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Abstract

Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether
these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a
clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for
diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB,
GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program
participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with
response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P,0.001), G6PC2
(P = 0.002) and GCKR (P = 0.001). We noted impaired b-cell function in carriers of glucose-raising alleles at MTNR1B (P,0.001), and
an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P,0.001). The association of MTNR1B with fasting
glucose and impaired b-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious
effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P,0.001). We detected no significant
impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several
polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a
detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.

Citation: Florez JC, Jablonski KA, McAteer JB, Franks PW, Mason CC, et al. (2012) Effects of Genetic Variants Previously Associated with Fasting Glucose and Insulin
in the Diabetes Prevention Program. PLoS ONE 7(9): e44424. doi:10.1371/journal.pone.0044424

Editor: Giorgio Sesti, Universita Magna-Graecia di Catanzaro, Italy

Received February 1, 2012; Accepted August 3, 2012; Published September 11, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health provided funding to the clinical
centers and the Coordinating Center for the design and conduct of the study, and the collection, management, analysis, and interpretation of the data, through
Award Number U01DK048489. The Southwestern American Indian Centers were supported directly by the NIDDK and the Indian Health Service. The General
Clinical Research Center Program, National Center for Research Resources, and the Department of Veterans Affairs supported data collection at many of the
clinical centers. Funding for data collection and participant support was also provided by the Office of Research on Minority Health, the National Institute of Child
Health and Human Development, the National Institute on Aging, the Office of Research on Women’s Health, the Centers for Disease Control and Prevention, and
the American Diabetes Association. This research was also supported, in part, by the intramural research program of the NIDDK, and by R01 DK072041 to JCF, KAJ
and ARS. PWF was supported by the Swedish Research Council, Novo Nordisk, Swedish Diabetes Association, and the Swedish Heart-Lung Foundation. The
Investigators gratefully acknowledge the commitment and dedication of the participants of the DPP. The opinions expressed are those of the investigators and
do not necessarily reflect the official views of the funding agencies. A complete list of Centers, investigators, and staff can be found in the Appendix. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: JCF has received consulting honoraria from Novartis, Pfizer and Eli Lilly. Bristol-Myers Squibb and Parke-Davis provided medication.
LifeScan Inc., Health O Meter, Hoechst Marion Roussel, Inc., Merck-Medco Managed Care, Inc., Merck and Co., Nike Sports Marketing, Slim Fast Foods Co., and
Quaker Oats Co. donated materials, equipment, or medicines for concomitant conditions. McKesson BioServices Corp., Matthews Media Group, Inc., and the Henry
M. Jackson Foundation provided support services under subcontract with the Coordinating Center. The authors also received funding from the commercial
source Novo Nordisk. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS
ONE policies on sharing data and materials, as detailed online in the guide for authors.

* E-mail: dppmail@biostat.bsc.gwu.edu (DPPRG)

" A list of Diabetes Prevention Program Research Group investigators is provided in the Appendix S1.

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44424

*

; jcflorez@partners.org (JCF)



Introduction

Glucose homeostasis is tightly regulated. Control of its

variation in non-diabetic individuals is influenced by familial

factors, many of which are presumed to be heritable [1,2]. In

searching for genetic determinants of quantitative glycemic traits,

candidate gene and genome-wide association studies (GWAS)

conducted in populations of European descent have identified

associations of fasting glucose with genetic variants in or near the

genes that encode glucokinase (GCK; [3]), the glucose-6-

phosphatase catalytic subunit (G6PC2; [4,5]) and the melatonin

receptor 1b (MTNR1B; [6,7]). The Meta-Analysis of Glucose and

Insulin-related traits Consortium (MAGIC) recently performed a

global meta-analysis of 21 GWAS cohorts followed by replication

in 26 studies, totaling .122,000 non-diabetic individuals for

fasting glucose and .98,000 non-diabetic individuals for fasting

insulin [8]. These efforts confirmed the GCK, G6PC2 and

MTNR1B associations, and uncovered associations of fasting

glucose with single nucleotide polymorphisms (SNPs) in or near

DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1,

SLC2A2, GLIS3, C2CD4B and the type 2 diabetes genes TCF7L2

and SLC30A8. In addition, SNPs in or near IGF1, GCKR and

perhaps IRS1 have been found to influence fasting insulin

concentrations, a surrogate for insulin resistance. Of these loci,

only GCK, MTNR1B, DGKB, GCKR, ADCY5 and PROX1 (besides

TCF7L2 and SLC30A8) were associated with type 2 diabetes at

genome-wide significance levels, with several others (but not all)

showing a consistent trend but not meeting the same stringent

statistical threshold. This work has illustrated that genetic

associations with quantitative intermediate traits may lead to

the discovery of type 2 diabetes loci, but also that not all genetic

loci that influence fasting glucose levels in healthy individuals

necessarily contribute to type 2 diabetes pathogenesis.

The MAGIC investigators have also performed more detailed

characterization of the mechanisms of glucose regulation influ-

enced by these loci in white individuals [9]. In the Third National

Health and Nutrition Examination Survey (NHANES III), a

genetic risk score constructed with the glucose-raising alleles was

shown to have consistent effects in other ethnic groups represen-

tative of the US population [10]. The Gene 6 Lifestyle

interactions And Complex traits Involved in Elevated disease

Risk (GLACIER) investigators showed that several of these loci

associate with impaired fasting glucose (IFG) cross-sectionally and

prospectively, and some have a progressively deleterious effect on

fasting glucose [11]. Shortly thereafter, the Whitehall II investi-

gators reported that a genetic risk score constructed with these

variants was strongly associated with fasting glucose and remained

stable over time [12]. Finally, we have recently shown that

different genetic variants influence type 2 diabetes risk at distinct

stages of the normoglycemia to IFG to type 2 diabetes progression,

with MTNR1B and GCK exerting their effects preferentially in the

normoglycemia to IFG transition [13].

To understand why some loci raise fasting glucose but do not

increase type 2 diabetes risk, it is critical to establish whether their

glucose-raising effects remain evident in the setting of impaired

glucose tolerance (IGT), as glycemic context may modulate the

strength of the genetic effect [13]. Furthermore, the impact of

these loci on the prospective development of diabetes has not yet

been reported. Finally, establishing whether and how distinct

preventive interventions modulate these effects may facilitate the

clinical translation of these findings and illuminate the specific

genes and mechanisms by which these loci affect glycemic

homeostasis. We concentrated on SNPs associated with fasting

glucose, rather than those associated with 2-hour glucose [14],

because 1) the two 2-hour glucose SNPs that are not already

captured by fasting glucose-associated variants (GIPR and VPS13C)

have no detectable impact on type 2 diabetes [15], 2) the

ascertainment of DPP participants by the strict IGT definition is

likely to bias the distribution of 2-hour glucose alleles, 3)

longitudinal changes in 2-hour glucose among carriers of the 2-

hour glucose-raising alleles have already been reported in a better

suited population cohort [16], and 4) evidence obtained by the

MAGIC investigators argues against an interaction of known 2-

hour glucose loci with physical activity or body mass index (BMI)

(Robert Scott, personal communication). We therefore genotyped

the fasting glucose-associated SNPs in the multi-ethnic cohort of

the Diabetes Prevention Program (DPP), and analyzed their

relationships with glycemic measures at baseline and one year, the

development of diabetes, and their potential interaction with

preventive interventions on diabetes incidence.

Methods

The Diabetes Prevention Program
The DPP study design and baseline characteristics of the

participants have been described previously [17,18]. Briefly, the

DPP was designed to test whether intensive lifestyle modification

or pharmacologic interventions with metformin or troglitazone

prevent or delay the onset of diabetes in individuals at high risk.

The trial, conducted from 1996 to 2001 in 27 US-based medical

centers, included 3,234 participants randomized to intensive

lifestyle modification (goal .7% weight loss and .150 min/

week of physical activity), metformin (850 mg twice daily), or

placebo; the fourth arm, comprising 585 additional participants

randomized to troglitazone, was terminated early because of

concerns with hepatotoxicity. For enrollment, participants had

to have a fasting glucose between 95–125 mg/dL and IGT (2h-

glucose between 140–199 mg/dL after a 75-gram oral glucose

tolerance test [OGTT]). Of the total 3,819 DPP participants,

3,548 had DNA and consented to genetic investigation: 56.4%

were of European descent, 20.2% African American, 16.8%

Hispanic, 4.3% Asian and 2.4% American Indian by self-report.

Their mean age was 51 years and mean BMI was 34.0 kg/m2.

The primary endpoint (diabetes incidence, ascertained biannu-

ally and confirmed on a second occasion) was reached in nearly

38% of participants randomized to the placebo arm after a

mean of 3.2 years of follow-up; there was a 58% reduction of

diabetes incidence in the lifestyle intervention group and a 31%

reduction in the metformin group compared to placebo [19].

For the purposes of this study, participants randomized to

troglitazone were excluded, leaving a total of 2,890 individuals

with valid genotypes for analysis. Institutional Review Board

approval was obtained by each participating site, and all

participants included in this report provided written informed

consent for the main study and for subsequent genetic

investigations.

Quantitative Glycemic Traits
We calculated the insulin sensitivity index (ISI) as 22.5/[(fasting

insulin6fasting glucose)/18.01]; the ISI is the reciprocal of insulin

resistance calculated by homeostasis model assessment (HOMA-

IR) [20]. We estimated insulin secretion by the insulinogenic index

using the formula [(insulin at 30 min)-(insulin at 0 min)]/[(glucose

at 30 min)-(glucose at 0 min)]. The oral disposition index (DIo)

was calculated as 1/fasting insulin 6 insulinogenic index [21]. We

studied genetic associations with these measures at baseline and at

1 year: we chose one year because changes in weight were most
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pronounced at that time point, and it contained the highest

number of participants with available measures.

SNP Selection and Genotyping
We genotyped the index SNPs associated with fasting glycemic

traits reported by the MAGIC investigators [8]. Where assay

design failed we selected proxies based on linkage disequilibrium

in the HapMap CEU population: rs573225 for rs560887 in

G6PC2, r2 = 0.961; rs917793 for rs4607517 in GCK, r2 = 1.0; and

rs855228 for rs35767 in IGF1, r2 = 0.915. DNA was extracted

from peripheral blood leukocytes and quantitated as previously

described [22]. Genotyping was carried out by allele-specific

primer extension of multiplex amplified products and detection

using matrix-assisted laser desorption ionization time-of-flight

mass spectrometry on a Sequenom iPLEX platform [23].

Genotyping success rate was $98.5%. Because results for the

two previously known type 2 diabetes genes TCF7L2 and SLC30A8

have been reported elsewhere [22,24,25], they are not presented

here.

Statistical Analyses
We used Cox proportional hazards regression models with

genotype, intervention and their interactions as the independent

variables predicting time to diabetes over mean 3.2 years follow-

up. We adjusted for gender, age at enrollment, ethnicity, treatment

arm, and baseline BMI. For the quantitative glycemic traits, we

employed generalized mixed models to test additive effects of

genotype on baseline log-transformed quantitative traits, and on

the same traits after one year of intervention adjusted for the

baseline value, age, sex, self-reported ethnicity, BMI and treatment

arm. We note that these SNPs have been associated with glycemic

traits at genome-wide levels of significance, and therefore their

prior probability of true effects is many orders of magnitude higher

than the genome average. As our analyses represent further

characterization of each of these established loci, we selected a P

value threshold of 0.05. Finally, we also tested for any evidence of

epistatic interactions between the MTNR1B SNP rs10830963 and

the G6PC2 SNP rs573225, both of which have significant effects

on fasting glucose in the DPP, by including appropriate interaction

terms at baseline and one year.

Results

Baseline Associations
The SNPs genotyped, their chromosomal location, the nearest

gene and their allele frequencies in the five DPP ethnic groups are

shown in Table 1. Allele frequencies were comparable to those

previously reported by MAGIC in Europeans [8] and NHANES

III in non-Hispanic whites, African Americans and US Hispanics

[10].

Table 1. SNPs genotyped and their allele frequencies by ethnic group.

Allele frequencies (%)

SNP Chromosome
Position
(NCBI 36) Nearest gene

Alleles
(effect/other)

White
(n = 1,617)

African-
American
(n = 592)

Hispanic
(n = 475)

Asian
(n = 125)

American
Indian
(n = 81)

Fasting glucose

rs340874 1 184833918 PROX1* C/T 55.9 19.8 41.2 42.3 35.4

rs573225 2 161653734 G6PC2 A/G 71.7 91.8 85.4 90.3 92.0

rs11708067 3 120438894 ADCY5* A/G 79.4 85.9 77.3 91.2 70.0

rs11920090 3 168087406 SLC2A2 T/A 87.1 67.3 86.6 91.1 94.4

rs2191349 7 14947780 DGKB* T/G 55.7 57.9 48.1 64.0 24.1

rs917793 7 44131132 GCK* T/A 19.5 23.7 32.3 21.6 48.1

rs7034200 9 4244098 GLIS3 A/C 48.9 64.2 57.3 46.0 65.6

rs10885122 10 106670840 ADRA2A G/T 88.0 35.6 84.3 86.8 88.9

rs11605924 11 45579933 CRY2 A/C 49.3 87.0 47.7 68.0 51.9

rs7944584 11 47035421 MADD A/T 71.7 95.0 83.7 90.4 98.1

rs174550 11 57899714 FADS1 T/C 68.0 91.4 43.5 55.2 11.1

rs10830963 11 88799685 MTNR1B* G/C 28.8 9.1 22.7 41.2 24.1

rs11071657 15 39256547 C2CD4B A/G 64.4 86.9 53.7 70.0 37.0

Fasting insulin

rs4675095 2 219495543 IRS1 A/T 93.3 98.5 84.8 85.6 69.1

rs855228 12 99957291 IGF1 T/C 84.3 40.9 76.1 65.4 79.0

Fasting glucose and insulin

rs780094 2 27483120 GCKR* C/T 59.6 81.7 62.2 66.8 88.9

*Loci previously associated with type 2 diabetes at genome-wide levels of statistical significance. The allele previously associated with higher levels of the trait (effect
allele) is shown first; allele frequencies correspond to the effect allele. Gene names: PROX1, prospero homeobox 1; G6PC2, glucose-6-phosphatase, catalytic, 2; ADCY5,
adenylate cyclase 5; SLC2A2, solute carrier family 2, member 2; DGKB, diacylglycerol kinase, beta 90 kDa; GCK, glucokinase; GLIS3, GLIS family zinc finger 3; ADRA2A,
adrenergic, alpha-2A-, receptor; CRY2, cryptochrome 2; MADD, MAP-kinase activating death domain; FADS1, fatty acid desaturase 1; MTNR1B, melatonin receptor 1B;
C2CD4B, C2 calcium-dependent domain containing 4B; IRS1, insulin receptor substrate 1; IGF1, insulin-like growth factor 1; GCKR, glucokinase regulator.
doi:10.1371/journal.pone.0044424.t001
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Table 2. Nominal genotypic associations with quantitative traits at baseline.

SNP Nearest gene Alleles (effect/other) Trait LS Means (95% CI) Additive P value Pairwise P values

rs573225 G6PC2 A/G FG (mg/dL) AA 106.7 (106.2–107.2) 0.002 AA vs AG 0.002

AG 105.6 (104.9–106.3) AA vs GG 0.31

GG 105.8 (104.5–107.1) AG vs GG 0.73

Fins (mU/mL) AA 24.44 (23.65–25.26) 0.006 AA vs AG 0.31

AG 24.97 (23.87–26.11) AA vs GG 0.005

GG 27.71 (25.56–30.05) AG vs GG 0.02

Ins Index AA 1.25 (1.20–1.31) 0.002 AA vs AG 0.16

AG 1.20 (1.13–1.28) AA vs GG 0.003

GG 1.04 (0.92–1.17) AG vs GG 0.03

ISI AA 0.155 (0.15–0.161) 0.03 AA vs AG 0.62

AG 0.154 (0.147–0.161) AA vs GG 0.01

GG 0.138 (0.127–0.15) AG vs GG 0.03

DIo AA 0.049 (0.047–0.051) ,0.001 AA vs AG 0.03

AG 0.046 (0.043–0.049) AA vs GG ,0.001

GG 0.037 (0.033–0.042) AG vs GG ,0.001

rs11708067 ADCY5 A/G Fins (mU/mL) AA 24.05 (23.24–24.88) 0.001 AA vs AG 0.001

AG 25.85 (24.79–26.95) AA vs GG 0.53

GG 25.29 (23.12–27.67) AG vs GG 0.64

ISI AA 0.158 (0.153–0.164) 0.004 AA vs AG 0.003

AG 0.148 (0.141–0.154) AA vs GG 0.72

GG 0.151 (0.138–0.166) AG vs GG 0.72

rs11920090 SLC2A2 T/A DIo AA 0.042 (0.037–0.049) 0.006 AA vs AT 0.27

AT 0.046 (0.043–0.049) AA vs TT 0.04

TT 0.049 (0.047–0.051) AT vs TT 0.03

rs7944584 MADD A/T Proins (pmol/L) AA 16.4 (15.9–16.92) ,0.001 AA vs AT ,0.001

AT 14.98 (14.34–15.65) AA vs TT ,0.001

TT 13.53 (12.46–14.68) AT vs TT 0.01

rs174550 FADS1 T/C Fins (mU/mL) TT 23.78 (22.83–24.78) 0.008 TT vs CT 0.06

CT 24.97 (23.96–26.03) TT vs CC 0.06

CC 25.52 (24.25–26.86) CT vs CC 0.47

ISI CC 0.149 (0.141–0.157) 0.01 TT vs CT 0.09

CT 0.153 (0.146–0.159) TT vs CC 0.09

TT 0.160 (0.153–0.167) CT vs CC 0.46

rs10830963 MTNR1B G/C FG (mg/dL) GG 108.7 (107.6–109.9) ,0.001 GG vs CG 0.02

CG 107.3 (106.7–108.0) GG vs CC ,0.001

CC 105.6 (105.1–106.2) CG vs CC ,0.001

Proins (pmol/L) GG 15.88 (14.80–17.03) 0.009 GG vs CG 0.66

CG 15.43 (14.85–16.04) GG vs CC 0.66

CC 16.44 (15.90–17.00) CG vs CC 0.003

Ins Index GG 1.17 (1.05–1.29) 0.01 GG vs CG 0.74

CG 1.19 (1.12–1.25) GG vs CC 0.21

CC 1.27 (1.21–1.33) CG vs CC 0.05

rs855228 IGF1 T/C FG (mg/dL) TT 106.1 (105.5–106.7) 0.01 TT vs CT 0.37

CT 106.4 (105.8–107.0) TT vs CC 0.02

CC 107.7 (106.6–108.7) CT vs CC 0.43

rs780094 GCKR C/T FG (mg/dL) CC 106.8 (106.2–107.3) 0.001 CC vs CT 0.12

CT 106.3 (105.6–106.9) CC vs TT 0.003

TT 105.2 (104.3–106.1) CT vs TT 0.04

FG, fasting glucose; Fins, fasting insulin; Ins Index, insulinogenic index; ISI, insulin sensitivity index; DIo, oral disposition index; Proins, fasting proinsulin adjusted for
fasting insulin. To convert glucose mg/dL to mmol/L, divide by 18.01. To convert insulin mU/ml to pmol/L to, multiply by 6.0.
doi:10.1371/journal.pone.0044424.t002
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Table 3. Associations with quantitative traits at one year.

FG Fins Proins Ins Index ISI DIo

SNP Nearest gene
Alleles
(effect/other) P int P assoc P int P assoc P int P assoc P int P assoc P int P assoc P int P assoc

rs340874 PROX1 C/T 0.81 0.47 0.90 0.15 0.99 0.08 0.42 0.99 0.89 0.14 0.63 0.22

rs573225 G6PC2 A/G 0.96 0.17 0.08 0.88 0.34 0.91 0.77 0.20 0.11 0.66 0.81 0.08

rs11708067 ADCY5 A/G 0.80 0.27 0.22 0.98 0.31 0.85 0.46 0.32 0.20 0.80 0.86 0.52

rs11920090 SLC2A2 T/A 0.88 0.49 0.24 0.53 0.79 0.38 0.59 0.98 0.25 0.49 0.69 0.89

rs2191349 DGKB T/G 0.79 0.41 0.04 – 0.09 0.80 0.50 0.55 0.07 0.84 0.84 0.99

rs917793 GCK T/A 0.07 0.12 0.39 0.12 0.08 0.31 0.86 0.23 0.24 0.08 0.42 0.07

rs7034200 GLIS3 A/C 0.72 0.98 0.02 – 0.25 0.56 0.94 0.94 0.03 – 0.13 0.64

rs10885122 ADRA2A G/T 0.82 0.14 0.20 0.60 0.16 0.46 0.29 0.18 0.25 0.44 0.31 0.03

rs11605924 CRY2 A/C 0.20 0.56 0.13 0.46 0.76 0.80 0.40 0.28 0.13 0.40 0.21 0.58

rs7944584 MADD A/T 0.04 – 0.73 0.80 0.63 0.30 0.11 0.10 0.63 0.83 0.36 0.29

rs174550 FADS1 T/C 0.58 0.20 0.87 0.09 0.73 0.23 0.76 0.97 0.86 0.07 0.64 0.65

rs10830963 MTNR1B G/C 0.68 0.003 0.17 0.37 0.27 0.41 0.69 0.002 0.16 0.90 0.96 0.08

rs11071657 C2CD4B A/G 0.04 – 0.96 0.42 0.55 0.97 0.38 0.09 0.98 0.54 0.35 0.048

rs4675095 IRS1 A/T 0.21 0.99 0.67 0.26 0.68 0.59 0.53 0.55 0.71 0.30 0.62 0.62

rs855228 IGF1 T/C 0.39 0.60 0.15 0.27 0.52 0.87 0.36 0.72 0.15 0.24 0.63 0.75

rs780094 GCKR C/T 0.57 0.76 0.07 0.22 0.25 0.38 0.17 0.92 0.09 0.26 0.43 0.28

FG, fasting glucose; Fins, fasting insulin; Ins Index, insulinogenic index; ISI, insulin sensitivity index; DIo, oral disposition index; Proins, fasting proinsulin adjusted for
fasting insulin. P int denotes the P value for the genotype 6 intervention interaction test; P assoc denotes the P value for the main effect association in the full cohort
when P int .0.05.
doi:10.1371/journal.pone.0044424.t003

Table 4. Levels of quantitative glycemic traits at one year by genotype and treatment arm at loci with a nominally significant
interaction.

Placebo Metformin Lifestyle

SNP gene

Alleles
(effect/
other) Trait LS Means (95% CI) P values LS Means (95% CI) P values LS Means (95% CI) P values

rs2191349 T/G Fins GG 24.71 (22.96–26.59) GG/GT: 0.99 GG 22.62 (21.02–24.34) GG/GT: 0.21 GG 18.43 (17.03–19.94) GG/GT: 0.99

DGKB (mU/mL) GT 24.99 (23.59–26.48) GG/TT: 0.99 GT 21.30 (20.06–22.62) GG/TT: 0.04 GT 19.01 (17.82–20.28) GG/TT: 0.99

TT 25.71 (24.00–27.54) GT/TT: 0.99 TT 20.41 (19.03–21.88) GT/TT: 0.21 TT 19.05 (17.71–20.51) GT/TT: 0.99

rs7034200 A/C Fins AA 24.86 (23.27–26.55) AA/AC: 0.99 AA 22.54 (21.06–24.12) AA/AC: 0.12 AA 18.01 (16.76–19.36) AA/AC: 0.28

GLIS3 (mU/mL) AC 25.23 (23.83–26.73) AA/CC: 0.99 AC 21.14 (19.87–22.50) AA/CC: 0.05 AC 19.20 (18.02–20.45) AA/CC: 0.28

CC 25.07 (23.18–27.12) AC/CC: 0.99 CC 20.45 (19.00–22.01 AC/CC: 0.37 CC 19.47 (17.96–21.11) AC/CC: 0.74

ISI AA 0.153 (0.142–0.164) AA/AC: 0.99 AA 0.175 (0.163–0.189) AA/AC: 0.14 AA 0.222 (0.205–0.240) AA/AC: 0.28

AC 0.152 (0.143–0.162) AA/CC: 0.99 AC 0.187 (0.175–0.200) AA/CC: 0.06 AC 0.207 (0.193–0.221) AA/CC: 0.28

CC 0.151 (0.139–0.165) AC/CC: 0.99 CC 0.194 (0.179–0.210) AC/CC: 0.36 CC 0.204 (0.186–0.222) AC/CC: 0.74

rs7944584 A/T FG AA 106.8 (105.5–108.1) AA/AT: 0.008 AA 102.4 (101.3–103.5) AA/AT: 0.99 AA 102.1 (101.0–103.2) AA/AT: 0.99

MADD (mg/dL) AT 104.3 (102.6–106.1) AA/TT: 0.50 AT 102.7 (101.1–104.2) AA/TT: 0.99 AT 101.5 (99.98–103.1) AA/TT: 0.99

TT 104.8 (101.4–108.3) AT/TT: 0.78 TT 101.3 (98.45–104.3) AT/TT: 0.99 TT 101.4 (98.65–104.2) AT/TT: 0.99

rs11071657 A/G FG AA 107.1 (105.6–108.7) AA/AG: 0.41 AA 102.3 (101.0–103.6) AA/AG: 0.99 AA 101.9 (100.6–103.2) AA/AG: 0.96

C2CD4B (mg/dL) AG 105.9 (104.5–107.4) AA/GG: 0.41 AG 102.7 (101.4–104.0) AA/GG: 0.99 AG 101.7 (100.4–103.0) AA/GG: 0.96

GG 105.3 (103.1–107.6) AG/GG: 0.63 GG 102.0 (100.2–103.9) AG/GG: 0.99 GG 102.7 (100.8–104.7) AG/GG: 0.96

P values for pairwise comparisons between genotypic groups are shown, with groups separated by a ‘‘/’’. Fins, fasting insulin (mU/mL); ISI, insulin sensitivity index; FG,
fasting glucose (mg/dL). To convert glucose mg/dL to mmol/L, divide by 18.01. To convert insulin mU/ml to pmol/L to, multiply by 6.0.
doi:10.1371/journal.pone.0044424.t004
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We tested associations of these SNPs with baseline fasting

glucose, fasting insulin, fasting proinsulin adjusted for fasting

insulin, the insulinogenic index, the ISI and the DIo in this

multiethnic cohort of individuals with IGT. We replicated

associations with fasting glucose at G6PC2 (P = 0.002),

MTNR1B (P,0.001) and GCKR (P = 0.001). We also replicated

associations of the glucose-raising allele with reduced insulino-

genic index at MTNR1B and increased insulinogenic and

disposition indices at G6PC2. We again noted a strong

association of MADD with fasting proinsulin levels, adjusted

for concomitant insulin (P,0.001). All nominally significant

(P,0.05) associations and corresponding trait distributions are

shown in Table 2.

Figure 1. Effect of genotype at MTNR1B rs10830963 on glycemic traits at baseline and one year. Fasting glucose is shown in panel (a) and
the insulinogenic index is shown in panel (b). Because no significant SNP 6 intervention interaction was found, the full cohort was analyzed in
aggregate. Fasting glucose is higher (P = 0.003) and the insulinogenic index is lower (P = 0.002) in carriers of the G risk allele after one year, even after
adjustment for the corresponding baseline levels. Least-square means (695% CI) are shown. To convert glucose mg/dL to mmol/L, divide by 18.01.
doi:10.1371/journal.pone.0044424.g001

Table 5. Diabetes incidence by genotype at each locus, in the overall cohort and stratified by treatment arm.

SNP
Nearest
gene Alleles

SNP *
Tx

Treatment
adjusted HR
(95% CI)

P-
value

PLACEBO HR
(95% CI)

P-
value

METFORMIN HR
(95% CI)

P-
value

LIFESTYLE HR
(95% CI)

P-
value

rs340874 PROX1* C (vs T) N 0.88 (0.78–0.98) 0.02 0.85 (0.71–1.01) 0.06 0.92 (0.75–1.12) 0.39 0.86 (0.68–1.08) 0.20

rs573225 G6PC2 A (vs G) N 1.11 (0.97–1.27) 0.14 0.96 (0.77–1.19) 0.70 1.18 (0.94–1.47) 0.15 1.27 (0.98–1.64) 0.07

rs11708067 ADCY5* A (vs G) N 1.06 (0.92–1.23) 0.38 1.04 (0.84–1.28) 0.73 1.08 (0.84–1.35) 0.60 1.10 (0.82–1.47) 0.51

rs11920090 SLC2A2 T (vs A) N 1.02 (0.88–1.19) 0.75 1.08 (0.86–1.33) 0.56 1.00 (0.77–1.30) 0.99 0.99 (0.71–1.37) 0.93

rs2191349 DGKB* T (vs G) N 1.06 (0.94–1.18) 0.34 1.05 (0.88–1.27) 0.56 1.10 (0.90–1.33) 0.34 1.01 (0.80–1.27) 0.96

rs917793 GCK* T (vs A) N 0.96 (0.84–1.10) 0.59 0.87 (0.70–1.07) 0.20 1.14 (0.90–1.44) 0.29 0.92 (0.69–1.22) 0.56

rs7034200 GLIS3 A (vs C) N 1.00 (0.89–1.12) 1.00 0.90 (0.75–1.08) 0.22 1.04 (0.85–1.27) 0.68 1.15 (0.91–1.47) 0.25

rs10885122 ADRA2A G (vs T) N 1.03 (0.91–1.16) 0.63 1.01 (0.84–1.22) 0.89 1.03 (0.84–1.28) 0.76 1.08 (0.84–1.39) 0.56

rs11605924 CRY2 A (vs C) N 1.01 (0.90–1.12) 0.91 0.93 (0.78–1.10) 0.40 1.06 (0.88–1.28) 0.56 1.09 (0.87–1.37) 0.47

rs7944584 MADD A (vs T) N 0.93 (0.80–1.08) 0.29 0.86 (0.69–1.08) 0.20 0.89 (0.69–1.14) 0.35 1.11 (0.84–1.47) 0.47

rs174550 FADS1 T (vs C) N 0.94 (0.83–1.05) 0.26 0.95 (0.80–1.14) 0.57 0.98 (0.80–1.19) 0.81 0.86 (0.67–1.09) 0.21

rs10830963 MTNR1B* G (vs C) N 1.07 (0.94–1.22) 0.29 1.20 (0.98–1.47) 0.07 1.01 (0.80–1.26) 0.95 0.95 (0.73–1.24) 0.69

rs11071657 C2CD4B A (vs G) N 0.93 (0.83–1.05) 0.26 0.93 (0.77–1.12) 0.43 0.92 (0.75–1.14) 0.42 0.96 (0.75–1.22) 0.72

rs4675095 IRS1 A (vs T) N 0.96 (0.78–1.18) 0.68 0.93 (0.67–1.30) 0.69 1.16 (0.84–1.59) 0.37 0.71 (0.44–1.15) 0.17

rs855228 IGF1 T (vs C) N 1.09 (0.97–1.23) 0.14 1.04 (0.87–1.25) 0.66 1.16 (0.95–1.43) 0.15 1.12 (0.88–1.43) 0.38

rs780094 GCKR* C (vs T) N 0.96 (0.85–1.08) 0.48 0.91 (0.75–1.10) 0.33 1.01 (0.82–1.23) 0.93 0.96 (0.75–1.22) 0.72

*Loci previously associated with type 2 diabetes. Effect allele denotes the allele associated with higher glucose or insulin levels in MAGIC. There are no significant SNP6
treatment interactions. One nominally significant P value for association with diabetes incidence is not consistent with the expected direction of effect.
doi:10.1371/journal.pone.0044424.t005
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Associations at One Year
We tested whether the metformin or lifestyle preventive

interventions interacted with each SNP to modulate quantitative

glycemic traits at one year. We adjusted one-year traits for the

corresponding baseline trait, to indicate change in each variable

during active treatment. Where no nominally significant

interaction with treatment was found, SNP main effects on the

one-year trait were tested in the whole cohort with an

adjustment for treatment arm; if an interaction was detected at

P,0.05, analyses were stratified by treatment arm (Table 3).

Nominally significant interactions were found for DGKB and

fasting insulin, GLIS3 and both fasting insulin and ISI, and both

MADD and C2CD4B and fasting glucose. Least-square means for

each genotype group and the corresponding pairwise compar-

isons are shown in Table 4.

At MTNR1B, the glucose-raising allele continued to have a

significant main effect on raising fasting glucose and lowering the

insulinogenic index at one year (Figure 1). Because one-year traits

are adjusted for the baseline level, this effect is indicative of a

worsening deleterious effect of this locus on b-cell function. We

further explored the concordant effects of SNPs at MTNR1B and

G6PC2 on fasting glucose but discordant effects for insulinogenic

index by testing for epistatic interactions between the two on

fasting glucose at baseline and one year: the interaction terms were

not statistically significant.

Diabetes Incidence
We tested whether the metformin or lifestyle preventive

interventions interact with each SNP on the risk of developing

diabetes during 3.2 years of mean follow-up. As no nominal

interactions were found, the effects of each SNP on diabetes

incidence were evaluated in the full cohort while adjusting for

treatment arm; stratified analyses are also shown (Table 5). The

only nominal association with diabetes incidence was found for the

glucose-lowering allele at PROX1 (P = 0.02), in a direction opposite

to that reported in case-control analyses in MAGIC, where the C

allele increased type 2 diabetes risk (odds ratio 1.07 [95% CI 1.05–

1.09], P = 7.2610210) [8].

Discussion

The MAGIC investigators reported a number of loci that

influence fasting glucose and fasting insulin levels in non-

diabetic populations of European descent; only a few of the loci

were also associated with type 2 diabetes at genome-wide levels

of significance [8]. The authors speculated that it is not the mere

elevation in fasting glucose, but how fasting glucose is raised,

that determines overall b-cell dysfunction and future type 2

diabetes risk. However, whether these loci exert their action on

fasting glucose in the initial stages of diabetes progression (e.g.

from normoglycemia to impaired glucose regulation) or later

(e.g. from IGT to type 2 diabetes) is not known. In the

GLACIER cohort, eleven loci (including the known type 2

diabetes genes TCF7L2 and SLC30A8) were nominally associ-

ated with IFG cross-sectionally, and MTNR1B and G6PC2 were

also associated with development of IFG in longitudinal analyses

[11]. We have recently shown that among type 2 diabetes-

associated loci, risk alleles at MTNR1B, GCK and SLC30A8

confer a stronger rate of progression from normoglycemia to

IFG than from IFG to type 2 diabetes [13]. Here we extend

these findings by testing these SNPs from the IGT to type 2

diabetes transition, and by assessing their effects on quantitative

glycemic traits at baseline and one year in a multiethnic cohort

of persons with IGT.

We have demonstrated that the three loci with the strongest

reported effect on fasting glucose (MTNR1B, GCKR and G6PC2)

have consistent effects in the DPP. All three were known to be

associated with fasting glucose prior to the MAGIC GWAS meta-

analysis [4,5,6,7,26,27,28]. Power may have been limiting to

detect the other reported associations [24].

We have also confirmed that the glucose-raising allele at

MTNR1B is associated with a reduced insulinogenic index, as

measured during the initial phase of insulin secretion during an

OGTT [9,29]. As shown by Lyssenko and coworkers, the

deleterious effects of this allele on b-cell function persist over

time; while they noted such worsening over 24 years of follow-up

[29], here we see such effects over a much shorter time span (one

year). In GLACIER a similar non-significant trend was noted

over 10 years of follow-up [11], although a consistent effect was

not detected in the Whitehall II study [12]. Because MTNR1B

does increase risk of type 2 diabetes [8], this pattern of sustained

deterioration suggests that identifying these individuals early in

their glycemic progression may be beneficial in prevention

efforts.

In contrast, the glucose-raising allele at G6PC2 is associated with

superior b-cell function on dynamic testing; this has been shown

previously [9,30], and is consistent with the role of this gene

product in regulating hepatic glucokinase and its null effect on type

2 diabetes risk [8]. We found no evidence in support of a non-

additive interaction between MTNR1B and G6PC2 on fasting

glucose at baseline or one year. The strong effect of the MADD

locus on fasting proinsulin levels is also confirmed [9,31]; because

this association is adjusted for concomitant insulin levels, it reflects

an increased secretion of insulin precursors out of proportion to

the degree of basal insulin resistance. The other nominal

associations newly reported here do not withstand correction for

the multiple statistical tests performed, and should be considered

hypothesis-generating requiring confirmation in independent

studies.

In summary, the strongest effects of genetic loci on fasting

glucose in non-diabetic individuals of European descent are also

evident in a multiethnic cohort with IGT. The deleterious

influence of the glucose-raising allele at MTNR1B on b-cell

function appears to worsen with time, and this effect is evident in

as short a time as one year. Genetic testing may identify a subset of

patients with IGT more likely to respond to preventive interven-

tions [32].
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