rhythm fluctuate asymmetrically. Second, the

model assumes simple amplitude modulation of the underlying

EEG. Third, it provides a unifying account of both evoked and

induced changes in the EEG. However, the model does not

provide an explicit explanation for the shape and timing of either

the induced or evoked changes in the EEG.

Tests of the Evoked Model of ERPs
Many attempts have been made to determine whether the

evoked model or one of the variants of the phase-re-setting model,

best fits with observation. It is beyond the scope of this paper to go

into this debate in detail but good reviews are available for the

interested reader [23,24]. However, it is useful to outline briefly

the main approaches that have been taken to test the evoked and

phase-alignment models before proceeding to propose an alterna-

tive test of these hypotheses.

The power test. Following Sayers et al [14] the most direct

method to test the evoked and phase-alignment models is to

compare the power in the pre- and post-stimulus periods. Under

the evoked model, power should be greater in the post-stimulus

than the pre-stimulus period because the evoked signal is

superimposed upon the ongoing EEG; under the phase-alignment

model, the powers should be equal. Unfortunately, this approach

ignores power changes that are not stimulus phase-locked (i.e.

induced power changes) and for this reason, the method fails.

The power method could easily be redeemed if only evoked and

induced power changes could be disentangled. A method to

decompose the EEG signal into phase-locked and non-phase-

locked components has been proposed [25] but, unfortunately, this

does not resolve the problem because it only works if the evoked

signal is exactly the same on every trial [26]. Such precision in any

physiological system cannot be safely assumed and without any

alternative means of disentangling the induced and evoked

components, the power method must be abandoned.

The phase concentration test. One clear prediction of the

phase-alignment models is that there should be an increase in

phase-synchrony or an increased concentration of phase in the

post-stimulus period that should be readily measureable. Some

studies have indeed demonstrated such an increase [27].but

unfortunately this evidence does not discriminate between the

evoked and phase resetting models [23] because the components

of an evoked signal have exactly the same phase across trials which

will contribute to any measure of phase synchrony that is used.

The pre-stimulus prediction test. If the phase alignment

models are correct, there should be reliable dependencies between

the ongoing EEG in the pre-stimulus period and the ERP. Many

different measures have been used but recently there has been

much interest in phase at the time of stimulus onset. Single trials

are sorted by their phase and the ERPs calculated on subsections

of these trials (e.g. negative phase vs. positive phase). Under the

evoked model, it seems reasonable to assume that baseline phase

should be irrelevant and the ERPs from the positive and negative

phase trials should be the same. In fact, this turns out not to be the

case because the pre-stimulus phase leaks into the post stimulus

period [16]. This is also one case where the variants of the phase-

alignment models give different predictions [16]. For example, the

phase-resetting model makes the same prediction as the evoked

Figure 2. Schematic Representation of three variants of the Phase-alignment Model. In this model, ERPs are considered to be a re-
organisation of the ongoing EEG in response to an event (e.g. the presentation of a stimulus or initiation of a movement) and there is no evoked
signal. Panel a) represents the phase reset model and shows multiple segments of the ongoing EEG in which an event occurred such as the
presentation of a stimulus or initiation of a movement. The time of the event is indicated by the first vertical dotted line. In each case, the event
induces an instantaneous shift in the phase of the ongoing EEG. Panel b) shows the mean of the segments in a) and shows an ERP-like response.
Panel c) is similar to a) except that the change of phase is not instantaneous but gradual and the phases come into alignment by the time of the 2nd

dotted line by increasing the rate of change of phase. The oscillations then slow down and return to their initial phase by the time of the 3rd dotted
line. Panel d) shows the average of the oscillations in c). Panels e) and f) are identical to c) and d) except that the initial phase alignment is achieved
through slowing down and the return to baseline phase by speeding up. Note that the shape of the ERPs in panels b), d), and f) differ.
doi:10.1371/journal.pone.0045630.g002
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model because the instantaneous re-set of phase means that there

will be no association between phase in the pre- and post-stimulus

periods. However, if instead of instantaneous phase resetting, the

phases align over a short period of time, then a different outcome

can be expected. This can happen in one of two ways. First, the

change of phase over time is constant which means that the

oscillations will align at a time dependent upon their starting

phase. Second, the change of phase over time is variable, but the

oscillations re-align at the same time point post-stimulus onset. In

either case, the ERP generated will depend upon the initial phase

at stimulus onset.

One problem with this approach is the difficulty in measuring

phase. Phase, is not defined for broadband signals [28] so any

measurement of phase necessitates some sort of bandpass filtering

of the EEG. No filter is perfect and whichever method is used

inevitably results in some degree of smearing in both the time and

frequency domains. The result is that any filtering technique

inevitably introduces dependencies between phase measurements

at near time points. This problem can be alleviated by increasing

the temporal precision of the filter only but only at the cost of

reducing its frequency precision and this introduces other possible

artefacts.

There is, however, a more fundamental problem with this

approach. Under the evoked model, averaging segments of EEG

reveals the ERP because the ongoing oscillations (i.e. noise) cancel

out. However, the ongoing oscillations only cancel out if their

phases are random. If the segments are systematically sorted by

phase, then they are no longer random and don’t cancel out. The

result is that ERPs generated from subsamples of phase-sorted

segments of EEG will not, in general, be equal. Similar arguments

apply to amplitude sorted trials.

A New Test of the Evoked Model of ERPs
The debate between the evoked and phase alignment models

remains unresolved but one prediction of the phase alignment

models has not yet been tested: the frequency prediction. If, as the

phase-alignment models assert, phases synchronize post-stimulus

over a short period of time, then there must be a concomitant

change in frequency. The reason for this is that phase alignment

requires a change of phase and frequency is the change in phase

over time (i.e. the 1st derivative of phase). In the case of the evoked

model, the change in phase is instantaneous which means that the

frequency will transiently be infinite. In practice, one might see a

transient peak in frequency (positive or negative) although this

might be lost in any filtering or averaging that might be required.

If however, phase alignment results from the change of phase over

time slowing or speeding up, measureable changes in frequency

should occur. As phase alignment is only transitory, it follows that

once alignment has been achieved, further changes in phase (and

hence frequency) must follow. If this did not happen, the

oscillations would remain synchronized. Our expectation is that

if the frequency of an oscillation slows down to align, it will speed

up afterwards to return to its baseline frequency, or vice versa.

Phase alignment, therefore, can be viewed as resulting from a

transient deviation in the frequency of oscillation. However, an

overall change in frequency will only be detected if increases in

frequency predominate over decreases or vice versa. If increases

and decreases occur equally often, they will cancel out, the overall

change will be zero and no frequency change will be detected.

Although the phase-alignment models make clear predictions

about the change in frequency of the EEG post-stimulus onset,

there remains the problem of what we mean by frequency because

for broadband signals, like the EEG, frequency is not defined [28].

What is needed is a method for decomposing the EEG into

narrow-band components where frequency can be meaningfully

defined. Many methods for analysing the EEG exist but the

methods most widely used (e.g. FFT, wavelets and digital filters)

are unsuitable for this purpose as they all require that frequency

bands are pre-defined and constant. One suitable method,

however, is empirical mode decomposition.

Empirical mode decomposition. EMD is a data driven

method for decomposing a waveform into components, called

Intrinsic Mode Functions (IMFs) that makes minimal assumptions

about the nature of the signal and is suitable for non-stationary

and nonlinear signals [29]. IMFs are comparable to harmonic

functions in FFT but more general. Both are oscillations with zero

mean derived from the decomposition of a signal that when

summed together reconstitute the original signal. However,

whereas harmonic functions have constant frequency and

amplitude, the frequency and amplitude of IMFs may vary over

time. EMD is described schematically in Figure 3. The highest and

lowest IMFs are limited, but not defined by, the sampling rate and

the length of the signal respectively. One cannot extract an IMF

with a frequency higher than the Nyquist frequency, nor one with

a longer period than the signal length. Notwithstanding these

limits, neither the sampling rate nor the segment length is critical

for defining the IMFs. Once the IMFs have been extracted, the

Hilbert Transform can be used to estimate the instantaneous

amplitude, phase and frequency of each. Simulations suggest that

signal decomposition using EMD is typically superior to other

methods such as wavelets [29] including use with EEG data [30].

For our purposes, however, the key advantage of EMD over other

approaches is that it allows us to measure changes in EEG

frequency without predefining frequency bands.

Aims
It is proposed that the evoked and phase-alignment models of

the ERP can be discriminated on the basis of event-related

changes in EEG frequency. Specifically, if the phase-alignment

model is correct, there should be a change in EEG frequency in

the immediate post-stimulus period whereas if the evoked model is

correct, no such frequency change should be seen. The first aim of

this paper is to apply this test to EEG data collected from

participants performing a standard cognitive task. The second aim

is to use the results from this study to develop a new model of

event-related changes in the EEG, the Firefly Model (presented in

Models), that can account for the nature of both the evoked and

induced changes in the EEG and which shows that they can be

understood as different aspects of a single process.

Materials and Methods

Empirical Study
Participants. Participants were 20 healthy young adults (8

women) recruited through advertisement with a mean age of 26.0

(s.d. = 5.6; range 19–41 years). Written informed consent was

obtained from all subjects and the experiment was conducted as

approved by the Riverside Research Ethics Committee. All

investigations were conduction according to the principles

expressed in the Declaration of Helsinki and data were analysed

anonymously.

Procedure. EEG was recorded from participants as they

performed a continuous recognition test for faces [31]. The test

consisted of 90 trials each divided into three phases: a baseline cue,

a memory stimulus, and a response cue. The sequence of events

for each trial is shown in Figure 4.

The baseline cue consisted of a blank screen with a central

fixation point. The stimuli were 50 faces from the Stirling

A Unified Model of Event-Related EEG Changes
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University Psychological Image Collection (http:/pics.psych.stir.

ac.uk) consisting of black and white photographs (approximately

5.0 cm wide by 6.5 cm high) of the head and shoulders of men and

women (25 of each), with neutral emotional expressions, facing

directly toward the participant. The faces were presented at the

centre of a computer screen situated approximately 1.5 meters

from the participant with the centre of the screen at eye level. The

test included 40 stimuli that were repeated and 10 filler items that

were shown only once. There was an average delay of 10 trials

between the 1st and 2nd presentation of each face (range 8–12

trials) which, depending upon the participants’ reaction times,

gave a time delay of ,60 s.

The response cue consisted of the words ‘New-Old’ or ‘Old-

New’, randomly varied between trials. Participants were required

to press either the left or the right hand side button on a response

pad to correspond with the side on which the ‘New’ or ‘Old’ cue

was presented. Randomization of the response cue was designed to

avoid motor responses while the memory stimulus was still visible

because participants would not know what the correct response

would be until after the stimulus had been removed. The inter-trial

interval varied between 1000 ms and 2000 ms and consisted of a

blank screen.

Materials and equipment. Twenty-eight electrodes were

positioned on the scalp using an ECI electrode cap with electrodes

placed according to the International 10–20 system with an

additional nine electrodes: Oz, FC5/6, CP1/2, CP5/6 PO1/2. In

addition, the horizontal electro-oculogram (EOG) was recorded

from the external canthus of each eye and the vertical EOG was

recorded from the supra- to suborbit of the left eye. Electrode

impedances were all under 5 kV. EEG and EOG were amplified

using a 32 channel Neuroscan Synapse-II System. Signal bandpass

was 0.1–100 Hz and the digital sampling frequency was 500 Hz.

Reference was to the left ear and converted to average reference

offline.

Signal preparation. EEG was divided into segments from

22000 to +2000 ms where zero was defined as the time of

stimulus onset. All trials in which the participant gave a correct

response (referred to as ‘true new’ and ‘true old’ for the correct

identification of first presentation and repeats respectively) and

which did not include values outside of the 2120 m to +120 mV

range were included in the analysis. ERPs were calculated for each

condition separately from the mean of all baseline corrected

(2200 ms to 0) trials and the resulting average was smoothed

using a zero-phase FIR 20 Hz low-pass filter. ERD/ERS was

calculated from the mean amplitude envelope derived from the

Hilbert transform of the bandpass filtered trials. Bandpass filtering

was by zero-phase FIR filter in the delta (0.1–3.9 Hz), theta (4–

7.9 Hz) alpha (8–12.9 Hz), beta1 (13–19.9 Hz), beta2 (20–

29.9 Hz) and gamma (30–48 Hz) frequency ranges. ERD/ERS

were converted to a percentage of the mean amplitude recorded in

the given frequency range in the 2500 to 0 ms interval. The

power spectrum of the pre- and post-stimulus intervals was

estimated using FFT following Welch’s method with a Hanning

Figure 3. Schematic Representation of Empirical Mode Decomposition (EMD). Panel a) shows the steps taken to produce the 1st intrinsic
mode function (IMF). Step 1 involves identifying local maxima (red dots) and minima (green dots) of the signal. Step two involves linking the maxima
together (red line), interpolating intervening points by a spline-fitted curve. The same is done for the minima (green line). In Step 3, the mean of the
maxima and minima splines is calculated (black line) and subtracted from the original signal. The residual is the 1st intrinsic mode function (black line).
Panels b) and c) show the mean spline being subjected to Steps 1–4 to extract the 2nd and 3rd IMFs respectively. The process is repeated until the
mean spline is monotonic and no more IMFs can be extracted.
doi:10.1371/journal.pone.0045630.g003

Figure 4. The sequence of events for the Face Recognition
Memory Task.
doi:10.1371/journal.pone.0045630.g004
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window. The pre-stimulus segment ran from 21024 ms to 21 ms

and the post-stimulus segment from +1 ms to 1024 ms, giving 512

data points in each case resulting in a frequency resolution of

0.98 Hz.

EMD was calculated following the algorithm described in

Figure 3 and six IMFs were extracted from each trial. Estimates of

the evoked, induced, phase and frequency time series of each IMF

were calculated as follows. The evoked component of the signal

was estimated from the mean of each IMF averaged for the ‘true

new’ and ‘true old’ conditions separately. The Hilbert transform

was used to calculate the amplitude envelope amplitude and

instantaneous phase of each IMF. The induced component was

the mean amplitude envelope. Phase synchrony was measured

using the Phase-locking Value [32] calculated from the mean

phase vector at each time point averaged across trials. The

frequency component was calculated from the 1st derivative (i.e.

the gradient) of the unwrapped phase averaged across trials.

Numerical differentiation is problematic because it can greatly

amplify the noise in the data and several different methods were

tried but one based on the continuous wavelet transform

significantly outperformed other methods [33] and this is the

one used here. Data were averaged by ordinal IMF number such

that the first IMFs from each epoch were averaged for each

individual to form the mean evoked signal for IMF1, data from the

second IMFs were averaged to form IMF2 and so on down to

IMF6. The amplitude, phase synchrony and frequency were

averaged in the same way. The grand average data for the evoked

signal, amplitude, phase synchrony and frequency were similarly

obtained by averaging by ordinal IMF number across participants.

Statistical analysis. Event-related changes in the EEG were

analyzed using Partial Least Squares analysis (PLS)[34]. PLS is a

method for determining whether the values of a multivariate

dataset are systematically affected by experimental manipulation,

in this case, the comparison of the EEG responses to ‘True New’

and ‘True Old’ stimuli. PLS is somewhat like a combination of

Principal Components Analysis and multiple regression in that its

aim is to identify a latent variable (i.e. a linear combination of the

data) that maximally covaries (in a partial least-squares sense) with

each component of the experimental design. It does this by

performing singular value decomposition (SVD) of the cross-block

covariance matrix, which is the matrix containing the covariances

between the design matrix and the dependent measures. The SVD

generates singular values for each latent variable which indicate

the relative importance of each component of the experimental

design by showing the proportion of the cross-block covariance

accounted for. The statistical significance of each latent variable

cannot be calculated analytically so permutation testing is used

instead. The rationale for this is that if the experimental

manipulation has an effect, the singular values obtained from

the dataset grouped according to the actual experimental

conditions should be larger than those obtained from an arbitrary

grouping of the same data. To test this, PLS is performed a large

number of times on permutations of the data in which the

allocation of experimental condition for each participant is

randomly re-ordered each time (in this case by randomly swapping

data between the ‘True New’ and ‘True Old’ conditions). The

statistical significance of each latent variable is estimated from the

proportion of permuted singular values that are larger than the

singular values obtained from the un-permuted data.

Once a latent variable is found to be statistically significant, one

can proceed to identify those elements of the data that contribute

most to the differences seen. This is done using weightings from

the SVD, known as saliences, which show the contribution of each

dependent variable (i.e. each time point for each channel included

in the analysis), to the latent variable in question. The standard

error of each salience can be estimated from bootstrap re-sampling

of participants with replacement, keeping the experimental

conditions fixed. The reliability of the salience is derived from

the ratio of the salience to the bootstrap standard error of the

salience which provides a metric equivalent to a z-score. The

statistical significance of the PLS was determined using permuta-

tion testing with 1000 permutations, and the reliability of the

saliences (i.e. where and when the Latent Variable was signifi-

cantly greater than zero) was established using bootstrapping with

1000 re-samplings.

Results

Before determining whether there was any evidence for a post-

stimulus frequency change in the EEG, it is necessary to

demonstrate that the expected changes in the EEG amplitude

spectrum, ERD/ERS and ERP were observed in this sample.

Changes in the EEG Power Spectrum Density
Figure 5 shows the EEG power spectrum density in the pre-

stimulus and post-stimulus periods for the four midline electrode

channels. As expected, at each channel there was a clear reduction

in alpha power from the pre-stimulus to the post-stimulus periods.

Event-related Potentials
Figure 6 shows the ERP to ‘true new’ and ‘true old’ faces at the

4 midline electrode channels. Note the phase inversion between

Oz and Cz shown by the reversal of polarity of the first two peaks

in the ERP. There was a significant difference in the ERPs

between conditions (PLS permutation, p,.002). Bootstrap sam-

pling indicated that the differences occurred at two time points.

First, the ERP was significantly more positive to ‘true old’ faces

than to ‘true new’ faces around 400 ms at Fz and Cz. Second,

there was a more prolonged increased positivity to ‘true old’ faces

from 500 ms onwards that was maximal at Pz. This findings are

consistent with previous studies of recognition memory using ERPs

[35].

Event-related Desynchronization/Synchronization
ERD/ERS changes are shown in Figure 7. As the shape of

the amplitude changes did not vary much between electrode

channels, the data shown are the mean values for all four

midline channels. In Delta, the EEG amplitude was not stable

in the pre-stimulus period as there was a steady decline in

amplitude from 21000 ms to 2100 ms. This trend in the

baseline amplitude was due to a Contingent Negative Variation

(CNV) caused by having a predictable time interval between the

stimulus cue and the stimulus onset (Figure 4). Post stimulus,

Delta amplitude increased rapidly to above the pre-stimulus

level. Similarly, in theta, there was a clear increase in amplitude

compared to baseline reaching a maximum around 150 ms (i.e.

synchronization) before returning to baseline levels. All higher

frequencies showed a reduction in EEG amplitude compared

with baseline (i.e. desynchronization).

There was a significant difference between conditions in Delta

(PLS p,.001) such that there was higher amplitude to ‘true old’

faces at Pz from 550–1100 ms. For alpha, there was greater

desynchronization to ‘true old’ faces at Fz and Cz from 750–

1100 ms (PLS, p,.047). In beta1, there was again greater

synchronization at Cz, Pz and Oz from 850–1000 ms (PLS,

p,.033). There were no significant differences between conditions

at other frequency bands.
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Intrinsic Mode Functions
The first 6 IMFs are reported here whose mean frequencies in

the baseline period were 78.8, 35.3, 15.5, 7.7, 3.7 and 1.7 Hz

respectively.

Frequency. Figure 8 shows the mean Frequency by time for

IMFs 1 to 6 averaged across conditions and channels with the

mean baseline frequency and 95% C.I. As predicted, there was a

change in frequency in the post-stimulus period for most IMFs.

The one exception was IMF 6 and in this case the frequency had

not been stable in the baseline period. Of the 5 IMFs that showed

a post-stimulus frequency change, 4 showed an initial drop in

frequency followed by a rebound increase in frequency later on.

Only in the case of IMF 2, was the initial drop in frequency not

seen, although there was a clear increase in frequency around

450 ms.

Amplitude, evoked, phase synchrony and

frequency. Figure 9 shows the change in amplitude, evoked,

phase synchrony and frequency by time and experimental

condition of the first 6 IMFs. The results of the PLS analysis by

condition are reported in Table 1. Only amplitude showed reliable

differences across the frequency range (IMFs 2–5) and evoked

showed reliable differences at low frequency, (IMFs 5 & 6).

One striking feature of the IMF responses is that the shape of

the time course in each response type (amplitude, evoked, phase

synchrony and frequency) was similar across all IMFs. This self-

similarity reveals a fractal organisation in the IMF response to a

stimulus across a broad range of frequencies. The main difference

between IMFs was that the response increased in latency and was

stretched over a longer period as IMF number increased. For

example, in the case of Amplitude, each IMF showed a small,

Figure 5. EEG Power Density Spectrum for the pre- and post-stimulus time intervals. Data were averaged across the midline channels (Fz,
Cz, Pz & Oz) and conditions (‘true new’ vs. ‘true old’).
doi:10.1371/journal.pone.0045630.g005

Figure 6. The ERPs for ‘true new’ and ‘true old’ faces for the midline electrode channels.
doi:10.1371/journal.pone.0045630.g006
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short-duration increase in amplitude followed by a deeper and

more prolonged decrease, the main difference being that the

latency of these events increased with each IMF. A similar pattern

was seen for Frequency except that in this case there was a

decrease in frequency preceding an increase. For the evoked

response, there was no clear signal in IMFs 1–2 but each of the

others show a clear ‘W’-shaped response whose length increased

with IMF number. Although there was no clear synchrony in IMF

1 for phase synchrony, for all other IMFs there was a noticeable

peak in phase synchrony post-stimulus. The latency and spread of

this peak both increased with IMF number.

Correlations between the IMF responses. Casual inspec-

tion of the time courses of the IMF amplitude and frequency

responses suggested that they might be inversely related to each

other. To test this, the zero-lagged correlation coefficients of the

time courses (2200 ms to +1000 ms) were calculated between the

amplitude, evoked, phase-synchrony and frequency responses for

each IMF. In the case of the evoked response, the Hilbert

amplitude envelope of the response was used rather than the

evoked response. The results of this analysis are shown in Table 2.

The results indicated that for amplitude, evoked and phase-

synchrony responses, the correlations were all positive, most

strongly so, with 14 out of 18 exceeding a value of +0.8. In

contrast, the correlations with frequency, were all negative, mostly

strongly so, with 7 out of 18 correlations being less than 2.80.

Discussion of the Empirical Study
The main purpose in reporting these experimental results was to

determine whether there was any evidence for a change in

frequency in the post-stimulus period. To start, however, it was

important to demonstrate that this data set showed the event-

Figure 7. Event-related (De) Synchronization Changes by Frequency Band. Data were averaged in the delta, theta, alpha, beta1, beta2 and
gamma frequency bands by condition (‘true new’ vs. ‘true old’) averaged across channels (Fz, Cz, Pz & Oz).
doi:10.1371/journal.pone.0045630.g007

Figure 8. Change in frequency over time for the first 6 IMFs. Data were averaged across channels (Fz, Cz, Pz & Oz) and conditions (‘true new’
vs. ‘true old’). The dotted lines indicate 95% C.I. of the mean frequency in the 2500 ms to 0 ms baseline period.
doi:10.1371/journal.pone.0045630.g008
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related changes that would normally be expected in such a

paradigm and that there was nothing anomalous or unusual in the

results. The data generated an ERP that was comparable to

previous studies investigating recognition memory. There was also

a post-stimulus attenuation of the alpha peak in the FFT as would

be expected. Finally, the ERD/ERS changes showed that there

was synchronization in the theta frequency range and desynchro-

nization at higher frequencies, again very similar to previous

findings in this area. Overall, these data show a normal pattern of

event-related EEG changes.

The frequency-shift hypothesis predicted that there would be an

event-related change in frequency of the EEG, specifically in the

frequency responses of the IMFs extracted using EMD. The

hypothesis was not directional and did not specify whether the

frequency would increase or slow down as either way would

permit the underlying oscillations to align. However, it was

predicted that whichever direction the frequency change was, the

change would reverse shortly after. The rationale for this was that

if the oscillations changed frequency in order to synchronize, then

they would remain synchronized as long as the frequency change

was maintained.

The data confirmed that there was a change in frequency

(Figure 8). Specifically, the IMFs slowed down to synchronize and

then speeded-up again to shift out of alignment. This is consistent

with the phase-shift hypothesis but does not on its own allow us to

reject the evoked model. To do that, it is also necessary to show

that simulated data generated by the evoked model, does not show

a similar shift in frequency. Such simulations will be reported later.

Although EMD decomposes the EEG into multiple IMFs, each

with a broadly defined and time-varying frequency range, it should

not be assumed that these represent an accurate representation of

the latent frequency-band structure of the signal (even if such a

thing exists). Rather, like any other blind signal separation method

(for example, PCA or ICA), it provides a decomposition of the

signal that may be useful or convenient for some purposes whether

or not it produces an accurate representation of the deep structure

of the signal. For example, in the case of signals consisting of white

noise, EMD acts as a dyadic filter bank somewhat akin to wavelet

decomposition [36,37]. In such cases, the IMFs do not represent

the underlying structure of the signal, for there is none, but the

decomposition may prove useful nevertheless. For example, EMD

would reveal time-varying changes in the frequency of the noise as

changes over time in the frequency of the IMFs.

It is also worth adding a note of caution about the frequency

ranges of the IMFs extracted. Although the mean frequency of

IMFs across participants was remarkably consistent, the frequency

of individual IMFs varied significantly from epoch to epoch (see

Table 1). This means that when the IMFs were aggregated across

epochs and across participants, they may not have always aligned

correctly. For example, depending upon factors such as the noise

in a given epoch, an alpha component (,10 Hz) might sometimes

Figure 9. The time course of amplitude, evoked response, phase synchrony and frequency for IMFs 1–6. Data were averaged by
condition (‘true new’ vs. ‘true old’) and across channels (Fz, Cz, Pz & Oz) except for the Evoked signal which shows the data for Cz only.
doi:10.1371/journal.pone.0045630.g009

Table 1. Showing the Results of PLS Analysis Comparing ‘true
new’ and ‘true old’ stimuli for IMFs 1–6 for Amplitude, Evoked,
Phase and Frequency.

IMF

Baseline
Frequency/Hz Amplitude Evoked Phase Frequency

Mean s.d.

1 78.8 7.7 .430 .260 0.01 .840

2 35.3 6.0 .010 .560 .220 .001

3 15.5 3.7 .001 .250 .490 .090

4 7.7 2.0 .001 .700 .010 .650

5 3.7 1.2 .050 .010 .280 .850

6 1.7 0.7 .170 .001 .170 .230

Bold lettering indicates that there was a significant difference between ‘true
new’ and ‘true old’ stimuli by the PLS permutation test.
doi:10.1371/journal.pone.0045630.t001
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be extracted as IMF3 and sometimes as IMF4, The aggregated

IMFs, therefore, may not be homogeneous in terms of frequency

with the consequence that any differences in the event-related

response between frequencies would be distributed across more

than one IMF. For example, if oscillations in the alpha frequency

range showed a particular event-related response, this might be

detected as event-related changes in either IMF3 or IMF4 or

perhaps both. However, given the distribution of frequencies

contributing to each IMF (IMFs 1–3 showed virtually no overlap

in frequency and IMFs 3–6 were separated by more than 1 s.d), it

is possible that frequency-specific changes might affect adjacent

IMFs although it is unlikely that such changes would spread

further afield. Frequency-specific event-related changes, therefore,

would be unlikely to spread across more than two IMFs and the

fact that all IMFs showed the same pattern of event-related

responses is difficult to reconcile with the existence of any such

events.

Perhaps the most unexpected finding was that the time courses

of the induced, evoked, phase and frequency of the IMFs were

consistently and highly correlated with each other. It is important

to recognize that this need not have been so. There is no necessary

reason, for example, why the changes in amplitude over time

should correlate with changes in frequency and it is easy to

conceive of systems where they are independent, for example, AM

and FM radio signals. This lack of independence was so striking

and unexpected that it requires some explanation.

The first clue to what this explanation might be comes from

combining two apparently unrelated observations. First, the EEG

synchronized in the post-stimulus period by slowing down.

Second, apart from a clear peak in the alpha frequency range,

EEG amplitude monotonically diminished with increasing fre-

quency (Figure 5). Combining these two facts suggests that high

amplitude oscillations that are in the alpha range in the pre-

stimulus period will shift into the theta frequency range post

stimulus onset. As power in the pre-stimulus period is greater in

the alpha frequency range than in the theta frequency range, this

will be detected as an increase in theta post-stimulus (i.e. theta

synchronization). In the same way, oscillations in the beta

frequency range in the pre-stimulus period will slow into the

alpha range post-stimulus. As pre-stimulus beta power is lower

Table 2. Showing the correlations between the Amplitude, Evoked (Amplitude Modulation), Phase Synchrony and Frequency of
the IMFs in the time range 0 to 1200 ms.

IMF
Amplitude &
Evoked

Amplitude &
Phase

Amplitude &
Frequency

Evoked &
Phase

Evoked &
Frequency

Phase &
Frequency

1 .43 .19 2.51 .72 2.24 2.07

2 .83 .45 2.81 .79 2.57 2.20

3 .81 .60 2.94 .94 2.67 2.44

4 .94 .91 2.96 .99 2.85 2.82

5 .99 .99 2.64 .99 2.61 2.66

6 .88 .84 2.56 .99 2.81 2.85

doi:10.1371/journal.pone.0045630.t002

Figure 10. Schematic Representation of the Firefly Model in the Frequency Domain. The blue line indicates the pre-stimulus power
density spectrum. The dotted lines indicate the shift in the power density spectrum as the ongoing EEG slows down to synchronize post stimulus for
several different degrees of phase disparity. As the size of the frequency shift is determined by the phase disparity, which varies randomly between
trials, the average power density spectrum in the post stimulus period will be equivalent to the average of multiple pre-stimulus power-density
spectra shifted in frequency (red line).
doi:10.1371/journal.pone.0045630.g010
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than pre-stimulus alpha power, this will appear as an event-related

reduction in alpha (i.e. desynchronization). In general, using

conventional analyses with fixed frequency bands, and the shape

of the pre-stimulus power density spectrum, we should expect to

see an increase in theta power post stimulus), but a reduction of

power at higher frequencies.

One might expect that this slowing down would simply result in

a translation of the FFT spectrum towards lower frequencies,

which is not the case as Figure 5 shows. Although there was clear

attenuation of the alpha peak and an increase in the delta

frequency range, there was no simple shift of the spectrum towards

lower frequencies. The simplest explanation for this is that the

extent to which the EEG slows down depends upon the phase

conditions in the baseline which we can assume to be random. On

some trials, the phase change required to synchronize will be

small, resulting in a small change in frequency, on other trials it

might be large. Averaging the pre-stimulus FFT spectrum over

many trials with different shifts in frequency will produce a post-

stimulus spectrum in which the alpha peak is ‘smeared’ over a

range of lower frequencies. The slowing of oscillations that are in

the alpha frequency range pre-stimulus will bring them into the

theta range post-stimulus. This conceptualisation is represented

schematically in Figure 10. The importance of this conceptualisa-

tion is that it provides a candidate mechanism for generating

evoked signals that can also explain induced changes. The rest of

this paper will be devoted to developing this schematic concept

and producing a formal model that can be used to simulate event-

related changes in the EEG and which can be tested against

observation.

Models

Conceptual Outline of the Firefly Model
The essence of the model outlined below is that the ERP is

generated by the transient co-ordination of the phases of cortical

oscillations across the frequency range. That is, neurones adjust

their frequency of firing such that the emergent cortical oscillations

become synchronized. Synchronization through frequency adjust-

ment is widely seen in the natural world and one of the best known

examples comes from the collective behaviour of certain species of

firefly. These fireflies have a natural, preferred rate of emitting

light and, left to their own devices, will flash at their preferred

frequency. At times, however, they gather in large numbers and

when they do, they rapidly synchronize such that they flash in

unison. The way in which the fireflies become synchronized has

been modelled mathematically [38] and the proposed mechanism

is very similar to that outlined below, hence the Firefly model.

The Firefly model is outlined schematically in Figure 11. In the

pre-stimulus period, there are multiple oscillations, each repre-

senting the external field generated by networks of neurones

synchronized at a preferred frequency. It should not be assumed,

however, that the frequency of oscillations in the local field

potential will be the same as the mean frequency of oscillations of

the networks of neurons that generate it. In the hippocampus, for

example, place cells have been shown to exhibit a higher mean

frequency of firing than the theta frequency of the LFP that they

produce [39].

At each frequency, there will be multiple networks of neurones

oscillating at the same frequency but out of phase with each other.

At stimulus onset, these networks adjust their frequency so that

they transiently phase-synchronize with each other. In each case,

phase synchronization is achieved by slowing the rate of oscillation

but the degree of slowing will vary between different networks to

an extent determined by the magnitude of the phase shift required

to achieve synchronization. Phase synchronization starts at high

frequencies and progresses systematically across the frequency

range. It is this phase synchronization between these neuronal

networks with the same preferred frequency of oscillation, co-

ordinated across the frequency range, which produces the ERP. In

each case, the short-term slowing is followed by a rebound increase

in frequency before returning to the preferred rate. Note that

Figure 10 and Figure 11 are equivalent to each other except that

one represents the model in the frequency domain (Figure 10) and

explains the difference in the Power Spectrum Density pre- and

post-stimulus whereas the other represents the model in the time

domain (Figure 11). For completeness, Figure 12 shows the model

in terms of changes of phase and frequency by time.

Formalization of the Firefly Model
Assumptions of the model. SUMMATION: The EEG can

be represented as the sum of many sinusoidal oscillations, each of

which represents activity in a neuronal network that oscillates at a

preferred frequency.

AMPLITUDE: The amplitude of the oscillations is constant

and there is no difference in the overall power of the EEG in the

pre-and post-stimulus period. This means that there are no evoked

or induced power changes.

PREFERRED FREQUENCY: The frequency of the oscilla-

tions may vary over time but each network will have a preferred

frequency of oscillation to which they will tend to return.

PHASE ALIGNMENT: phase alignment is achieved by each

sinusoid slowing in frequency to reach a target phase at a

predetermined time post-stimulus onset. Once phase alignment

has been achieved, the oscillation will return to its preferred

frequency.

FREQUENCY EQUIVALENCE: event-related changes in the

EEG follow the same form for all frequencies. The evidence for

this comes from the EMD where the evoked, frequency, amplitude

and phase responses were similar across all IMFs.

The stages of the firefly model. The essence of the model

presented here is that event-related changes in the EEG result

from systematic phase alignment across the frequency range

achieved by frequency slowing but without any change in

amplitude. Figure 12 shows the changes of phase and frequency

over time predicted by the model for a single frequency of

oscillation. The model assumes that frequency modulation of the

EEG can be usefully divided into 5 stages:

Baseline (up to tstart). The oscillations are in random phase.

Synchronization (tstart to tsynch). The presentation of a

stimulus causes the oscillations to shift phase progressively until

they reach the target phase at the synchronization time, tsynch.

Phase-locked (tsynch to tdesynch). The oscillations remain

synchronized until the desynchronization time, tdesynch.

Desynchronization (tdesynch to tend). The process begins to

reverse as the oscillations progressively shift back towards their

original phase.

Baseline (from tend onwards). The oscillations have returned

to their initial phase and frequency.

Phase representation of the firefly model. Formally, the

model can be represented, in the phase domain (Figure 12b) as:

wf (t)

2pf0tzDwf , if tƒtstart

2p(f0{f1):(t{tstart)zwf (tstart), if tstart vtƒtsynch

2pf0:(t{tsynch)zwf (tsynch), if tsynch vtƒtdesynch

2p(f0zf2):(t{tdesynch)zwf (tdesynch), if tdesynch vtƒtend

2pf0tzDwf , if twtend

8>>>>>><
>>>>>>:

ð1Þ
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Where f0, is initial frequency, t, is time, DQf, is the phase offset for

frequency, f0, i.e. the difference between the initial and target

phases and Qf (t), is the phase at time, t.

f1~
Dwf

tsynch{tstart

and f2~
Dwf

tend{tdesynch

Frequency representation of the firefly model. The

model can also be represented in the frequency domain

(Figure 12c) as follows:

f (t)~

f0, if tƒtstart

f0{f1, if tstartv t ƒtsynch

f0, if tsynch vtƒtdesynch

f0zf2, if tdesynchv t ƒtend

f0, if twtend

8>>>>>><
>>>>>>:

ð2Þ

Defining the parameters of the model. The time of

stimulus onset, tstart, was defined as 0 ms and all other times

are defined in reference to this point. The synchronization time,

tsynch, was estimated from empirical data and was defined as the

time at which phase-locking index reached its maximum value.

Visual inspection of those IMFs that showed a clear peak in the

phase-locking index (i.e. IMFs 2 to 6), indicated that tsynch

increased monotonically with the period of oscillation of the

frequency of the IMF, T, (see Figure 9– Phase Synchrony). In fact,

tsynch, was proportional to the square root of the period and was

well estimated by:

Tsynch~

ffiffiffiffi
T
p

3
z:04

where T is measured in seconds and R2 = 0.962 and

RMSE = .016.

The desynchronization time, tdesynch, was defined as the time

at which the oscillations started to return to their baseline phases.

The phase-locked period was defined as the time that the phase-

locking index remained within 5% of its maximum value and this

was measured from the mean phase-locking indices for IMFs 2–6.

The relationship between the period of oscillation, T, and the

desynchronization time, tdesynch, was also proportional to the

square root of the period and was well estimated by:

Tdesynch~

ffiffiffiffi
T
p

1:86
z:01

where R2 = 0.99 and, RMSE = .004. The end time, tend, was

defined as the time by which the oscillations had returned to their

baseline phase. In principle, this could have been estimated from

empirical data but in practice, it was difficult to measure so the

time by which the IMF frequency had returned to its baseline

value was used instead. Inspection of Figure 8 indicated that for

most IMFs tend was ..1.0 s and was not obviously related to

frequency. Simulations indicated that this parameter was not

Figure 11. Schematic Representation of the Firefly Model in the Time Domain. Panel a) shows the time course of EEG oscillations across a
range of frequencies. The red lines indicate oscillations that are unchanged across the time course whereas the blue lines indicate oscillations that are
displaced by the presentation of a stimulus at tstart. The displaced oscillations slow down until they synchronize at tsynch, remain synchronized until
tdesynch and then speed up to return to baseline phase by tend. The synchronization time, tsynch, varies with frequency (black dotted line) such that
low frequencies synchronize later than earlier ones. As higher frequencies slow down, they overlap with lower frequencies providing an opportunity
for cross-frequency synchronization. Note that the sinusoidal variation on each line indicates that the lines represent oscillations and not that the
frequency of the oscillations changes. Frequency changes are represented by variation in the mean value of each sinusoid. Panel b) shows the event-
related potential and is sum of the oscillations in panel a).
doi:10.1371/journal.pone.0045630.g011
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critical to the results provided that tend- tdesynch was at least as

great as tsynch- tstart although longer values gave slightly better

results. For this reason, tend- tdesynch was set to 1.5 s for all the

simulations reported below.

Defining the target oscillation. All phases used in the

model were defined in relation to a hypothetical target oscillation

which was defined by its phase, Qtarget, at a specified time point,

ttarget, with a separate target oscillation being defined for each

frequency. In some ways, the definition of the target oscillation was

arbitrary in that it made no difference to the estimation of the

power-density spectra or the ERD/S. However, for the ERPs, the

definition of the target oscillation was critical in that it defined

their shape. If, for example, the phase of the target oscillation,

Qtarget, varied randomly across frequencies, even though the

target and trial oscillations in any given frequency would

synchronize, oscillations at different frequencies would synchro-

nize at different phases. The result would be that oscillations at

different frequencies would destructively interfere and their sum

would tend to zero. The same argument would apply if the target

phase, Qtarget, Q was fixed across frequencies but randomly varied

between trials. Clearly, some mechanism for allowing constructive

interference was required.

The simplest solution was to define the target oscillation using

the same target phase for all frequencies and for all trials and

setting the target time as the point of synchronization, i.e.,

ttarget = tsynch. This guaranteed constructive interference because

oscillations of all frequencies would be in phase when they

synchronized but this arrangement did not produce an ERP-like

waveform. It also had the disadvantage that the target oscillation

was not defined until the time at which synchronization was

supposed to have occurred which raised the question of how the

oscillation ‘knew’ what phase shift to make.

A better solution was found by defining the target oscillation

using the same target phase for all frequencies and for all trials but

setting the target time as the point of stimulus onset, i.e., ttarget. =

tstart. This had the advantage of defining the target oscillation at

the start of the trial so that the phase offset at each frequency was

determined from the start. Its most obvious drawback, however,

Figure 12. The Firefly Model for a single frequency of oscillation. Panel a) shows the change in amplitude over time. The blue line is the
target oscillation and the dotted lines line indicates an oscillation with the same frequency but different phase. The red line indicates an oscillation
that at baseline has the same frequency and phase as the dotted black line but whose phase is modulated over time to synchronize and then
desynchronize with the target oscillation. At tstart, the red oscillation slows down and synchronizes with the target oscillation (blue) by tsynch. From
tsynch to tdesynch, the blue and red oscillations remain in phase and from tdesynch to tend, the red oscillation speeds up to return to its baseline phase
and frequency. Panel b) shows the same information in terms of change of unwrapped phase over time. Note the gradient of the lines shows the
change of phase over time i.e. frequency. Panel c) shows the same information in terms of change of frequency over time.
doi:10.1371/journal.pone.0045630.g012
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was that it did not guarantee constructive interference. In fact, it

guaranteed that different frequencies would synchronize to

different phases at different times and one might reasonably

expect that such a pattern would sum to zero and there would be

no ERP. However, as the timing of the point of synchronization,

tsynch, and the required phase shift both systematically depended

upon frequency, the result was a pattern of early synchronization

at high frequencies leading to later and later synchronization at

lower and lower frequencies. That is, the, the down-chirp pattern

of the ERP emerged.

Having defined the target time, ttarget, all that was required to

define the target oscillation was to specify the target phase, Qtarget.

The target phase was the same for all frequencies and all trials and

could vary from 0 to 2p but within these limits, all values of Qtarget

produced ERP-like waveforms. The target phase for each

electrode channel was found by systematic search and was

identified as the value of Qtarget that produced the highest

correlation between the empirical and simulated ERPs.

Simulating a trial of data. Simulated data for each trial

consisted of a single sinusoid for each frequency in the range

0.1 Hz to 250 Hz at 0.1 Hz intervals offset from the target

oscillation by a random amount, DQf, in the range - p to +p
radians. Each sinusoid was phase-modulated so that it became in

phase (i.e. synchronized) with the target oscillation by tsynch,

remained phase-locked until tdesynch and returned to its initial

phase by tend.

The phase modulation could have been achieved in many ways.

For example, following the phase re-setting model, phase could

have been instantaneously reset to the target phase at tsynch, but

this did not give good results in that it did not generate ERP-like

waveforms. Instead, a progressive phase shift was used and, for

simplicity, it was assumed that the transition would be linear i.e.

(Qtarget - Qstart)/(tsynch - tstart). Quadratic and cubic spline

transitions were also considered and gave similar results in the

simulations suggesting that the choice of transition was not critical.

However, as the linear model was simpler and produced

marginally better results, these other methods will not be reported

here.

Using this procedure, the phase-shifted oscillations for each

frequency were generated, Qf(t) with a random phase offset for

each trial. The randomly phase-shifted oscillations were then

amplitude modulated so that each frequency was weighted in

proportion to its contribution to the overall amplitude of the EEG

in the baseline period. The weighting factor for each frequency, af,

was estimated from the FFT of the pre-baseline period obtained

from the empirical data.

A single trial of data, V(t), could be calculated from the

amplitude modulated sum of the phase-shifted oscillations:

V (t)~
Xfmax

f ~fmin

af : sin (Qf (t))

In this way, multiple simulated trials of EEG were generated

which could be analysed in exactly the same way as the empirical

data to give estimates of the ERP, ERD/S and FFT.

Comparing Simulated and Empirical Data
The reported simulations consisted of 100 trials each. The

degree of similarity between the empirical and simulated results

was estimated using Pearson’s correlation co-efficient. For the FFT

spectra, the correlation was calculated on the 0–250 Hz range. For

the ERP and ERD/S, the time-lagged correlations (6200 ms)

were calculated on the 0 to 1000 ms interval.

Does Frequency Discriminate Between Evoked and

Induced Changes?. The first simulation was designed to

determine whether the slowing of frequency seen in the empirical

data post-stimulus onset could be used to distinguish between the

Firefly model and the evoked models. Trials of simulated data

were generated using the Firefly model, and averaged to create an

ERP. Then, to simulate evoked data, the Firefly model generated

ERP was added to trials of simulated data that was generated in

exactly the same way as the Firefly model-data except that no

phase modulation was used. Trials produced using the Firefly

model and evoked models were then subject to EMD and the

results are shown in Figure 13. The resulting ERPs were very

similar (Figure 13-Evoked). Both evoked and Firefly model

generated signals showed an increase in the phase locking index

for all IMFs although the PLI was greater for the Firefly model-

generated model. However, for both the amplitude and frequency

responses, event-related changes were only seen in the Firefly

model-generated data.

Changes in the power spectrum density. The pre- and

post-stimulus power spectrum densities, averaged across the four

midline electrodes, are shown in Figure 14a). The equivalent

Firefly model-simulated data are shown in Figure 14b). The

correlations between the empirical and simulated data for the pre-

and post-stimulus period were 0.93 and 0.96 respectively

suggesting a good match between the two. However, the alpha

peak of the simulated data showed a greater shift in frequency and

a smaller attenuation of power between the pre-and post-stimulus

periods than was seen in the empirical data.

Event-relateddesynchronization/synchronization. Figure15

shows the empirical and simulated changes in EEG amplitude in the

delta, theta, alpha, beta1, beta2 and gamma frequency ranges. Data

were averaged across the four midline electrode channels and

between conditions. The Firefly model simulated data provided a

good match for the theta, alpha and beta1 frequency ranges but was

less good in delta, beta2 and gamma. In the case of delta, although

the timing of the onset of the increase in power was accurately

modelled, the duration of the increase was not. Similarly, but not

surprisingly, the CNV seen in the empirical data, shown as a pre-

stimulus decrease in delta power, was not accurately reproduced by

the Firefly model simulated data. For the higher frequencies, the

opposite pattern of discrepancy was seen in that although the shapes

of the waveforms were accurately modelled, their timing was not. In

an attempt to estimate the discrepancy in timing between the

empirical and Firefly model-simulated data, time-lagged correla-

tions between the two were calculated and the maximum

correlation and its corresponding lag were identified. In alpha, the

maximum correlation was 0.91 with a 0 ms lag suggesting that the

timing was accurate in this frequency band. However, the

discrepancy in timing increased with frequency and the maximum

correlations for beta1, beta2 and gamma were 0.95, 0.84 and 0.81

occurring at lags of 78 ms, 110 ms and 148 ms respectively.

Event-related potentials. Figure 16 shows the empirical and

simulated ERPs for the four midline channels, averaged across

experimental conditions. The differences in the simulated ERPs

between the channels arose from two sources. First, the ERPs were

derived from empirically measured power density spectra that

differed between channels. This had an impact on the overall

magnitude of the ERP and the relative size of the ERP peaks

spectrum. Second, the channels differed in target phase, Qtarget.

Target phases for each channel could vary between 2180u and

+180u and were found by systematic search. The target phases that

produced the best reproduction of the real ERPs were +88u, +60u,
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296u and 2115u for Fz, Cz, Pz and Oz respectively which shows

the same ordinal relationship as the azimuth of the polar co-

ordinates of the same electrodes in the 10–20 system (45u, 0u,
245u and 290u respectively). Furthermore, the difference in

target phase between electrode pairs Fz/Pz and Cz/Oz corre-

sponded very closely with their difference in 10–20 azimuth

position being ,180u in each case. That is, the target phase varied

systematically across the scalp.

The empirical and simulated ERPs showed strong similarity

with all the correlations exceeding 0.85. There were, however,

some differences. For example, the simulated data showed a

double peak in the P300 at Pz and Oz which was not seen in the

empirical data and a similar difference was present in the phase-

inverted P300 at Fz. However, a double peak was seen at Cz in

both empirical and simulated data. The other main difference was

that the absolute discrepancy in amplitude between the empirical

and FM-simulated data increased towards the end of the trial

suggesting that there was a low-frequency trend in the empirical

data that was not adequately modelled in the simulations.

Differences between experimental conditions. For the

empirical data, there were no reliable differences in the EMD

between the ‘true new’ and ‘true old’ conditions in the evoked,

phase or frequency domains. The only reliable differences seen

were in the amplitude responses. As the present model explains

amplitude differences as a consequence of frequency/phase

modulation, the absence of differences in the phase or frequency

responses provided no basis for modelling the difference between

the experimental conditions.

General Discussion

I have shown that a simple single-process model can account for

many features of event-related changes in the EEG that have

previously been interpreted as separate, if not wholly independent

phenomena. In particular, the model challenges the distinction

that event-related changes in the EEG fall into two distinct

categories: evoked and induced. Instead, both types of change can

be explained as the consequence of cross-frequency phase

modulation with no change in overall EEG power. If this model

is correct, the evoked/induced distinction is an artefact that results

from analysing data within fixed frequency bands.

The Firefly model belongs within the phase-alignment family of

theories and shares important features with many of them,

particularly the most fully developed versions such as the Event-

Related Phase Reorganization (ERPR) model [40]. All these

approaches emphasise the importance of re-organisation of the

background EEG and minimize or reject the roles of evoked

components. Where the Firefly model scores over all previous

phase-re-alignment theories, however, is that it explicitly models

the co-ordination of phase-reorganisation across the frequency

range and it is this feature that permits it to make specific,

quantitative predictions about the full range of event-related

changes in the EEG.

Although the match between the empirical and simulated data

was good, it was not perfect. Changes in the very lowest frequency

range (delta) were not accurately modelled as was shown by the

poor correspondence between the empirical and simulated event-

related desynchronization in the delta frequency range. Similarly,

the increasing deviation over time between the amplitudes of the

empirical and simulated event-related potentials suggests that

there was a low frequency trend in the empirical data that was not

properly accounted for by the model. In part, this might have been

due to the experimental design which gave rise to a CNV in the

empirical data that was considered to be a nuisance variable and,

therefore, made no attempt to model it. The low frequency

differences could simply be an artefact resulting from baseline

correcting data with a CNV present but it is impossible to exclude

other factors.

Our initial model assumed that the event-related changes would

start immediately the stimulus was presented but simulations of the

ERPs suggested that this was too early. A simple shift of tstart by

80 ms was sufficient to correct this discrepancy and it seems

Figure 13. EMD analysis of simulated data generated by the Firefly model and Evoked models.
doi:10.1371/journal.pone.0045630.g013
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reasonable to assume that at least some of this delay might be

accounted for by the time taken for information about a visual

stimulus to reach the cortex. Estimates of how long this delay

might be are difficult to come by but the earliest visual evoked

potential component believed to be cortical in origin occurs

around 50 ms [41].

Even after this correction, however, a lag between the empirical

and simulated ERD/S data still remained, at least for the higher

frequencies. Furthermore, the time lag increased with frequency.

Perhaps the most likely explanation for this is that the estimation of

tsynch, which was based on an extrapolation of the timing of the

peak phase-locking index, was not accurate at the higher

frequencies. Alternatively, simply adding some variability to the

Figure 14. Power Spectrum Density for a) Real Data and b) Firefly simulated data.
doi:10.1371/journal.pone.0045630.g014

Figure 15. Event-related (de) synchronization changes by frequency band for the real and Firefly simulated data.
doi:10.1371/journal.pone.0045630.g015
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timing of tsynch, might have had a similar effect. Adding some

latency jitter would also tend to eliminate the double ERP peaks in

the simulated P300.

A more important discrepancy between the empirical and

simulated data was in the magnitude of the frequency shift. The

frequency shift in the simulated data was much larger than that

seen in the empirical data. Conversely, the amplitude shift was too

small. On first consideration, this might seem to be a fatal flaw in

the model but the simulations assumed that all the power in the

EEG responded to the stimulus event in the way predicted by the

model and this may not be realistic. By permitting only a

proportion of the EEG to respond, the overall change in frequency

dropped rapidly and when the proportion approached ,50%, the

frequency changes approached those seen in the empirical data.

Other features of the model were not significantly affected by this

change.

With sufficient degrees of freedom, simulations can always be

made to match empirical data. A key strength of the present model

is that there was only one free parameter, the target phase. Some

parameters were defined by the recording equipment (e.g. the

frequency range), others by the experimental set-up (e.g. tstart). Of

the remainder, some were not critical, at least within quite a

broadly defined range of values critical (e.g. tend), and those that

were could be estimated by direct measurement (e.g. tsynch). Only

the target phase needed to be determined by systematic search. In

a phase-resetting model, the target phase is the phase to which the

oscillations are abruptly set by the presentation of the stimulus at

tstart. In the present model, the target phase was defined at tstart

but the synchronization occurred later at tsynch, the latency of

which depended upon frequency. The result was that although the

target phases were the same across all frequencies at tstart, each

frequency synchronized at a different phase at tsynch. The value of

the target phase was not critical for changes in the power spectrum

density or the non-phase-locked signal, provided that it was the

same for all frequencies. It was critical, however, for the phase-

locked changes, as it defined their phase structure which was the

primary reason why the event-related potentials differed between

channels. The target phases, however, were not random but were

found to vary systematically across the scalp in a way consistent

with the idea that event-related changes in the EEG behave like a

travelling wave across the cortex [17–19].

ERPs consist of various peaks and troughs (components) that are

differentially responsive to specific aspects of the experimental

paradigm such as the nature of the stimuli used and the type of

cognitive processing required and any good model should be able

to account for these variations. Although the Firefly model

provides a good account of the shape of the ERPs reported in the

present study, it remains to be seen whether the model can

generalise to other paradigms. In principle, however, small

changes in the synchronization times across the frequency range

should be able to mimic a wide variety of ERP forms. However, it

must be acknowledged that one of the main limitations of the

Firefly in the present context was that it was unable to provide an

explanation for why event-related potentials to faces shown for the

first time (New Faces) differed from those that were repeated (Old

Faces). It might be expected that there would be systematic

differences in the key parameters of the model, such as tsynch. This

might be because the differences in ERPs between the conditions

were relatively subtle in this case and it may be possible in future,

with more accurate measurement of the parameters of the model,

to account for differences between experimental conditions.

Alternatively, it might be the case that there are real amplitude

differences between the two conditions that are not included in the

Firefly model but which might be accounted for by some other

mechanism, such as the AAM model [21,22]. Notwithstanding

this, the Firefly model alone can account for most of the event-

related changes seen, including the peaks and troughs of the ERP

which are the event-related changes that are most commonly

treated as evoked features.

Figure 16. Real and Firefly simulated event-related potentials at channels Fz, Cz, Fz and Oz.
doi:10.1371/journal.pone.0045630.g016
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One of the intriguing aspects of the Firefly model is that it

provides a possible mechanism for transferring information

between frequencies. Oscillations can only synchronize when their

frequencies are in the ratio m:n when m and n are integers. It has

been claimed that the mean frequencies of adjacent bands in the

resting state are in the ratio 1:Q, where Q is the golden ratio

(,1.618) [7,8]. It can be shown that a ratio of 1:Q minimizes the

probability that peaks or troughs in the oscillations from adjacent

frequency bands will coincide, thereby reducing the chance of

coincidental synchronization and preventing cross-frequency

interference. This means that neuronal networks oscillating at

these frequencies will be informationally isolated from each other

[7–9]. The resting state, therefore, represents a condition in which

communication between frequency bands is at its lowest possible

level and this makes it ideally prepared to receive and process new

sensory input. It is this transition from resting state to the

processing of sensory input that the Firefly model attempts to

describe.

The modulation of frequencies in the Firefly model enables

synchronization between neuronal networks with the same

preferred frequency of oscillation but it also permits information

exchange between networks with different preferred frequencies.

This is because the slowing down in frequency allows networks

with different preferred rates of oscillation to overlap in frequency.

So, instead of adjacent frequency bands oscillating with ratios of

1:Q, the higher frequency slows down so that the ratio becomes

1:1 and synchronization can occur. Similarly, the post-synchro-

nization speeding up of frequency might permit information to

flow in the reverse direction from neuronal networks with low

preferred frequencies of oscillation to higher ones. This is outlined

schematically in Figure 11. In the pre-stimulus period, there are

multiple oscillations, each representing the external field generated

by a neuronal networks synchronized at their preferred frequency.

At stimulus onset, each network of neurones slows in frequency

and transiently phase-synchronizes with networks of neurones that

have preferred rates of oscillation that are lower. These in turn

slow down to phase-synchronize with networks with lower

preferred frequencies and so on. The slowing starts at high

frequencies and progresses systematically across the frequency

range. In each case, the short-term slowing is followed by a

rebound increase in frequency before returning to the preferred

rate.

This idea of cross-frequency information transfer also explains

why the oscillations slow down to synchronize rather than speed

up. If, as has previously been suggested frequency is inversely

proportional to scale [42], then the highest frequencies represent

the most localised information processing i.e. the von Stein-

Sarnthein hypothesis. As information processing over localised

networks is likely to be faster than information processing over

widely dispersed networks, high frequency synchronization will

occur before lower frequency synchronization. It makes sense,

therefore, to pass information downwards through the frequency

range instead of upwards, from the small scale to the large and this

can only be achieved by slowing the frequency of the oscillations.

The Firefly model treats oscillations of all frequencies in the

same way but, as noted in the introduction, there is good reason

for thinking that there are at least 8 frequency bands in the 0–

100 Hz range. Part of the evidence for these bands comes from the

known differential response of different frequencies e.g. theta

synchronization and alpha desynchronization. As I have shown,

these observations can be accounted for by the Firefly model in

quite a different way. This is not to say that the Firefly model is

incompatible with the existence of frequency bands. Indeed, the

Firefly model provides a possible explanation as to why, with the

exception of alpha, there are no distinct frequency peaks in the

resting state EEG average power spectrum. The reason is that

although neuronal networks may have a preferred frequency of

oscillation, this frequency is not rigidly fixed but is able to vary

over time. Averaging the FFT over any prolonged period will

result in a smooth power spectrum similar to that seen in Figure 5.

The Firefly Model is presented here as a formal model of event-

related oscillations in the cerebral cortex with sparse discussion of

how it might be implemented at the neural level. The primary

reason for this is that the data used for the development of the

model (i.e. scalp-recorded EEG), provide very little insight into

physiological mechanisms involved. Nevertheless, even though the

neural basis of the model is unspecified, there is nothing in the

Firefly model that is inherently biologically implausible. The

Firefly model, after all, was named after a natural phenomenon

(i.e. the synchronized emission of light by large numbers of

Fireflies) and the synchronization of hand clapping by applauding

audiences provides another example of what is essentially the same

mechanism [43].

There are two key elements in the Firefly model i) event-related

phase/frequency modulation of the ongoing EEG leading to

synchronization and ii) systematic variation of the timing of that

synchronization across the frequency range. With regard to the

first element of the model, modulation of the phase of neuronal

firing in response to environmental signals is a well established

phenomenon in the mammalian central nervous system. Probably

the best-known example of this is type of phenomenon is

hippocampal place cell phase precession [44]. Place cells are

neurons in the hippocampus whose activity increases as an animal

moves through a specific spatial location [45]. The dominant local

field potential (LFP) in the hippocampus shows a characteristic

theta oscillation and place cells have a preference to discharge at a

specific phase of this rhythm. However, the preferred phase

changes systematically as the animal moves in space with the

results that the animal’s movement modulates the preferred phase

(and therefore, frequency) of neuronal firing (i.e. theta phase

precession). Event-related phase modulation of individual neu-

rones controls the degree of synchronization across a network of

neurons and it is this synchronization that contributes to the LFP

(although the relationship between the two is complex [39] and

not always well understood). The EEG is simply the weighted sum

of LFPs from a contiguous volume of cortex. For the firefly model,

the event-related phenomenon is the presentation of a stimulus

rather than movement in space, but otherwise the parallel with

theta phase precession is quite close.

The second element of the Firefly model, that there is systematic

variation in the timing of synchronization across the frequency

range, arises quite naturally from the von Stein-Sarnthein

hypothesis [42]. If, as is proposed, the oscillatory frequency is

proportional to the size of the neuronal assembly involved, then

high frequency oscillations will be used to co-ordinate highly

localised networks of neurones and lower frequency oscillations

will co-ordinate more dispersed ones. If it is reasonable to assume

that larger, more dispersed neuronal assemblies will take longer to

synchronize than smaller more localised assemblies, then high

frequency oscillations will synchronize earlier than low frequency

ones which is exactly what the Firefly model proposes. In short, the

Firefly can be readily implemented by neural processes that are

known to exist in the mammalian cortex.

If the Firefly model is correct, then it has important

ramifications for the analysis and interpretation of event-related

changes in the EEG. The widely held view that the peaks and

troughs of ERPs represent clearly identifiable ‘components’ with

specific functions and sources may be overly simplistic. Although
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this idea works reasonably well for early sensory ERP components,

it seems to fit less well for later cognitive ones and specific sources

for these have often proved elusive (see for example [46]). One

possible explanation for this is provided by the von Stein-

Sarnthein hypothesis. From this perspective, early ERP compo-

nents which, consist of synchronized high frequency oscillations,

reflect activity in small well-localised networks of neurones

whereas later components, made up of synchronized low

frequency oscillations, indicate activity across much more widely

dispersed networks. It might be more appropriate, therefore, to

think of an ERP as an event-related travelling wave that starts in

one or more narrowly defined locations and which, over the

course of a few hundred milliseconds, spreads out to incorporate

more and more of the cortex, reducing in frequency as it does so.

From this perspective, the goal of identifying the sources or ERP

peaks, particularly long latency ones, may prove illusory.

Furthermore, if the Firefly model is correct, studying induced

and evoked changes as different and independent phenomena is

no longer defensible.

The Firefly model presents both challenges and opportunities.

The challenges lie in the realm of signal analysis for if the Firefly

model is correct, then many of our most popular analytical tools

are not fit for purpose as they are predicated on the idea of fixed

frequency bands. EMD does not share this assumption and shows

much promise but there is currently very little experience of using

the technique with EEG so its limitations in this context are not

well understood. The opportunities stem from the insights that the

Firefly model offers about the nature of event-related changes in

the EEG. These insights may prove to be a useful a guide in

helping us move from a focus on the surface features of the ERP,

such as the amplitude and latency of peaks, towards a study of the

true deep structure of event-related changes in the EEG.
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