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Abstract

Differences in individual male birds’ singing may serve as honest indicators of male quality in male-male competition and
female mate choice. This has been shown e.g. for overall song output and repertoire size in many bird species. More
recently, differences in structural song characteristics such as the performance of physically challenging song components
were analysed in this regard. Here we show that buzz elements in the song of nightingales (Luscinia megarhynchos) hold the
potential to serve as indicators of male quality and may therefore serve a communicative function. Buzzes were produced
with considerable differences between males. The body weight of the males was correlated with one measure of these
buzzes, namely the repetition rate of the buzz subunits, and individuals with larger repertoires sang buzzes at higher
subunit-rates. A model of buzz performance constraints suggested that buzzes were sung with different proficiencies. In
playback experiments, female nightingales showed more active behaviour when hearing buzz songs. The results support
the idea that performance differences in the acoustic fine structure of song components are used in the communication of
a large repertoire species such as the nightingale.
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Introduction

The singing of male song birds serves the two main functions of

territory defence against other males and the attraction of females.

Individual differences in song characteristics often lead to

differences in reproductive success, making song a sexually selected

signal [1,2]. The theory of sexual selection claims that signals must

be subject to some constraint in order to serve as an honest

indicator of quality [3,4]. Bird song is a complex acoustic signal

consisting of many components that have evolved and are

maintained by sexual selection. The relative importance of these

components for communication differs across bird species [5].

Many studies have shown that, irrespective of ‘song content’,

song output measures affect female choice. Examples are the time

spent singing, song rate or song length [6–8].

For a long time, researchers have focused on song repertoire

size as the primary target of female choice. In some species

repertoire size might be an indicator of male quality as supported

by correlations of repertoire size and body measures [9–11] and

volume of brain nuclei related to song [12]. Evidence for female

preferences for large repertoires was often provided in lab-

experiments but only in a few field studies [10,13–15] and many

studies failed to find such preferences [16,17].

Some studies on quality-related song characteristics went a step

further from focussing on repertoire size and investigated song

production mechanisms, suggesting that singing some specific song

structures might be physically more challenging than others. For

example, such song structures might be produced in a way more

demanding in metabolic and syringeal muscle activity than other

song components [18–22]. Accordingly, such structural song

characteristics have been suggested to serve as ‘index signals’ that

honestly communicate a physical trait related to the song

performance [23].

So far, mostly syllables that are rapidly repeated in trills were

investigated in this regard [24–27]. In these studies, the

performance limit of song production was described by the

relationship between trill rate and frequency bandwidth. Other

studies revealed correlations between aspects of male quality and

the consistency of their trill performance [28,29] or specific song

structures such as rattles [30], snarrs [31] or buzzes [32]. Rattles,

snarrs, and buzzes share certain characteristics such as a large

frequency bandwidth, a ‘pulsed’ structure and a long duration

(compared to other song elements). Since they differ considerably

in other measures such as the mean frequency and pulse rate, their

acoustic pattern does not necessarily suggest a common pro-

duction mechanism. For buzzes, i.e. pulsed low-frequency

elements with long duration, it has been suggested that in

particular the duration of such vocal elements holds the potential

to reflect performance trade-offs [19,32].

Such structural song traits may be used to convey quality

information predominantly in species with simply structured songs

and small repertoires. However, even in large repertoire species,

the performance of some song components might contain

information different from (or in addition to) repertoire size

[17]. In general, to investigate the potential of communicative

signals to serve as an indicator of quality, it is necessary to show
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that a signal a) has large inter-individual variation; b) is reliably

related to a physical trait; and c) is indeed used in communication

by potential receivers. Here, we investigate whether a complex

structural song trait, namely the buzz element, produced by male

common nightingales, Luscinia megarhynchos, conforms to the above

three predictions and is thus likely to serve as an acoustic signal of

male quality.

Nightingales learn and sing their song types very precisely and

stereotyped [33–35] and therefore allow reliable comparisons of

song types within and across males. Nightingales have extraordi-

narily large song type repertoires (approx. 180 different song types

per male) and repertoire size has been suggested to be an honest

indicator of male quality since it is correlated with male qualities

such as body measures and arrival date at the breeding site and

with age [11,36,37]. Though the production and performance

patterns of individual’s song structures beyond repertoire compo-

sition have not been investigated in this species so far, there exist at

least some indirect hints that specific structures in the song might

reflect performance limits. For example, in simulated male-male

interactions, nightingales showed stronger responses to playbacks

containing many broadband trill songs and males that successfully

paired later in the season responded more strongly to trills than

males that remained unpaired [38,39]. Similarly, whistle songs

have been suggested to reflect individual characteristics of males

potentially related to quality [40]. However, subtle intra- and

inter-individual differences in song production of specific song

elements have not gained that much attention so far.

Here we investigate one song element in the singing of

nightingales under this regard, namely buzz elements. Buzzes

are acoustically and syntactically peculiar elements in nightingale

songs which are produced by very fast repetitions of sound

subunits in a narrow and rather low frequency range. Buzzes

occur in several song types and the performance of buzzes might

be a good indicator of male quality. We investigated whether

buzzes hold the potential to serve as index signals in nightingales

by testing three predictions. Firstly, we hypothesized that buzzes

show larger variation between individuals than within individuals.

Secondly, we expected that the acoustic parameters of buzzes are

related to quality measures of individuals such as age, breeding

stage or body measures. In addition, we tested whether buzz

acoustics are related to repertoire size. Thirdly, to investigate

whether buzzes function in communication we tested whether

male and female nightingales react differently when hearing songs

containing or not containing buzzes.

Materials and Methods

Study Population
The study was conducted on a population of nightingales in

Berlin - Treptower Park, a municipal city park [38]. As part of

a long-term project on song and breeding behaviour, males of the

population were individually marked by coloured leg rings.

Song Recording and Analysis
Nocturnal song was recorded using a Sennheiser ME66/K6

directional microphone connected to a portable Marantz PMD-

600 solid state recorder or a Sony TCD 5 tape recorder. All sound

analyses were conducted with the software Avisoft SASlab Pro

4.52 (R. Specht, Berlin, Germany).

We analyzed nocturnal song of 59 males (1 hr of spontaneous

song of each male from yrs. 2003–2010, each male contributed

only once). We used these analyses to determine the population

repertoire of buzz song types and to determine how often the

different buzz song types were performed per bird. Further

analyses were conducted with subsets of this sample and additional

birds (details in respective sections). The selection of these subsets

based in all cases exclusively on the availability of suitable

recordings for the respective analyses or comparisons (e.g. early-

late season or successive years). All statistical analyses and tests

were selected based on the data structure (e.g., scaling or

distribution) to meet test assumptions and were calculated with

R 2.9.1 [41].

Visual comparisons and preliminary acoustic analyses suggested

three measures to be most decisive in describing buzzes: the length

of the buzz (Figure 1A and 1B), the mean frequency of the buzz,

(measured as the frequency with the highest amplitude averaged

over the whole buzz element, Figure 1B), and the rate per second

of the small subunits of the buzz (determined by zooming into the

amplitude envelope curve; Figure 1C). In the following we define

this rate of subunits per second as buzz rate.

Analysis of Buzz Song Characteristics
To investigate individual differences in buzz production, we

analysed buzzes produced within the four most common buzz

song types (most common across the repertoires of all individuals)

in 1 hr nocturnal song of 15 male nightingales. These males were

selected randomly based solely on the quality of the song recording

(the buzz rate estimation in particular required recordings with

excellent signal-to-noise ratio). Given that all recordings were

obtained during the first days of the breeding season and males still

sang at night (which they mostly stop after pair formation [42])

makes it most probable that these males were (still) unmated and

represent a good cross section of the population under study.

Investigation of Inter-individual Variation in Buzz
Production

For each buzz we measured duration, mean frequency, and

buzz rate. To analyse individual differences (and in all other

analyses of this study), only buzzes of the same buzz song type

were compared, because a preliminary analysis revealed that

buzzes in different song types were produced with significant

different durations and mean frequencies (ANOVA: n = 15,

duration: F(3,153) = 8.9, p,0.001, frequency: F(3,153) = 752.7,

p,0.001, buzz rate: F(3,153) = 2.64, p = 0.051). We characterised

songs as belonging to the same song type when they differed in not

more than three of approximately ten element types in the first two

sections of the song and included the same repetitive sections

[35,43].

To compare the individual variation in the singing of buzz

elements with that of other elements we additionally measured the

elements sang immediately before and after the buzz in the song

type shown in Figure 1. Since other elements do not possess

subunits, we restricted our analysis to the two other measures:

mean frequency of element (measured as the frequency with the

highest amplitude averaged over the whole element) and duration.

To account for the different mean durations and frequencies of the

three elements we used coefficients of variation as described in e.g.

[44]. We used the singing of the same 15 individuals for this

analyses that were used in the analysis of buzz element variation.

Three birds didn’t sing the respective song type, and one bird had

to be excluded from the analysis because it sang a different

element type before the buzz element. We thus included 41

versions of the same buzz song type sang by 11 individuals with 2–

8 versions per individual (median 3) in the analysis. We calculated

coefficients of variation per element and individual. The data from

the 15 males were used to explore possible performance

constraints on buzz rate. First, we analysed intra- and inter-

individual variance of the three measures. In the singing of
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individual males, for each of the different song types containing

buzzes, individual’s buzz rate and mean frequency were rather

stable whereas the duration of the buzzes turned out to be the most

variable buzz component (mean variance of standardised buzz

measures (z-scores): duration = 0.25, buzz rate = 0.15 and mean

frequency = 0.02, n = 15). These differences were significant:

n = 15 males, with stratification by 4 buzz types, with variable

numbers of buzzes per type and male, maxT = 3.17, p- = 0.004

(Independence test as implemented in the R package ‘coin’

[45,46]. In addition, measuring buzzes had shown that, in the

whole buzz, the mean frequency and the buzz rate are stable,

whereas the duration remains the only variable component. Given

our results and those of similar studies exploring production

mechanisms of buzz-like structures e.g. [19] we then analyzed the

effects of buzz rate and mean frequency (and possible interactions)

on buzz duration using a linear mixed-effect model (LMM) with

individual subject fitted as random factor to account for the

repeated sampling of the same individuals [47,48].

Based on the relationships of buzz rate, frequency and duration

as described above we calculated a regular regression of buzz rate

and frequency on duration. Considering that a regular regression

might not be the only way to analyse these relationships, we also

provide data on a three dimensional upper-bound regression

comparable to the upper-bound regression reflecting the two-

dimensional performance constraint of trill rates and frequency

bandwidth in [24]. A visual inspection of the bi-variate relation-

ships of buzz rate and duration and frequency and duration

suggested a triangular distribution of data points and a distinct

upper bound and justified this approach. For a comparison of both

approaches to describe performance constraints see [49].

According to the method used in [24] and [50] we separated the

mean frequencies and buzz rates into distinct categories and

identified for each combination of these categories the longest

buzz and calculated the upper-bound regression by using these

data exclusively resulting in the surface shown in Figure 2. Bin

categories for the upper bound regression were 8 bins for mean

frequency (bin size 160 Hz) and 15 bins for rate (bin size 3

subunits/s).

Buzzes and Male Quality Measures
To explore whether buzz production was under some form of

physiological constraint and thus might act as an honest indicator

of male quality, we analysed individuals’ buzz rates, buzz mean

frequencies and durations and their buzz performance (measured

as the distances of individuals’ buzzes to the performance limit

suggested by the upper bound regression) in relation to individuals’

repertoire sizes. Repertoire size for the birds in our sample was

determined as the number of different song types in 533

consecutive songs (approximately 1 hr spontaneous nocturnal

singing), following [11]. This sample size has been shown to be

sufficient to approach the asymptote of repertoire curves in

nightingales [36].

We investigated correlations of repertoire size and buzz

production by using a generalised linear model (GLM) fitting the

Figure 1. Buzz description. A Buzz songs of the same type produced by three different individuals. A buzz is a long, narrow element produced
with a rather low frequency. Even though songs and buzzes appear very similar at a first look, acoustic characteristics differ between males. B The
same buzz elements depicted with enlarged scale, showing that buzzes were produced with different mean frequencies and durations. C Amplitude
envelope curve of subsections of the buzzes. The small subunits are clearly visible. Again, the buzz rates are individually different.
doi:10.1371/journal.pone.0045057.g001
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effects of buzz rate, mean frequency and buzz length (mean per

bird each) to repertoire size with Poisson error distribution

[47,48].

For 14 nightingales we compared buzz characteristics and body

measures. In spring 2010, nightingales were trapped using

Ecotone mist nets (http://www.ecotone.pl), sexed and aged (1

year or older; only birds older than one were included in this

analysis), and measured (length of tarsus (60.1 mm), wing length

(60.5 mm), and body mass (60.1 g)). The age of the nightingales

was determined by characteristic feather features [51–53]. We

used Spearman rank- and Pearsons correlation to analyse

correlations of body measures and buzz measures (average of the

buzz measures per bird).

To investigate changes in buzz production in the course of the

singing season, we compared the singing of nine birds (for which

recordings were available) in the first phase of the breeding season

(April or first week in May, i.e. shortly after arrival) and later in the

season (second half of May or beginning of June) with at least 3

weeks between the two recordings. Since nightingales usually cease

nocturnal singing after pairing [42]; these males had most

probably remained unmated. If singing in late season is still

aiming at attracting females, we would expect males to sing buzzes

of same or even higher quality than early in the season. However,

since late pairings are extremely rare and nightingales are

breeding obligatory only once per season (not leaving possibilities

for extra-pair mating in later breeding attempts), nocturnal singing

late in the season might be for other reason including advertising

quality for future seasons e.g. [54]. If that would be the case, song

motivation might have decreased and flexible buzz measures

might show a decrease. Again, only the same buzz song types

produced by the same individual early and late in the season were

compared (see above). We used paired t-tests and exact paired

Wilcoxon signed rank tests to test for changes in buzz rate, mean

frequency and buzz duration [55].

In order to analyse changes in buzz production across years we

compared the singing of eight nightingales in two successive years,

again only including birds that were at least two years old in the

first year of analysis and only using recordings from the beginning

Figure 2. Model of buzz constraints. Buzz rate, mean frequency and duration of 157 buzzes produced by 15 individuals. The surface shows the
upper bound regression calculated by a subset of these data (see methods). Vertical lines reflect the distance of the actual buzz duration to the
length predicted by the upper bound regression (residuals of duration to the upper bound regression). The 15 birds are clustered according to their
repertoire size in three classes (open circles = birds with small repertoires (,150 song types, n = 3). Filled circles = birds with medium size repertoires
(n = 7) and filled triangles =birds with large repertoires (.180 song types, n = 5). See text for further explanations.
doi:10.1371/journal.pone.0045057.g002
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of the season. Again, only the same buzz song types produced by

the same individual in both years were compared (see above). We

used paired t-test and exact paired Wilcoxon signed rank test for

statistical analysis. The singing of eight nightingales in their first

and second breeding season was compared in the same way in

order to investigate whether and how these age classes differ in

buzzing. Previous studies had shown that the repertoire of one

year old nightingales differed considerably from that of older birds,

with repertoires being about a third smaller in younger birds

[36,37].

Do Buzzes Function in Communication? Playback
Experiments with Males and Females

Our investigations whether buzzes yield the properties to serve

as a quality indicating signal were paralleled by playback

experiments addressing reactions of male and female nightingales

to buzz songs. Each bird was tested with two playbacks: a ‘buzz

playback’ (3 to 6 buzz songs in 20 songs) and a ‘non buzz playback’

(0 buzz songs in 20 songs). We used recordings of 12 different

nightingales unknown to the focus birds (warranted by distance in

time and space) as sources for the playback stimuli. From each

source bird we randomly chose 40 different song types including

some buzz song types. Each bird received two playbacks consisting

of the song of one source bird with at least one hour pause between

playbacks. One playback was composed of 20 songs contained 3 to

6 buzz songs and one playback of 20 different songs without buzz

songs. Sequence of treatments was randomized across birds. The

playback files were broadcasted with a portable MP X10i, ODYS

player in.wav-format. The player was connected to a custom-build

speaker (DKA Daniel Kiefer Audio, Heidelberg, Germany, for

details see [56] constructed under consideration of the suggestions

in [57].

Twelve spontaneously singing male nightingales in Berlin

Treptower Park were tested at night with interactive playbacks

(each playback song was started after the focus bird had finished its

own song) in spring 2007 and 2008 (25 April and 6 May, between

0000 and 0200 hours). Songs were broadcast from at least 15 m

away from the singing bird (for more details see [58]). Playback

volume was standardized to peak amplitude of 86 dB SPL at 1 m

distance (as measured with a CEL 314 precision sound level metre,

integration time 125 ms). This corresponds to natural amplitude

peaks measured in singing males [59].

Numerous studies had shown that nightingales readily respond

to nocturnal playbacks and adjust their singing depending on the

playback stimuli e.g. [56,58], reviewed in [60]. As response

measures we analysed the number of buzz songs sang during and

after the playback as well as song rate, song length, number of song

type matches and percent of playback songs overlapped by the

bird during the playback. We measured 2 minutes of birds’ song

before and after the playback (a duration comparable to the

playback length). For the response measures song length and song

rate we related the values to birds singing before playback onset by

calculating differences of the values during and after the playback

to the values before playback onset. For all other measures we

compared the absolute values of the two different treatments.

In addition, we tested six hand raised female nightingales in the

lab in late spring 2008 (19–20 June) in early morning (0600–0800

hours) with the same playbacks. Three of the six females received

estradiol implants to increase reactivity 15 days before the

playback experiments; the other females were sham-implanted.

The pellets were made by mixing crystalline 17-beta-Estradiol with

medical grade Silastic adhesive (Dow-Corning) in a ratio of 1:8

and extruding this mixture as a thin rope through syringe. This

mixture was cured by drying overnight, then weighted and cut into

pellets of about 5 mm lengths. Pellets were implanted under the

skin covering the breast muscle. The control group was similarly

implanted with rope pellets composed of pure Silastic adhesive

without estradiol (for similar methods and more details see e.g. [6].

Females were kept single-wise in plastic cages (50*120*50 cm)

under weekly changing light conditions reflecting the natural

conditions during the breeding season (in the week of experiments:

lights on 0500–2130 hours). The bottom of the cage was covered

with paper and grit and cages contained 6 perches. Under neutral

conditions, perches and bottom were regularly used by females.

Since hormone treatment did (in this and similar experiments)

not seem to affect female behaviour in response to song we decided

to pool results. Playbacks were presented non-interactively with

standardised pauses of 3.5 s between songs and one hour pause

between the two treatments. Since females did not perform

unambiguous copulation solicitation displays (CSD), we decided to

instead assess the general behavioural activity of the females by

counting the number of location changes and the number of tail

lifts the females performed while listening to a playback as

measures of general arousal. Similar response measures were used

in other studies on female song preferences [61,62]. For statistical

analyses we calculated exact paired Wilcoxon signed rank tests.

Results

Intra- and Inter-individual Variation in Buzzes
The population repertoire of buzz song types (n = 59 males)

consisted of 13 different types in altogether 425 distinct song types.

Individuals sang 2 to 7 different buzz song types (median = 5) and

8 to 27 buzz songs per hour (median = 14). There was no

correlation between the repertoire sizes of individuals and neither

the number of buzz songs nor the number of different buzz songs

sang in 1 hr spontaneous nocturnal singing.

Comparing buzz characteristics across 15 individuals revealed

that males differed remarkably in the acoustic fine structure of

their buzzes. In all of the four most common buzz song types, the

three buzz characteristics measured (buzz rate, mean frequency

and duration) differed significantly between individuals (ANOVA:

buzz rate: F(14,142) = 25.13, p,0.001, mean frequency:

F(14,142) = 3.36, p,0.001, duration: F(14,142) = 11.22,

p,0.001). To test whether these differences were larger than

differences in other elements of the song, we also measured the

elements immediately preceding and following the buzz in one

song type (see Fig. 1A for illustration). The variation within buzz

element duration was significantly higher than the variation within

the length of both other elements (Table 1). In contrast, there was

no significant different variation in the duration of the element

before and after the buzz (Table 1). To support these findings we

also explored the variation in the mean frequency of the three

elements the same way. The variation in the mean frequency of

the element preceding and following the buzz were both lower,

although the latter not significantly so, than that of the buzz

element (Table 1). The variations of mean frequencies of the

element before and after the buzz were comparable (Table 1).

A global comparison of the three buzz measures between

individual males indicated that males that produced very long

buzzes sang these buzzes at rather slow buzz rates and with

relatively high frequencies. On the other hand, the higher the buzz

rate and the lower the mean frequency of the buzz, the shorter

were the buzzes. Altogether the interrelation of the three measures

suggested a production constraint including all three variables.

A linear mixed effect model analysis revealed a significant

negative effect of buzz rate and a significant positive effect of mean

frequency on buzz duration (df = 136, buzz rate: t =23.74,

Buzz Songs in the Communication of Nightingales
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p,0.001, mean frequency: t = 2.1, p = 0.037). The significant

effect of the interaction term of buzz rate and mean frequency on

the length of the buzz element in the full model indicates the

interdependency of both effects (df = 136, buzz rate x mean

frequency: t =23.46, p,0.001, song type was additionally used as

fixed factor (t = 2.08, p = 0.038) and individual birds as random

factor).

Figure 2 presents this complex subject graphically. Due to the

repeated measurement and the resulting error structure it was not

possible to depict a regression plane from the above model in

a meaningful way. Instead of this we show a regression plane

calculated from an upper regression. Thus, the surface in Figure 2

depicts the performance limit of buzz durations at different regions

of the buzz rate - mean frequency space as calculated by an upper

bound regression of a subset of data (see methods) (df = 49, buzz

rate: t =20.84, p = 0.41, mean frequency, t = 2.14, p = 0.038)

Though a part of this analysis failed to reach significance (probably

due to bin sizes selected), the surface nevertheless reflects

a potential performance limit. To give an example: only a buzz

with a short duration appears to be producible with many subunits

and low frequencies.

In general, individual birds did not differ in their overall vertical

distance from the upper bound regression (ANOVA, with vertical

distance as response and individual birds as factor,

F(14,142) = 0.39, p = 0.54) and repertoire size was not correlated

with this distance (Spearman rank correlation, r =20.06,

p = 0.41). Looking in more detail though, individual birds (and

in particular birds with different repertoire sizes) differed in their

buzz production in terms of the position of their buzzes in the buzz

rate - mean frequency space (Figure 2). Individuals with large

repertoires produced shorter buzzes than individuals with small

repertoires, but they performed their buzzes at other regions of the

buzz rate - mean frequency space. The right half of this space is

reserved for individuals with medium and large repertoire sizes

and the right front region with very high buzz rates and very low

mean frequencies at the same time holds exclusively individuals

with very large repertoires (Figure 2). This is furthermore

corroborated by a significant positive effect of buzz rate (mean

per bird) on repertoire size (GLM: df = 14, buzz rate: z = 3.46,

p,0.001, mean frequency: z =20.44, p = 0.66, duration:

z =21.18, p = 0.24).

Buzzes and Quality Measures
In order to correlate buzz characteristics with body measures,

we analysed the four most common buzz song types produced by

each of 14 individuals. Values used in this calculation were mean

duration, mean frequency and mean buzz rate per bird. The

weight of the birds was positively correlated with buzz rate

(Pearson correlation: n = 14, r = 0.76, p = 0.002, Figure 3). No

significant correlation was found between wing and tarsus length

and buzz rate as well as between buzz duration and mean

frequency and any of the body measures (n = 14, all p-values

.0.28).

The comparison of buzzes produced early versus late within

a breeding season revealed that nightingales produced significantly

shorter buzzes late in the season (paired t-test: n = 9, t = 3.82,

p,0.001). Additionally, in the late phase of the season buzzes were

produced with lower mean frequencies and lower buzz rates (mean

frequencies: paired t-test: n = 9, t = 3.62, p,0.001; buzz rates:

exact paired Wilcoxon signed rank test: n = 9, W = 37.5, p = 0.005)

and nightingales sang significantly more buzz songs late in the

season (n = 9, W = 1.5, p = 0.023).

We found no significant differences in buzzes produced by the

same individual in the early phase of two subsequent breeding

seasons when birds were at least two years old when first recorded

(buzz rate: exact paired Wilcoxon signed rank test: n = 8,

W = 134.5, p = 0.30, mean frequency: paired t-test: n = 8,

t =21.65, p = 0.11, duration: paired t-test: n = 8, t =20.31

p = 0.76).

In another longitudinal analysis we compared buzz character-

istics of 8 nightingales in their first and second breeding season

(birds were one year old when first recorded). We did not find any

significant differences. That is, in contrast to repertoire size,

neither buzz rate (exact paired Wilcoxon signed rank test: n = 8,

W = 93.5, p = 0.18) nor mean frequency (paired t-test: n = 8,

t = 0.99, p = 0.33) nor buzz length (paired t-test: n = 8, t =20.29,

p = 0.77) differed between the first and second breeding season of

individuals.

Responses to Buzzes in Playback Experiments
In a nocturnal playback, male nightingales did not change their

song characteristics significantly different in response to playbacks

with or without buzz songs (all n = 12, all p.0.05 for all response

variables: no. of buzzes during and after playback, song rate, no. of

Table 1. Variation in buzz elements is higher than in other
elements.

estimate se t p

duration buzz-prebuzz 20.045 0.016 22.78 0.012

buzz-postbuzz 20.069 0.016 24.28 ,0.001

prebuzz-postbuzz 20.024 0.016 21.49 0.15

mean
frequency

buzz-prebuzz 20.008 0.003 22.40 0.026

buzz-postbuzz 20.006 0.003 21.60 0.12

prebuzz-postbuzz 0.003 0.003 0.90 0.43

Results of linear mixed effect model analyses with variation coefficient of
element duration and mean frequency as response measures and element type
as fixed factor and bird as random factor (to account for repeated measurement
of elements per individual), n = 11.
doi:10.1371/journal.pone.0045057.t001

Figure 3. Correlation of body weight and buzz rate. Correlation
of body weight and buzz rate of 14 male nightingales. Pearson
correlation: n = 14, r = 0.76, p = 0.002.
doi:10.1371/journal.pone.0045057.g003
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song type matches, percentage of songs overlapped in exact paired

Wilcoxon signed rank and mean song length in paired t-tests). In

both playback treatments the birds sang significantly shorter songs

after playback onset compared to their singing before the playback

(paired t.test: n = 12, treatment buzz: t =23.83, p = 0.003,

treatment without buzz: t =24.45, p = 0.001), indicating that

birds’ singing was in general affected by the playback, but males

did not differentiate between the two treatments.

In contrast, female nightingales showed more active behaviour

while listening to the buzz playback than when listening to the

non-buzz playback (Figure 4). The number of location changes

was higher in all six females while being exposed to the buzz

playback as compared to the playback without buzzes, as was the

number of tail lifts (Figure 4, exact paired Wilcoxon signed rank

test: location changes: n = 6, W = 21, p = 0.031, tail lifts: n = 6,

W = 21, p = 0.031).

Discussion

Nightingales sang their buzzes with considerable individual

differences in buzz rates, mean frequencies as well as durations.

One of the buzz measures was correlated with repertoire size:

males with larger repertoires sang buzzes with higher rates.

Furthermore heavier individuals produced buzzes with higher

repetition rates. Female nightingales responded with increased

activity when hearing a buzz playback. To conclude, buzzes fulfil

many preconditions to serve as an indicator of individual quality in

nightingale communication.

Following the idea that buzzes might be produced under

performance trade-offs and based on the results of regression

analyses we suggest the following explanatory scheme that includes

the three buzz measures simultaneously and relates potential buzz

performance trade-offs to other characteristics of the signaller as its

overall repertoire size. Our results suggest that buzzes with high

rates and low frequencies might be more challenging to produce

and these two characteristics have strong effects for the duration of

the buzz as the most flexible buzz measure. Following our scheme,

a buzz of very ‘high quality’ would have a high buzz rate and at

the same time a low mean frequency and is produced for as long as

possible under these conditions. Though the production mecha-

nism of buzzes in nightingales has not yet been investigated,

insights on production mechanisms of similar low-frequency,

broad-band sounds fit very well with the performance trade-offs

our analysis suggests: A buzz is most likely produced during

a single, pulsatile expiration and the duration might thus be

limited [19]. The buzz rate might be the result of syringeal muscle

activity, as has been shown for similar low-frequency sounds in

starlings [63] and thrashers [64]. The high buzz rates we measured

might reflect the upper limit of the muscular activity rate.

Alternatively, a buzz structure might be produced without direct

muscular control of the buzz rate by vibration of syringeal

structures [65], but even in this case, the rate and duration might

reflect individual performance trade-offs.

The acoustic structure of buzzes produced by the same

individual early and late in a breeding season differed. Buzzes

sung late in the season were shorter, of lower frequency, and lower

buzz rate. It is important here to consider that this result does not

necessarily reflect the general change in buzz production over the

season across all males since we only included males that

continued nocturnal song (thus presumably not paired, thus

presumably of ‘lower quality’). However, our results hint to

a context-dependent intra-individual plasticity in buzz production.

This suggests that buzzes are not learned once and later produced

by individual nightingales at determined rates, frequencies and

durations. This might either reflect a change in the male

characteristics being signalled by the buzzes (e.g. change in body

mass throughout the season) or, alternatively, the buzz perfor-

mance might be context dependent and modifiable within limits

and thereby might deliver respective information about the singer.

The decrease in buzz rate and length in later phases of the

breeding season might correspond to decreasing motivation of the

singers. This result might appear contradictory to the idea of

‘index signals’. But then, it has been suggested for long that bird

song structures might encode multiple information [66], reviewed

in [5]. Recent studies confirmed that even index signals such as

vocal trill performance might be modulated in different contexts

within narrow limits [27]. Nonetheless our results suggest the

existence of a robust individual limit of buzz performance, because

individuals did not change their buzz performance significantly

between different breeding seasons, when buzzes produced early

in both seasons (probably in a highly motivated state of all singers)

were compared. If the above holds, then buzz performance may

be used in addition to repertoire size to assess signallers’ general

quality and additionally might provide dynamic information about

short term changes in their condition or motivation.

The singing responses of males in response to playbacks with or

without buzzes did not differ. Female nightingales though showed

more active behaviour during a playback containing buzz songs

compared to a playback without buzz songs. Along with the

correlative findings of buzz performance and male body condition,

this supports the notion that buzzes play a role in nightingale

communication. Our experiments were unable to determine

whether females differentiate between buzzes of different quality

or whether the patterns we observed for buzzes can be

generalized. Interestingly, a recent study in banded wrens found

that rattle and buzz elements were used mostly in male-male

counter-singing and were less likely to be produced in the presence

of a female [32], suggesting that apparently similar acoustic

structures may indeed be used in different contexts in other

species. However, assuming that other song elements display

similar individual differences, and are thus information-encoding,

our data support the idea that assessment of structural differences

within the ‘same’ song types may be more biologically relevant

Figure 4. Playback experiment. Responses of six female night-
ingales to playbacks containing or not containing buzz songs. A the
number of location changes and B the number of tail lifts the females
performed during the playbacks. For both responses, exact paired
Wilcoxon signed rank test, p,0.05.
doi:10.1371/journal.pone.0045057.g004
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than simply investigating repertoire composition [67]. Our study

contributes to the growing body of evidence that in addition to the

song type level (macro-structure such as repertoire size or syntax-

like rules of song sequences), the micro-structure of song with

performance measures might as well encode important informa-

tion.
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