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Abstract

The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their
particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial
peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the
predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different
classes of peptides. We observed that existing antimicrobial predictors had reasonable predictive power to identify
peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity,
one focused on short peptides (4–20 amino acids) and one focused on long peptides (w20 amino acids). These general
predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking
differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour
phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints,
perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure. We conclude that
there are general shared features of bioactive peptides across different functional classes, indicating that computational
prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides,
across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify
among a set of peptides those that may be more likely to be bioactive.
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Introduction

Biologically active, or bioactive, peptides encompass a wide

range of activities across all kingdoms of life, and the available

proteomes of many organisms now represent a rich resource for

the computational prediction of potential function of peptides

encoded within them. For example, new antibiotic drugs are

needed urgently to address the problem of bacterial resistance [1]

and bioactive peptides may provide an answer [2,3]. They may

serve as leads for drug design, or in certain circumstances be

themselves used as therapeutics. However, bioactive peptides are

not only important as a potential source of new antibiotic drugs

but have also been shown to have a potential role in the

development of new antiviral, antifungal and antiparasitic drugs

that may be less susceptible to the development of resistance in

pathogens [2]. Bioactive peptides may also modulate human

platelet function [4], be used in the development of biomaterials

[5] and in wound healing [6]. The identification of food, especially

milk, derived bioactive peptides is a growing research area. For

example, milk protein derived ACE inhibitors may be added to

food with the aim of reducing the risk of developing hypertension

[7]. Other bioactive peptides that may be sourced from food

include anticancer and antithrombotic peptides [8]. With bioac-

tive peptides showing such potential as new therapeutics,

nutraceuticals and functional food ingredients, the discovery and

prediction of new bioactive peptides is an increasingly valuable

research area.

To date, computational prediction of peptide bioactivity has

focused on antimicrobial peptides. The most recent versions of

both the antimicrobial peptide database (APD2) [9] and the

CAMP database [10] include antiviral, antifungal, antibacterial

and antiparasitic peptides. The authors have also studied the

amino acid composition of various peptide classes. The experi-

mentally validated CAMP dataset was used to develop prediction

tools based on machine learning techniques [10]. Another

predictor of antimicrobial peptides, AntiBP2 [11], based on a

Support Vector Machine (SVM) was trained on peptides from the

APD [12], using the 15 N and C terminal residues and the amino

acid composition of the whole peptide. AMPer [13], antimicrobial

peptide predictor, used hidden Markov models (HMMs) con-
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structed from known antimicrobial peptides to discover novel

antimicrobial peptide candidates (see http://marray.cmdr.ubc.ca/

cgi-bin/amp.pl). Another new method for predicting antimicrobial

peptides was trained using sequence alignments and feature

selection [14].

A number of bioactive peptide databases which cover a range of

activities, including, but not limited to antimicrobial peptides, are

also available such as BIOPEP [8] and PeptideDB [15]. Although

there is some overlap between these databases, they are each

focused on particular classes of peptides. BIOPEP is a database of

biologically active peptide sequences, and also a tool for the

evaluation of proteins as the precursors of bioactive peptides. The

peptide activity classes found in BIOPEP include antithrombotic

peptides, antiamnestics, celiac toxins, neuropeptides, antibacterial

peptides, haemolytic, opioid, heparin binding, anticancer, immu-

nomodulating, antioxidative and peptides labelled as inhibitors,

regulating and stimulating. The PeptideDB database includes

cytokine and growth factors, peptide hormones, antimicrobial

peptides, toxin/venom peptides and antifreeze proteins. However,

there are no established prediction methods covering these classes

of peptides.

We set out to determine whether it is possible to make useful

general predictions regarding peptide bioactivity, or whether

predictions are best carried out within particular discrete sub-

classes. To assess this, we developed a general bioactive peptide

predictor, PeptideRanker, trained in five-fold cross-validation

using a novel N-to-1 Neural Network (N1-NN) [16]. This method

can prove useful to identify among a set of peptides those that are

more likely to be bioactive, allowing the focusing of experimental

screening on this subset. Our training set drew from four bioactive

peptide databases (BIOPEP, PeptideDB, APD2 and CAMP),

covering a diverse set of bioactive peptides. We then investigated

how well PeptideRanker can predict different classes of bioactive

peptides, and the impact of extracellular status and amino acid

composition on predictions.

Figure 1. ROC plots for the training and independent test datasets predicted by PeptideRanker. (A) long peptide training dataset (B)
short peptide training dataset (C) long peptide independent test dataset (D) short peptide independent test dataset. P-value%0:0001 in all four
cases.
doi:10.1371/journal.pone.0045012.g001
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Results

Training a general predictor of peptide bioactivity
In training PeptideRanker to predict bioactive peptides we

reduced over-fitting by training and testing using five-fold cross-

validation with redundancy reduced datasets and by assessing the

performance on two independent datasets. Since evolutionary

similarity among peptides in training/test and independent

datasets can contribute to over-fitting, we also investigated

whether the predictions in the independent dataset relied on

sequence similarities. Since our initial investigation indicated that

short and long peptide predictions were very different, we

developed two separate predictors, one for peptides of twenty

residues or less, and one for longer peptides.

For every peptide, PeptideRanker predicts the probability

(between 0 and 1) of that peptide being bioactive. The closer the

predicted probability is to 1, the more confident PeptideRanker is

that the peptide is bioactive. The results of five-fold cross-

validation for the training dataset, are shown in Table 1 and in

Figure 1 as a Receiver Operating Characteristic (ROC) curve with

thresholds increasing from 0 to 1, i.e. the cut-off above which a

residue is considered to be predicted as a bioactive peptide. We

also tested PeptideRanker using two independent test set of

peptides with v70% sequence similarity to the training set. Table

S1 shows the results for PeptideRanker tested on these long and

short independent test sets and Figure 1 shows the same results

plotted as ROC curves. The results for the independent test sets

(where all models of the predictor are ensembled) are slightly

better than the results in five-fold cross-validation. The predictor

for the long peptides performs better (Matthews Correlation

Coefficient (MCC) 0.74 and Area Under Curve (AUC) of 0.94)

than the predictor for the short peptides (MCC of 0.54 and AUC

of 0.83).

When machine learning methods are used to predict some

feature from protein sequences it is common to reduce the

sequence similarity within the training set and between the

training set and any test sets to v30% sequence similarity. This is

essential when, for example, predicting secondary structure from a

whole protein sequence where it is known that proteins sharing

w30% sequence similarity are often structurally similar. However,

this may not be the case with bioactive peptides, where even one

amino acid substitution can change a peptide from bioactive to

non-bioactive. Therefore, we considered that redundancy reduc-

ing to v30% sequence similarity would be too strict, and followed

previous work where sequences were redundancy reduced to

v70% sequence similarity. However, we did check for a

correlation between prediction accuracy of bioactive peptides in

the training and test sets, and the sequence similarity between the

test peptides and their most similar peptide in the training set.

Linear regression of the prediction versus the sequence similarity

indicated the percentage variance (R2) to be only 5% for the long

peptides and 1% for the short peptides. This indicates that the

predictive power of the method within the independent test dataset

is not primarily a result of sequence similarity to peptides in the

training set, but mainly arises from other features of the data. We

are therefore confident that using training datasets with v70%

sequence similarity between peptides, is appropriate, and is not

leading to homology-induced over-fitting of the model.

We estimated the relation between prediction accuracy for the

bioactive peptides and peptide length. We found little dependence

on length, with R2 of 0 for the long peptides and R2 of 0.01 for the

short peptides. Thus, within each predictor, the prediction is not

strongly influenced by peptide length. During initial training of the

predictors (data not shown) the datasets were not split into long

and short peptides and we did find in this case that peptide length

strongly influenced prediction accuracy which motivated us to split

the predictor into long and short peptide predictors. It is clear that

the two predictors are behaving in different ways. For example, we

found that the predictor of short bioactive peptides is more

dependent on amino acid composition than the long peptide

predictor, and we discuss this in more detail below.

Benchmarking against other predictors
We compared the predictive power of PeptideRanker against

two state-of-the-art freely available antimicrobial peptide predic-

tors, CAMP [10] and AntiBP2 [11] (Table S1). We used the

independent test sets for this comparison which share v70%

sequence similarity with the PeptideRanker training sets but had

not been redundancy reduced with respect to the CAMP or

AntiBP2 training sets. As AntiBP2 is trained on APD2 peptides [9]

and CAMP is trained on peptides from the CAMP database [10],

both of which are included in our test set, it is highly likely that at

least some of the peptide sequences in this set were used to train

CAMP and/or AntiBP2. In effect, this should give CAMP and

AntiBP2 an advantage over PeptideRanker when predicting these

peptides. However, PeptideRanker is more accurate than either

CAMP or AntiBP2 in most cases, which is not surprising as the

dataset includes peptides other than antimicrobial peptides, which

CAMP and AntiBP2 were not designed to predict.

PeptideRanker typically performed better than CAMP (on

Specificity (Spec), Sensitivity (Sen), False Positive Rate (FPR),

Accuracy (Q) and MCC) for both the long and the short peptides

(Figure 2 and Table S1). AntiBP2 had a higher sensitivity on the

control peptides and a lower FPR on the bioactive peptides than

PeptideRanker for both the long and the short peptides. However,

AntiBP2 did not return predictions for 234 of the 946 long

peptides and 392 of 532 short peptides. Therefore, AntiBP2 results

are not calculated on the whole test set. In fact AntiBP2 only

predicted 203 of the 473 true positive long peptides as bioactive,

resulting in a low sensitivity on the bioactive peptides and a high

Table 1. Performance of PeptideRanker measured in five-fold cross-validation on the training datasets at a threshold of 0.5.

Long Short

Spec Sen FPR Q MCC Spec Sen FPR Q MCC

Control 84.3 88.9 0.16 73.3 80.6 0.29

Bioactive 88.3 83.4 0.11 78.4 70.7 0.19

All 86.1 0.72 75.6 0.51

Specificity (Spec), Sensitivity (Sens) and False Positive Rate (FPR) measured for the bioactive peptide and control peptide classes. Accuracy (Q) and Matthews Correlation
Coefficient (MCC) are measured over all peptides, bioactive peptides and control peptides. See the Materials and Methods section for definitions.
doi:10.1371/journal.pone.0045012.t001
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FPR for the control set. This imbalance across the bioactive/

control peptides is reflected in a low MCC for AntiBP2 of 0.44

compared to the more balanced results for PeptideRanker of 0.74.

We see a similar pattern for the short bioactive peptides where

only 46 of the 266 bioactive peptides are predicted as bioactive,

resulting in a MCC of 0.45 compared to PeptideRanker’s MCC of

0.54. Thus, PeptideRanker is better than the antimicrobial

predictors at predicting bioactivity across all bioactive peptides.

Their relative performances within different classes, including

antimicrobial, are investigated further below.

Importance of amino acid composition
As described in the Datasets section we used two sets of protein

sequences from which we randomly selected the control peptides

i.e. ‘‘Secreted’’ and ‘‘Other’’, where ‘‘Other’’ is made up of protein

sequences not labelled as secreted or membrane, i.e. non-secreted

(see Datasets section for more details). We looked at the amino

acid composition of these two sets and the difference between

them (Table S2). The most notable difference between the two sets

is in the percentage frequency of cysteine which is 2.35% greater

in the secreted set, however cysteine is still only the 15th most

common residue in the secreted set. The other amino acids with

notable differences between the two sets are glutamic acid, lysine,

glycine and isoleucine. All other amino acids differ by less than

1%.

We then looked at the amino acid composition of the long and

the short bioactive peptides and the control peptides (secreted and

non-secreted) in the independent test sets (Figure 3) and the

differences between the bioactive peptides, the secreted and non-

secreted control peptides and the secreted and non-secreted sets

described above (Table S3). We found very little difference

between the short and long randomly selected secreted and non-

secreted control peptides. However, there were substantial

differences between the long and the short bioactive peptides,

with phenylalanine increasing in frequency from 3.9% in the long

bioactive peptides to 7.3% in the short bioactive peptides.

Similarly, glycine jumps from 7.5% to 10%, whereas glutamic

acid and threonine fall from 5.8% and 4.8% to 2.8% and 2.6%

respectively. There are also significant differences between the

amino acid composition of the bioactive peptides and the secreted

and non-secreted control peptides, again especially with the short

peptides. Glutamic acid, phenylalanine, glycine and cysteine differ

by 4.4%, 3.9%, 3.6% and 3.3% respectively between the short

bioactive peptides and the non-secreted control peptides, and

phenylalanine, glycine and glutamic acid differ by 4%, 3.5% and

2.9% between the short bioactive peptides and the secreted control

peptides. We also compared the differences between the amino

acid composition of bioactive peptides and the amino acid

composition of the full UniProt secreted protein set. The biggest

difference we found for the long bioactive peptides was a decrease

from 4.5% to 3.9% for asparagine, and an increase from 5% and

3.9% to 6.8% and 5.1% for arginine and cysteine respectively. We

observed greater changes for the short bioactive peptides with

threonine and glutamic acid decreasing by 3.3% and 3.1% and

phenylalanine and glycine increasing by 3.6% and 2.6%

respectively. Overall what is striking is the substantial composi-

tional divergence between the short and long peptide classes.

Within the two size classes, there is further variation in amino

acid frequency that relates to the peptide functional classes.

Figure 4 shows the distribution of the amino acid composition

across three broad peptide activity classes (antimicrobial, toxin/

venom, and peptide hormone). For the long peptides (Figure 4A),

cysteine stands out as the most favoured amino acid in the toxin/

venom class, whereas it is one of the least favoured in the peptide

hormone class. Leucine is the most favoured by the peptide

hormones and is also strongly favoured by the antimicrobial

peptides along with glycine, which is also favoured by the toxins

and venoms. The short peptide classes (Figure 4B) show an even

more dramatic shift in their amino acid preferences. Again, leucine

is strongly favoured by the antimicrobial peptides but not by the

toxins and venoms, which again have a very strong preference for

cysteine followed by proline. PeptideRanker may have learned

about such clustering of amino acid preferences within particular

functional classes, although the training was performed without

reference to any such classification of peptide function.

Given this striking difference in amino acid composition, we

were interested in investigating to what extent the short and long

PeptideRanker predictors make differing use of amino acid

composition, in order to identify potentially interesting rules in

the discovery and design of bioactive peptides. We inspected the

pairwise correlation of the PeptideRanker scores for the long and

the short peptides with the frequency of each amino acid (Table

S4). For a number of amino acids the correlations showed similar

Figure 2. Independent test set. Comparison of PeptideRanker (measured at a threshold of 0.5), CAMP and AntiBP2 tested on the independent test
set. (A) long peptides (B) short peptides (C) MCC for long and short peptides. AntiBP2 did not return predictions for 234 (out of a total of 946) of the
long and 392 (out of a total of 532) of the short peptides. CAMP did not return predictions for 6 of the long and 5 of the short peptides.
doi:10.1371/journal.pone.0045012.g002
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directions e.g. cysteine is markedly favoured by both predictors.

Phenylalanine was markedly favoured by the short predictor and

disfavoured by the long predictor, with a similar tendency for

proline, methionine, glycine and tryptophan; while threonine,

valine and glutamic acid were more favoured by the long predictor

(Table S4). Again, this justifies the separation into two peptide

classes and provides intriguing insights into the differences

between amino acid composition of short and long peptides.

Despite the fact that cysteine is not one of the most common

amino acids in either the bioactive peptide or the control datasets,

the number of cysteines in the peptide has the greatest correlation

with the PeptideRanker score (Table S4). To further investigate

the role of this important residue we counted the number of

sequences with an even number of cysteines in each of our protein

sequence datasets. 92% of the UniProt secreted sequences and

90% of ‘‘Other’’ (non-secreted) sequences have at least one

cysteine and of these 60% of the secreted sequences have an even

number of cysteines compared to 49% of the non-secreted

sequences. We then compared these numbers with those for the

bioactive peptides in the independent test set. Interestingly,

although the average amino acid content of the short and the

long peptides is the same (5%) only 20% of short bioactive peptides

have at least one cysteine whereas 73% of the long bioactive

peptides do. Of these sequences 73% of both sets have an even

number of cysteines. We believe that this is due to disulphide

bonding including cysteine knot formation [17]. Six cysteines,

required to form a cysteine knot, were found in 40% of the long

peptides which had an even number of cysteines but in only 23%

of the short peptides.

We then broke this down further into the three peptide activity

classes. We found that for the toxin and venom peptides 80% of

the short and all of the long peptides had at least one cysteine and

of these 89% of the short peptides and 81% of the long peptides

had an even number of cysteines, and 29% and 53% of these short

and long peptides respectively had 6 cysteines. Again, this is likely

to be due to cysteine knot formation which is known to be an

important motif in toxin peptides [17]. The numbers for the

antimicrobial peptides and the peptide hormones are not quite as

dramatic with 80%, 60%, 65% and 78% of peptides with cysteines

having an even number of cysteines for the long and short

antimicrobial peptides and peptide hormones respectively.

To investigate the use of amino acid composition by the

predictors, we scrambled the bioactive peptides of the independent

test sets, and used them as a new control set. The original bioactive

peptide set remained unchanged. We compared the ability of

PeptideRanker, AntiBP2 and CAMP to discriminate between the

bioactive peptide and the scrambled peptide. It is clear that

AntiBP2 and CAMP are mainly relying on amino acid compo-

sition, since they do not distinguish well between bioactive

peptides and their scrambled sequences (Table S5; MCC values

range between 20.01 and 0.06); this is not surprising, given that

AntiBP2 specifically relies on amino acid composition for

Figure 3. Amino acid content of the bioactive peptides, the non-secreted control peptides and the secreted control peptides in the
independent test dataset. (A) long peptides (B) short peptides.
doi:10.1371/journal.pone.0045012.g003
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prediction. For PeptideRanker, the MCC is 0.11 for short and

0.34 for long peptides. This indicates that, for PeptideRanker,

amino acid composition is an important factor, but by no means

the only factor in predicting bioactivity of either short or long

peptides.

Bioactivity prediction is not simply a prediction of
extracellular localization

As most bioactive peptides are found in secreted proteins, we

selected the control set of peptides for the training dataset from

non-secreted protein sequences. This reduces the likelihood of

randomly selecting bioactive peptides for the control set by

chance. To investigate if the predictors have learned to

discriminate only between secreted and non-secreted peptides/

proteins, we created a control set of peptides composed of

randomly selected sections from a set of proteins known to be

secreted. In this situation, by selecting peptides from secreted

proteins we increased the chance of erroneously including

bioactive peptides in our control peptide sets. However, keeping

this in mind, by creating this control set of peptides from proteins

known to be secreted, we can still learn something about the

tendency to over-predict peptides as bioactive simply because they

are from secreted proteins. The results for the three predictors

(Table S6). The performance of all three methods is clearly

reduced compared to the predictive ability to distinguish bioactive

peptides from non-secreted peptides. However, the overall

performance of PeptideRanker is substantially better than either

of the other two predictors. This indicates that PeptideRanker’s

ability to predict bioactivity is not solely a matter of predicting a

peptide’s extracellular features, such as those described above, but

also relies on other properties such as the charge distribution of the

peptide or the amino acid sequence order.

Generally predictable features are shared across diverse
peptide activity classes

We investigated whether independent test set peptides of

different classes defined by PeptideDB (antimicrobial peptides,

peptide hormones and toxin/venom peptides) were differentially

predicted by the three methods. ROC curves indicate that all three

classes are successfully predicted by PeptideRanker (Figure 5).

Performance overall on the antimicrobial peptides for all three

predictors is good (Figure 6; Table S7), which is to be expected as

AntiBP2 and CAMP are specifically antimicrobial peptide

predictors, but neither of them perform well in the peptide

hormone class. Both AntiBP2 and CAMP tend to predict the

peptide hormones as non-bioactive. In fact, AntiBP2 only predicts

20 of the long and only one of the short peptide hormones as

bioactive, corresponding to a FPR (peptides incorrectly predicted

as non-bioactive) of 0.85 and 0.96 respectively (Table S8). CAMP

performs better, correctly predicting (Sensitivity) 52.9% of the long

Figure 4. Amino acid content of the three peptide activity classes from the PeptideDB.70 dataset. (A) long peptides (B) short peptides.
doi:10.1371/journal.pone.0045012.g004
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peptide hormones and 35.3% of the short peptide hormones (FPR

of 0.47 and 0.65 respectively). In contrast, PeptideRanker correctly

predicts 80.7% of the long peptide hormones and 83% of the short

peptide hormones as bioactive. Interestingly, AntiBP2 and CAMP

both perform surprisingly well at predicting the toxin and venom

peptides, in both the long and short classes (Figure 6; Table S9). In

fact, in this case CAMP actually slightly outperforms PeptideR-

anker. It is important to note that AntiBP2 is unable to predict

peptides shorter than 15 amino acids in length, or longer than 100

(see Tables S7, S8 and S9), so that some differences in the

performance may be related to differences in the subset

investigated.

It can be seen in Table 2 that among short peptides the three

groups differ in their charge distributions, with antimicrobial

favouring positive charge, while the other two groups include more

peptides with overall negative charge. This is also seen for the long

peptides. It is of interest to see whether the PeptideRanker scores

predicted for short peptides are distinguishing partly on the basis

of absolute net charge, since it has been observed that short

bioactive peptides tend to favour a high absolute net charge [18].

While among the antimicrobials, the short peptide score is

positively correlated with absolute net charge (r~0:30), it is

negatively correlated for toxin/venom peptides (r~{0:19) and

peptide hormones (r~{0:30). Curiously, the scores of the short

peptide hormones are correlated with net charge (r~0:25). Thus,

charge effects may well tend to be class specific.

Finally, given that there are both common and distinguishing

features across the different classes of peptides we wished to

examine if it would be possible to predict to which of the three

peptide activity classes a bioactive peptide belonged. From the

long and short training sets, we extracted all PeptideDB peptide

sequences labelled as antimicrobial peptides, peptide hormones

and toxin/venom peptides. We trained two predictors, one for

long and one for short peptides, using the same architecture as

PeptideRanker, except using a three class output where the output

predicts the peptide activity as antimicrobial, peptide hormone or

toxin/venom. We tested whether or not it was possible for the N-

to-1 neural network to learn to discriminate between these three

classes (see Table S10). The accuracy of both predictors is very

high (85–86%). The least accurately predicted of the three classes

is the antimicrobial class, in both cases. It appears that almost all of

the false negative antimicrobial peptides are predicted to be

peptide hormones (FPR 17–21%).

Discussion

Our study identifies that bioactivity may be computationally

predicted across diverse functional classes of bioactive peptides,

and that long peptides (exceeding 20 residues) are best treated as a

Figure 5. ROC plots for long and short peptide activity classes of the PeptidesDB.70 subset of the independent test set. (A) 88 long
antimicrobial peptides (B) 243 long peptide hormones (C) 81 long toxin/venom peptides (D) 29 short antimicrobial peptides (E) 50 short peptide
hormones (F) 34 short toxin/venom peptides. P-value%0:0001 in all six cases.
doi:10.1371/journal.pone.0045012.g005
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separate class, compared to short peptides. We observed that

features of the sequence of longer peptides contribute to the

predictability of peptide bioactivity, whereas in shorter peptides

the predictive power is more dominated by amino acid compo-

sition. While it is possible that such sequence effects are the result

of specific neighbourhood effects within the longer peptides (such

as preferred dipeptides or residues located at the two termini) we

consider it most likely that this corresponds to the formation of

distinct domains within the longer peptides, such as patches of

hydrophobicity or charge, representing mini-domains within the

longer peptides. The formation of such patches of properties may

not be as clearly achievable within shorter peptides.

We propose that the further evaluation of methods to refine the

prediction and design of bioactive peptides should consider short

(v20 residues) and longer peptides as distinct classes, following

distinct rules, as we have done here. This has the added advantage

that many researchers are interested in either shorter or longer

peptides, allowing the development of tools optimized towards

these different needs. Our observation that short peptides

containing phenylalanine are more likely to be predicted as

bioactive, suggests that this amino acid may be particularly useful

in conferring bioactivity to shorter peptides; and it is intriguing

that longer peptides with phenylalanine are predicted to be

bioactive less often. Since longer peptides may adopt internal

structure, this difference may indicate that phenylalanine is of

most use in forming ligand contacts (typically with larger proteins)

than in forming internal structural contacts within the peptide

itself. London et al [19] noted the strongest enrichment of

phenylalanine among peptide interface hotspot residues, consistent

with this interpretation. Thus, the two predictors may be

distinguishing among different modes of binding, those typical of

short peptides and those typical of longer peptides which have

more internal structure.

We set out in this study to develop a general predictor of

bioactivity, aiming to capture general rules that span across diverse

classes of bioactive peptides. In the course of this research, we

came to the surprising conclusion that peptide bioactivity

predictors trained in one class (antimicrobial) are equally good

at predicting toxin/venom peptides. This indicates that these two

classes of peptides may share common features, motivating the

combination of diverse peptide classes within a single predictor.

PeptideRanker provides such a predictor with good performance

across different peptide classes. It is likely that the N-to-1 neural

network is relying on rules that are general across many peptide

classes, augmented by rules that are specific to particular classes.

This may explain its superior performance over the two

antimicrobial predictors, when predicting bioactivity among

peptide hormones. What then is the power of the method to

predict peptide bioactivity for a peptide that belongs to a

functional class that is not represented within the training set?

This can only really be assessed by a formal experimental

validation, but we propose that there is sufficient general

predictive power encoded within the method to justify its use for

the prediction or optimal design of bioactive peptides belonging to

functional classes that are not represented in the training set. All

predictive methods for peptide bioactivity must be interpreted with

caution, since the predictive power is clearly not absolute. We

believe that the most useful applications will be in helping to focus

experimental decision making, permitting investigators to com-

mence analyses on peptides that are most favoured by the

software, leading to overall improved efficiency, in that fewer

inactive peptides will be screened. Users need to bear in mind,

though, that the method has false negatives as well as false

positives, and peptides which are not identified may still be

bioactive. Further biophysical characterization of the general

sequence and structural features of bioactive peptides may serve to

Figure 6. Matthews Correlation Coefficient (MCC) between
observed and predicted states for the long and short peptide
activity classes. (A) long peptides (B) short peptides.
doi:10.1371/journal.pone.0045012.g006

Table 2. Variability in charge across the three peptide activity
classes.

Mean Mean Mean absolute Absolute net

length net charge net charge
charge/
length

Long

Antimicrobial 60.8 2.9 4.1 0.09

Peptide Hormone 101.7 1.4 4.3 0.05

Toxin/Venom 48.0 1.8 3.4 0.08

Short

Antimicrobial 13.6 1.1 1.5 0.12

Peptide Hormone 10.9 0.4 1.2 0.11

Toxin/Venom 14.7 0.3 1.2 0.08

Net charge: sum of positively (K and R) and negatively (D and E) charged
residues for each peptide. Absolute net charge: modulus of net charge for each
peptide.
doi:10.1371/journal.pone.0045012.t002
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advance the goal of optimizing the prediction and design of

peptide bioactivity.

Materials and Methods

Datasets
Training and independent test dataset. The bioactive

peptides used to train PeptideRanker were retrieved from

PeptidesDB [15], APD2 [9], CAMP [10] and BIOPEP [8] — in

total 18,882 non-unique peptides. The PeptideDB database

includes bioactive peptides from animal sources, including

cytokine and growth factors, peptide hormones, antimicrobial

peptides, toxin/venom peptides, and antifreeze proteins. We

included any peptides labelled as peptide hormone, antimicrobial

peptide or toxin/venom peptide into the dataset. From BIOPEP

we included peptides labelled as antibacterial, antibiotic or

anticancer. We included all peptides from CAMP and APD2. A

total of 17,532 peptides.

Based on preliminary testing (not shown) we split the dataset

into long and short peptides, and trained two independent

predictors. We chose a threshold of 20 amino acids based on

our subjective idea of what would be considered a short as opposed

to a long peptide. 20 amino acids is also the length of the shortest

known protein with a stable fold [20]. Splitting the peptides into

long (w20AA) and short (4–20AA) peptide sets left 13,775 and

3,728 peptides in the long and short sets respectively. We then

independently internally redundancy reduced both sets to v70%

sequence similarity using BLAST [21] to create the alignments. As

we were searching for short and nearly exact matches we set the

word-sizes to 2 (-W 2), low-complexity filter to off (-F F), we set the

e-value to 20000 (-e 20000) and used the PAM30 substitution

matrix (-M PAM30). This left 4,731 peptides in the long set and

1,330 peptides in the short set.

These two peptide sets were then split into two further sets. One

fifth of the short peptides and one tenth of the long peptides were

reserved as independent test sets and the remaining peptides

became the training set. The training set was then split into five

folds i.e. five different sets of peptides where each set is roughly

equally sized, disjoint, and their union covers the whole set.

Similar to AntiBP2 [11] the control test set was generated by

matching each bioactive peptide with a random peptide from a

eukaryotic protein sequence which is known to be intracellular.

From the UniProtKB/Swiss-Prot Release 2011_02 we retrieved

all eukaryotic Swiss-Prot sequences [22]. We searched these

sequences extracting any sequence with a subcellular location

annotation, excluding any non-experimental annotations (i.e.

those with key words ‘‘by similarity’’, ‘‘probable’’ or ‘‘potential’’).

We divided these sequences into three sets: ‘‘Secreted’’, ‘‘Mem-

brane’’ and ‘‘Other’’. For every peptide in our bioactive set, we

randomly selected a sequence from the ‘‘Other’’ set, and then

randomly selected a starting position and extracted a peptide of

equal length to the bioactive peptide. We then checked if this

peptide was found in the list of known bioactive peptides (i.e. the

set of 18,882 non-unique peptides). If it was not found we kept this

peptide and added it to our control set, otherwise searching again.

In this way we have tried to reduce the possibility of including

bioactive peptides in our control set, however it is possible that

some of our control peptides may be bioactive as they have not

been experimentally determined to be non-bioactive. See Table

S11 for the number of peptides and average length of peptides in

each dataset and Figure S1 for histograms of the length

distributions of the four datasets.

In our testing of PeptideRanker we created two further control

test sets. In the first case, for all peptides in the independent test

set, we generated the corresponding control peptides by scram-

bling the amino acids of the known bioactive peptides. For the

second set, we generated the corresponding control peptides as

described above, except that the control peptides were extracted

from protein sequences in the ‘‘Secreted’’ set of sequences.

Peptide activity classes. From the long and short indepen-

dent test sets, we extracted all PeptideDB peptide sequences. We

refer to this set as the PeptideDB.70 dataset, as no peptide

sequence in this dataset has w70% sequence similarity to any

peptide in the training set. We divided these peptides into three

activity subsets i.e. antimicrobial peptides, peptide hormones and

toxin/venom peptides (see Table S12). We used the three activity

subsets to compare the predictive power of PeptideRanker and

two other state-of-the-art antimicrobial peptide predictors in each

of these three bioactive peptide classes.

Predictive architecture: N1-NN
N-to-1 Neural Networks, or N1-NN, have been successfully

used to predict the subcellular location of protein sequences [16].

Here, we apply this model to the prediction of peptide bioactivity.

The aim of the model is to map a peptide sequence of variable

length N into a single property i.e. bioactive or non-bioactive.

Other models tackle this problem at the source, that is, they

transform/compress the sequence into a fixed number of

descriptors (or into descriptors of pairwise relations between

sequences) beforehand, and then map these descriptors into the

property of interest. These descriptors are typically frequencies of

residues or k-mers, sometimes computed separately on different

parts of the sequence [11,23]. In N1-NN we do not compress the

peptide in advance, instead, we decide beforehand only how many

features we want to compress a peptide into. These features are

stored in a vector f ~(f1, . . . ,fh), we represent the i-th residue in

the peptide as ri, and then f is obtained as:

f ~k
XN

i~1

N (h)
(ri{c, . . . ,rizc) ð1Þ

where N (h)
is a non-linear function, which we implement with a

two-layered feed-forward Neural Network with h non-linear

output units (the peptide-to-feature network). N (h)
is replicated

N times (N being the peptide length), and k is a normalization

constant. The feature vector f is obtained by combining

information coming from all windows of 2cz1 residues in the

peptide. In this work the windows have a length of 21 residues for

the short peptide predictor i.e. covering the length of the longest

peptide, and 41 for the long peptide predictor (see Table S13). The

feature vector f is mapped into the property of interest o (i.e.

bioactive/non-bioactive peptide), as follows:

o~N (o)
(f ) ð2Þ

where N (o)
is a non-linear function which we implement with a

second two-layered feed-forward neural network (the feature-to-

output network). The whole compound neural network (the

cascade of N replicas of the peptide-to-feature vector network and

one feature-to-output network) is itself a feed-forward neural

network and thus can be trained by gradient descent via the back-

propagation algorithm. As there are N copies of N (h)
for a peptide

of length N , there will be N contributions to the gradient for this

network, which are simply added together. See [16] for more

details on N-to-1 Neural Networks.
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Training. For each training experiment we implemented two

predictors, one for long (w20 amino acids) and one for short

bioactive peptides. Each training was conducted in five-fold cross-

validation, i.e. five different sets of training runs were performed in

which a different fifth of the overall set was reserved for testing and

another fifth was reserved for validating. The five fifths were

roughly equally sized, disjoint, and their union covered the whole

set. The training set was used to learn the free parameters of the

network by gradient descent, while the validation set was used to

monitor the training process. For each different architecture we

ran three trainings (V0, V1, V2), which differed in the number of

hidden units in both the peptide-to-feature and the feature-to-

output networks, and size of the feature vector (i.e. the number of

output units in the peptide-to-feature network) (see Table S13).

This ensured that the resulting models were different, which yields

larger gains when ensembled.

The weights in the networks were updated every 150 examples

(peptides) for the short bioactive peptide predictor and every 500

examples for the long bioactive peptide predictor. 500 epochs of

training were performed, which brought the training error to near

zero in all cases. Training was performed by gradient descent on

the error, which we modelled as the relative entropy between the

target class and the output of the network. The overall output of

the network (output layer of N (o)
()) was implemented as a softmax

function, while all internal squashing functions were implemented

as hyperbolic tangents. The examples were shuffled between

epochs. We used a momentum term of 0:9 — although this did not

significantly affect the final result, it sped up the overall training

time by a factor of 10. The learning rate was kept fixed at 0:2
throughout training.

During training the networks that performed best on the

validation set were saved, these models were then averaged over

the ensemble and evaluated on the corresponding test set. The

final results for the five-fold cross-validation are the average of the

results on each test set. When testing on an entirely different set

from the one used during training (i.e. the independent test set, see

the Datasets Section) we ensemble-combined all the models from

all cross-validation folds of the best architecture.

Evaluating performance
To evaluate the performance of PeptideRanker we measured

Specificity (Spec), Sensitivity (Sens), the True Positive Rate (TPR),

the False Positive Rate (FPR), Matthews Correlation Coefficient

(MCC) and the Accuracy (Q) as follows (see [24] for more details):

Spec~100
TP

TPzFP

Sens~100
TP

TPzFN

TPR~
TP

TPzFN

FPR~
FP

FPzTN

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

Q~100
TPzTN

TPzTNzFPzFN

where:

N True Positives (TP): the number of peptides predicted in a class

that are observed in that class

N False Positives (FP): the number of peptides predicted in a class

that are not observed in that class

N True Negatives (TN): the number of peptides predicted not to

be in a class that are not observed in that class

N False Negatives (FN): the number of peptides predicted not to

be in a class that are observed in that class

We measure the TPR and FPR as we increase the discrimina-

tion threshold from 0 to 1. The results are shown as Receiver

Operating Characteristic (ROC) curves where TPR is plotted

against FPR. The area under the curve (AUC), which is equivalent

to the probability that the classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative instance

[25], is also shown. The AUC is a number between 0 and 1

inclusive, where 0.5 indicates a random model and 1 is perfect. We

used the ‘‘verification’’ package in R [26] to plot the ROC curves

and calculate the AUC and to plot the linear regressions from

which we derived the correlation, r, and variance, R2 i.e. how well

future prediction are likely to be predicted by the model. MCC

measures the correlation coefficient between the observed and

predicted classifications. A value of 1 represents a perfect

prediction, 0 a random prediction and {1 an inverse prediction

and is a good indicator of the overall performance of the predictive

methods in both bioactive peptide and control peptide classes.

Implementation
PeptideRanker has been implemented as a web server. The user

may submit a list of peptide sequence and PeptideRanker will

predict the probability that each of these peptides will be bioactive

or not. The list will then be returned to the user ranked by the

predicted probability of bioactivity for each peptide. The web

server input and output pages are shown in Figure S2 and S3.

When the user is interpreting the results is important to note that

the server predicts how likely the peptide is to be bioactive, and not

how bioactive the peptide is likely to be.

We have chosen as an example the Bovine milk protein beta-

casein (UniProt accession number P02666). Beta-casomorphins,

which originate from beta-casein, are a group of bioactive peptides

[27]. Beta-casomorphin 7 (YPFPGPI) is possibly the most

important of these and may have a potential role in human

disease such as ischaemic heart disease, diabetes mellitus, sudden

infant death syndrome, autism and schizophrenia [27]. This

peptide was not included in our training or test sets. We illustrate

use of the predictor by examining a series of 7-mer peptides

spanning the beta-casomorphin 7 region (Figure S2) and

submitted these to PeptideRanker (Figure S3). To run this

example on the server click on ‘‘example’’ and then click the

‘‘submit’’ button. Only one of the overlapping peptides scored

slightly higher, and it overlaps for 6 of its 7 residues. Many of the

overlapping peptides are predicted not to be bioactive, since they

are returned with values of under 0.5. (Figure S3). Human beta-

casomorphin 7 (YPFVEPI) differs in two positions to the Bovine

peptide and is not predicted as strongly to be bioactive (0.506).

The other Bovine beta-casomorphins (4, 5, 6, 8 and 11) are also

predicted to be bioactive (0.828–0.969). Note that the web server

automatically uses the short peptide predictor for peptides of less

Discovery and Design of Functional Peptides

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e45012



than 20 amino acids, and the long peptide predictor for peptides of

20 or more residues.

PeptideRanker was trained at a threshold of 0.5 i.e. any peptide

predicted over a 0.5 threshold is labelled as bioactive. However,

the user may decide to chose a higher threshold to reduce the

number of false positives. From our testing (Figure 1) we would

expect that choosing a threshold of 0.8 will reduce the false

positive rate from 11% and 16% at a 0.5 threshold to 2% and 6%

at a 0.8 threshold for long and short peptides respectively.

However, increasing the threshold to 0.8 from 0.5 also reduces the

true positive rate so the user needs to chose a threshold carefully

based on their needs i.e. is it more important to reduce the number

of false positives or capture all the true positives?

Another factor that will reduce the number of true positives

predicted by PeptideRanker is if the peptide has a cysteine content

lower than that of most secreted proteins/peptides i.e. v4%.

When we tested PeptideRanker we observed that the false

negatives in our independent test set (bioactive peptides incorrectly

predicted as non-bioactive) had an average cysteine content of just

1.7%.

PeptideRanker was trained and tested on amino acid sequences

without any modifications. Peptide synthesis using the 20 natural

amino acids has the benefit of drawing on the same set of features

as natural proteins and are often relatively inexpensive to

synthesise. However, peptide modifications such as the acetylation

of the N-terminus, the amidation of the C-terminus, the cyclisation

of the peptide or the inclusion of one or more D-amino acids may

increase the bioactivity and the specificity of the peptide [28]. The

inclusion of D-amino acids may also increase protease resistance

[29]. We would suggest that after using PeptideRanker to discover

bioactive peptides in Silico that various peptide modification would

be experimented with in Vitro to increase the bioactivity.

PeptideRanker is free for academic use and available at http://

bioware.ucd.ie/. The datasets used to train PeptideRanker are

available on request.

Supporting Information

Figure S1 Histograms of peptide length distribution. (A)

long peptide training set (B) short peptide training set (C) long

peptide test set (D) short peptide test set.

(EPS)

Figure S2 Web server sequence input page.

(PNG)

Figure S3 Web server results page.

(PNG)

Table S1 Independent test set with control peptide set
selected from non-secreted proteins. Comparison of

PeptideRanker (measured at a threshold of 0.5), CAMP and

AntiBP2 tested on the independent test set. AntiBP2 did not return

predictions for 234 (out of a total of 946) of the long and 392 (out

of a total of 532) of the short peptides. CAMP did not return

predictions for 6 of the long and 5 of the short peptides.

(PDF)

Table S2 Percentage amino acid composition of Uni-
Prot secreted and non-secreted proteins.

(PDF)

Table S3 Difference in amino acid composition be-
tween datasets. Percentage differences in amino acid content

between the differente datasets. The first seven columns and the

last column are absolute values.

(PDF)

Table S4 Pairwise correlations between amino acid
composition and PeptideRanker scores. Pearson correla-

tion coefficient for long and short peptides between amino acid

composition and PeptideRanker scores, and the difference (Diff)

between long and short correlations.

(PDF)

Table S5 Independent test set with a control peptide set
of scrambled bioactive peptides. Comparison of PeptideR-

anker (measured at a threshold of 0.5), CAMP and AntiBP2 tested

on the independent test set. The control peptides are generated by

scrambling the bioactive peptide set i.e. the amino acid

composition of both the control and the bioactive set is the same.

AntiBP2 did not return predictions for 234 of the long and 393 of

the short peptides. CAMP did not return predictions for 12 of the

long and 8 of the short peptides.

(PDF)

Table S6 Independent test set with control peptide set
from secreted proteins. Comparison of PeptideRanker

(measured at a threshold of 0.5), CAMP and AntiBP2 tested on

the independent test set, with control peptides randomly selected

from secreted proteins. AntiBP2 did not return predictions for 223

of the long and 394 of the short peptides. CAMP did not return

predictions for 11 of the long and 7 of the short peptides.

(PDF)

Table S7 Prediction of antimicrobial peptides. Compar-

ison of AntiBP2, CAMP and PeptideRanker tested on the

PeptideDB.70 Antimicrobial peptide activity class subset of the

independent test set. AntiBP2 did not return predictions for 20 of

the 176 long and 34 of the 58 short peptides. CAMP did not return a

prediction for one of the long peptides. Statistics were calculated on

the subset of peptides for which predictions were available.

(PDF)

Table S8 Prediction of peptide hormones. Comparison of

AntiBP2, CAMP and PeptideRanker tested on the PeptideDB.70

Peptide hormone activity class subset of the independent test set.

AntiBP2 did not return predictions for 212 of the 486 long and

254 of the 300 short peptides. CAMP did not return predictions

for five of the long peptides. Statistics were calculated on the subset

of peptides for which predictions were available.

(PDF)

Table S9 Prediction of toxin/venom peptides. Compar-

ison of AntiBP2, CAMP and PeptideRanker tested on the

PeptideDB.70 Toxin/Venom peptide activity class subset of the

independent test set. AntiBP2 did not return predictions for 38 of

the 68 short peptides. CAMP did not return a prediction for one of

the short peptides. Statistics were calculated on the subset of

peptides for which predictions were available.

(PDF)

Table S10 Performance of three class peptide activity
predictor measured in five-fold cross-validation on the
peptide activity subsets of the full training datasets at a
threshold of 0.5. The number of peptides per class (Num),

Specificity (Spec), Sensitivity (Sens), Matthews Correlation Coef-

ficient (MCC) and False Positive Rate (FPR) measured for the

three peptide activity classes. Accuracy (Q) and Generalised

Correlation (GC) are measured over all peptides. See the Materials

and Methods section for definitions.

(PDF)

Table S11 Number of peptides and average peptide
length per class.
(PDF)
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Table S12 Number of bioactive and control peptides
per activity class. Number of bioactive and control peptides per

activity class in the PeptideDB.70 subset of the independent test

sets (see Figures 4 and 5).

(PDF)

Table S13 Network parameters. Nf : size of the feature

vector; NH
o : number of hidden units in the feature-to-output

network; NH
f : number of hidden units in the peptide-to-feature

network; c is the context i.e. 2cz1 is the size of the window being

considered.

(PDF)
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