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Abstract

Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of
these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the
functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this
neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional
activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old
adults. Strength of functional connectivity between spatial components was assessed for age group differences and related
to speeded task performance. We then assessed whether age-related differences in global brain volume were associated
with age-related differences in functional network connectivity. Both age groups used a series of spatial components during
the verbal working memory task and the strength and distribution of functional network connectivity between these
components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the
old adults was associated with decreases in functional network connectivity between components comprised of the
supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex.
Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-
related alterations in functional network connectivity were the result of global brain volume changes. These results suggest
that age-related differences in the coordination of neural activity between brain regions partially underlie differences in
cognitive performance.
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Introduction

Advancing age is associated with decline in multiple cognitive

domains, including verbal working memory (WM). Verbal

working memory describes the maintenance and manipulation

of verbal information over the course of several seconds [1].

Encoding, maintaining and retrieving information using verbal

working memory involves the coordination of multiple neural

processes. The brain regions sub-serving these processes have been

elucidated with experimental manipulations that vary task

demands by altering the information load [2,3,4], retention

interval [5,6] and response time duration [7,8]. Results from

fMRI studies largely demonstrate increased signal within the pre-

frontal, premotor and parietal cortices with these alterations in

task demands [9].

Advancing age is associated with decreased performance on

verbal working memory in the face of increasing task demands

[10]. The underlying cause for these cognitive changes is assumed

to partly be age-related neural changes [11] in global and regional

brain volume, white matter hyperintensity burden and cerebral

blood flow. More recently, aging and disease have also been

related to changes in the functional connectivity of brain regions in

the absence of external stimulation [12,13,14,15].

The present study examines how the strength of functional

connectivity between broad networks of brain regions during

performance of a verbal working memory task relates to task

performance. Measures of functional network connectivity char-

acterize within-participant neural interactions between function-

ally interconnected networks of brain regions [16]. This approach

investigates how networks of brain regions influence other

networks of brain regions in the face of age-related changes.

The mechanisms underlying changes in functional network

connectivity could indicate abnormal effects that consistently

affect multiple brain structures, such as abnormal inter-cellular

signaling [17]. Furthermore, the identified networks respect

functional boundaries within participants, which is not necessarily

true using anatomical defined regions of interest [18]. Addition-

ally, measures of connectivity are robust against many of the age-

related effects that may weaken the relationship between statistical

parametric models (SPM) of the task and the BOLD response in

older adults [19]. Age-related decreases in the coordination of

brain regions may mediate, or underlie, the age-related perfor-

mance changes seen on cognitive tasks. If advancing age affects the

strength of functional network connectivity between brain regions

during task performance, the question arises as to whether the

underlying brain structure is the cause of such dis-coordination.

We hypothesize that advancing age is associated with brain
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volume changes, strength of functional network connectivity

between networks and declines in task performance. Furthermore,

we hypothesize that these age-related changes form a causal chain

such that task performance decline is due to changes in functional

network connectivity, which results from age-related brain volume

changes. The current work aims to determine if there is evidence

to support these ideas by addressing three questions:

1. Does aging change the functional network connectivity

between brain regions during performance of a verbal working

memory task?

2. Are age-related changes in task performance associated with

changes in functional network connectivity?

3. Are changes in functional network connectivity associated with

changes in global brain volume?

These questions were addressed using an independent compo-

nents analysis (ICA) of fMRI data collected from young and old

healthy adults while performing a verbal delayed item recognition

(DIR) task and a subsequent series of mediation analyses. The ICA

identified maximally spatially independent brain maps such that

the brain regions included in each map share similar time-courses

within each participant and respect individual functional bound-

aries [17]. Once the ICs were identified, the degree to which an

individual utilized each map over time was compared to the

modeled time course of the task itself. This allows classification of

ICs as being task related or not task related. The time courses of

each IC were then correlated with one another within each

participant, providing measures of the strength of the functional

connectivity between the ICs [16]. We then tested for age group

differences in the strength of the functional connectivity between

ICs. Based on studies of the default mode network we expected

decreased strength of correlation between functional networks

with advancing age [20] that would affect task performance [21].

Specifically, we expected anterior to posterior functional connec-

tions to be disrupted by aging [12] as well as sub-cortical

connections, whose strength have been shown to affect verbal

memory [13]. Therefore, we additionally examined whether the

effect of advanced age on task performance was mediated by the

functional connectivity across ICs. Finally, we examined whether

age-related changes in whole brain volume could explain any age-

related changes in functional connectivity. The results from these

analyses are discussed within the context of a recently presented

conceptual model of advancing age [22,23].

Methods

Study Participants
The current study used data from 75 healthy, young partici-

pants (50 men and 25 women mean (6s.d.) age = 24.45 (3.50);

mean (6 s.d.) years of education = 15.7261.50; all right handed),

and 37 healthy, old participants (15 men and 22 women; mean (6

s.d.) age = 71.2766.29; mean (6 s.d.) years of educa-

tion = 16.3262.58; all right handed). Written informed consent

was obtained from all participants under a protocol approved by

the Internal Review Board of Columbia University. This sample is

a complete collection of young and old adults who have

participated in studies at our facility on the same DIR task, on

the same scanner and previous analyses on subgroups have been

published [3,4,24,25,26]. All participants were screened with

structured medical, neurological, psychiatric, and neuropsycho-

logical evaluations to ensure that they had no neurological or

psychiatric disease or cognitive impairment. The screening

procedure included a detailed interview that excluded individuals

with a self-reported history of major or unstable medical illness,

significant neurological history (e.g. epilepsy, brain tumor, stroke),

history of head trauma with loss of consciousness for greater than

5 min or history of Axis I psychiatric disorder [27]. Individuals

taking psychotropic medications were also excluded. Global

cognitive functioning was assessed with a modified version of the

Folstein Mini Mental State Examination (mMMS: [28]), which

has a maximum score of 57. All participants were classified as non-

demented and without clinically significant cognitive impairment

and although they differed in the mMMS, (young mean (6 s.d.)

mMMS total = 55.1961.82; old mean (6 s.d.) mMMS to-

tal = 53.5863.06, t (51.66) = 2.83, p = .007)) this difference was

not clinically significant. IQ was estimated with the American

version of the New Adult Reading Test (NART: [29]). The old

NART scores were not significantly lower than the young scores

(young mean (6 s.d.) NARTIQ = 119.15166.22, old mean (6

s.d.) NARTIQ = 117.4067.51; t (106) = 1.56, p = .12) and were

above average for both groups.

Behavioral Task
All participants performed a verbal delayed item recognition

task in which memory load was manipulated by the number of

letters (1, 3, or 6) the subject needed to store in working memory

[2,10]. Task parameters and training procedures were identical to

those reported in our previous studies [3,30]. In brief, each trial of

the delayed item recognition task consisted of a stimulus

presentation, retention delay, and probe presentation. Stimulus

set size was pseudo-randomly varied across trials and each of the

three experimental runs contained 10 trials at each of the three

memory load levels, with five match trials and five non-match

trials. In all, there were 30 trials per set size per participant. Time

between trials varied, producing a jittered inter-trial interval length

to reduce anticipatory effects and prevent MRI scanning to be

time-locked to the hemodynamics [31]. Participants indicated

whether the probe item was included in the initial set by a

differential button press (left hand = no, right hand = yes) and were

instructed to respond as quickly as possible. Median response times

and accuracy, independent of response bias (dL), for each memory

load level were used as behavioral measures.

MRI data acquisition
During performance of the three task blocks 207 T2*-weighted

BOLD images, were acquired with an Intera 1.5 Tesla Philips MR

scanner equipped with a standard quadrature head coil, using a

gradient echo echo-planar (GE-EPI) sequence (TE/TR = 50 ms/

3000 ms; flip angle = 90u; 64664 matrix, in-plane voxel si-

ze = 3.124 mm63.124 mm; slice thickness = 8 mm (no gap); 17

trans-axial slices per volume). Four additional GE-EPI excitations

were performed before the task began to allow transverse

magnetization immediately after radio-frequency excitation to

approach its steady-state value; the image data for these excitations

were discarded. A T1-weighted spoiled gradient image was also

acquired from each subject for spatial normalization purposes

(TE/TR = 3/25 ms, 2566256 matrix;

FOV = 23061866230 mm; 124 slices per volume).

Task stimuli were back-projected onto a screen located at the

foot of the MRI bed using an LCD projector. Participants viewed

the screen via a mirror system located in the head coil and had

vision corrected to normal as needed using MR compatible glasses

(manufactured by SafeVision, LLC. Webster Groves, MO).

Responses were made on a LUMItouch response system (Photon

Control Company) using the index fingers of either hand. Task

administration and collection of RT and accuracy data were

controlled using PsyScope 1.2.5 [32] running on a Macintosh G3

Functional Network Connectivity and Aging
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iBook. Task onset was electronically synchronized with the MRI

acquisition computer. A Carnegie Mellon Button Box (New

Micros, Inc. Dallas, TX) provided digital input-output for the

response system and synchronization with the MRI acquisition

computer, as well as millisecond accurate timing of responses.

Functional MRI data analysis
All image pre-processing and statistical analyses used SPM5

(Wellcome Department of Cognitive Neurology). For each

subject’s EPI dataset: images were temporally shifted to correct

for slice acquisition order using the first slice acquired in the TR as

the reference. All EPI images were corrected for motion by

realigning to the first volume of the first session. The T1-weighted

(structural) image was co-registered to the first EPI volume using

mutual information. This co-registered high-resolution image was

used to determine the transformation into a standard space

defined by the Montreal Neurologic Institute (MNI) template

brain supplied with SPM5. This transformation was applied to the

EPI data and re-sliced using sync-interpolation to 26262 mm.

Finally, all images were spatially smoothed with an 8 mm FWHM

kernel.

Time series models
The time series models crossed the load (1, 3 or 6 letters) and

task phase (stimulus, retention and recognition) factors to create

nine regressors of interest. The stimulus phase for each load level

was modeled with a 3 second rectangular epoch, the retention

phase for each load level was modeled with a 7-second epoch and

the recognition phase for each load level was modeled as

rectangular epochs lasting until the trial specific response (i.e.

the RT) was made [33]. Trials without motor responses from the

participant during the 3-second recognition period (time outs) or

where an incorrect response was made were modeled separately,

and were not included in any higher-level analyses. All regressors

of the time series models were convolved with a standard double-

Gamma model of the hemodynamic response function [34].

Contrasts of interest tested for load-dependent and load-indepen-

dent effects within each task phase resulting in six effects of

interest.

Independent components analysis
Group spatial independent components analysis was applied

using the infomax algorithm [35] as implemented in the GIFT

software (http://icatb.sourceforge.net/, version 2.0d) and data

were decomposed into 36 components as determined by the

minimum description length criteria [36]. This approach first used

two data reduction steps. The first performed a principal

components analysis within each of the three runs within each

participant and retained 30 PCs per run. The second data

reduction step performed principal components analysis across the

90 retained PCs from all participants and retained 36 PCs. The

ICA was performed on these 36 PCs using the ICASSO approach

with 20 repetitions [37]. Therefore, the ICA decomposition was

repeated 20 times to identify reliable and stable components. This

helps ensure that the iterative ICA procedure identifies global

minima and not local minima. Visual inspection of the

components identified artifacts related to eye movements, head

motion or pulsations at the base of the brain and removed them

from further analyses. Time-courses for each component for each

participant were computed via back-reconstruction [38] and the

time components were tested for relationships to the task using the

time series model described above using general linear modeling

analyses. Contrasts testing for load-dependent and independent

signal change within each phase of the task were calculated. The

resultant contrast weighted beta-values were tested with one-

sample within group t-tests controlling for gender. This procedure

is analogous to first and second level statistical modeling with one

time-course for each component. A component was deemed task-

related if it was significantly different from zero in at least one of

the two age groups using a= 0.05, Bonferroni corrected for

multiple comparisons, controlling for gender.

Functional network connectivity
Functional network connectivity was calculated as the Pearson

correlation coefficient between the time courses for each

component within each participant. The resultant coefficients

were Fisher z-transformed to match normally distributed values.

Tests of the measures of functional network connectivity

determined if age group affected their strength. Between age

group two-sample t-tests determined whether the strength of

functional network connectivity between spatial components

differed between the age groups using a= 0.05, Bonferroni

corrected for multiple comparisons, controlling for gender.

Functional network connectivity and task performance
Linear regression tested the relationship between the strength of

functional network connectivity between components and task

performance while controlling for gender. An alpha value of 0.05

Bonferroni corrected for multiple comparisons was used.

Functional network connectivity mediation
Mediation tests determined whether the effect of advanced age

on task performance was due to age related changes in functional

network connectivity, see Figure 1A. Findings of a significant

indirect effect between age group and task performance via

functional network connectivity are consistent with the causal

chain that assumes advancing age has an effect on functional

network connectivity, which affects task performance. The

mediation analysis tested this indirect effect while controlling for

gender using 10,000 stratified bootstrap resamples to determine

the bias-corrected percentile confidence intervals using the

Mediate SPSS tool [39,40,41,42]. Age group is a categorical

variable and the stratified bootstrapping procedure preserves

sample sizes in each age group avoiding bias in the resamples due

to the different sample sizes in the age groups.

Brain volume mediation
Mediation tests determined whether the effect of advanced age

on functional network connectivity resulted from changes in a

global brain structure, see Figure 1B. Normalized whole brain

volume (nWBV) was used as a measure of brain structure and is

calculated from the image segments in native space as the summed

volume of gray- and white-matter divided by the summed volume

of gray-matter, white-matter and cerebrospinal fluid [43]. This

measure represents the percentage of the total intracranial volume

occupied by gray and white matter and provides a simple

summary measure of age-related loss of gray and white cerebral

tissue volume. This mediation analysis tested the indirect effect

that age has on functional network connectivity through nWBV

while controlling for gender using 10,000 stratified bootstrap

resamples to determine the bias-corrected percentile confidence

intervals. Age group was a categorical variable using stratified

bootstrap resampling.

Functional Network Connectivity and Aging
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Results

Task performance
Increased task demands increased response times for both age

groups (Table 1). Using a repeated measures design, and Huynh-

Feldt correction for non-sphericity, response time was affected by

letter set size while controlling for gender in both young

(F(1.75,127.52) = 63.50, p,0.001, g2 = 0.46) and old (1.29,

45.15) = 61.70, p,0.001, g2 = 0.64) groups. There was no

interaction between gender and load for the young

(F(1.75,127.52) = 0.26, p.0.05, g2 = 0.003) nor the old (F(1.29,

45.17) = 0.062, p.0.05, g2 = 0.002) groups. The interaction of age

group and set size was also significant (F(1.55, 167.56) = 4.94,

p,0.05, g2 = 0.044), the interaction between set size and gender

was not significant (F(1.55,167.56) = 0.20, p.0.05, g2 = 0.002),

nor was the interaction between set size, age group and gender

(F(1.55, 167.56) = 0.051, p.0.05, g2 = 0.000). Based on this letter

set size related finding, the letter set size dependent effect (slope) on

response times (sRT) was calculated and was significantly larger in

the older adults than the young (F(1,108) = 14.38, two-tailed

p,0.001), there was no main effect of gender (F(1,108) = 0.013,

p.0.05), nor an interaction of gender and age group

(F(1,108) = 0.059, p.0.05).

Accuracy independent of response bias (dL) was not affected by

set size in the young (F(2.00, 146.00) = 1.14, p.0.05, g2 = 0.015);

however, there was an interaction between set size and gender

(F(2,146) = 5.77, p,0.01, g2 = 0.073). The elder participants had

no effect of set size (F(2.00, 70.00) = 0.18, p.0.05, g2 = 0.00), nor

any significant interactions with gender. The interaction of age

group and set size was not significant (F(2.00, 216.00) = 0.61,

p.0.05, g2 = 0.006); however, the interaction between set size and

gender was (F(2, 216) = 4.44, p,0.05, g2 = 0.04).

fMRI results
Of the original 36 independent components, 11 were identified

as artifacts (Figure S1 in Supporting Information S1) and 7 were

not related to any aspect of the task for either age group (Figure S2

in Supporting Information S1) leaving 18 components (see

Tables 2 and 3). Figure 2 shows the 18 components and Tables

S1 through S18 in Supporting Information S1 summarize the

component maps with Brodmann areas (BA) and regions of

activation. The ICs are very briefly described here based on their

largest sources and are numbered according to their arbitrary

order from the ICA: 1) bilateral middle frontal orbit; 5) bilateral

Figure 1. The mediation models. A) Model testing whether functional network connectivity is in the causal pathway between age-group and task
performance. B) Model testing whether global brain volume is in the causal pathway between age-group and functional network connectivity.
doi:10.1371/journal.pone.0044421.g001

Table 1. Mean (standard deviation) response times and
accuracies (dL).

Response Time Accuracy

Young Elder Young Elder

1 letter 0.88(0.19) 0.90(0.19) 2.54(0.49) 2.34(0.50)

3 letters 1.01(0.22) 1.09(0.21) 2.51(0.52) 2.32(0.45)

6 letters 1.18(0.26) 1.35(0.32) 2.48(0.60) 2.40(0.57)

doi:10.1371/journal.pone.0044421.t001
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calcarine; 7) bilateral supplementary motor area, precentral; 9)

bilateral calcarine; 10) left inferior parietal, middle frontal; 11)

right inferior parietal, middle frontal; 13) bilateral precuneus,

angular; 14) bilateral medial frontal, cingulate; 16) bilateral

cerebellum, lingual; 17) bilateral post-central; 18) bilateral middle

temporal; 20) bilateral precuneus; 23) bilateral middle cingulate;

24) bilateral medial superior frontal; 26) bilateral medial superior

frontal; 32) bilateral hippocampus; 33) bilateral middle temporal

and 35) left middle temporal pole.

Does age affect the functional network connectivity
between brain regions during a cognitive challenge?

Significant between group differences in the strength of the

functional network connectivity between ICs were always the

result of the young age group being larger than the older adults

(see Figure 3 and Table 4). Three components (10, 32, 35) had no

significant between group differences in functional network

connectivity with any of the other ICs and were removed from

further analyses. Figure 4 exemplifies the relationship between two

components and the different task phases of the trials.

Are age-related changes in task performance associated
with changes in functional network connectivity?

The strength of functional network connectivity between ICs 7

& 23 and 13 & 24, demonstrated significant relationships with the

sRT measure of task performance. Regression analyses demon-

strated that all paths between age group, functional network

connectivity and task performance were significant. Both of the

functional network connections were also significant mediators in

the relationship between age group and task performance as

demonstrated by significant indirect effects, (Table 5). Although

the three measures in each model are significantly related, the

significant indirect test supports the hypothesis that the effect of

advancing age on declining task performance is partially the result

of changes in functional network connectivity.

Are age-related changes in functional network
connectivity associated with changes in measures of
global brain volume?

Regression analyses indicated that all paths between age group,

functional network connectivity between ICs 7 & 23 and 13 & 24

and nWBV were significant. Mediation results show that the effect

of age group on the functional connections was not mediated by

normalized whole brain volume, (Table 6).

Discussion

This study demonstrated that advancing age is associated with

changes in the functional connectivity between networks of brain

regions engaged during performance of a verbal working memory

task. These age-related differences in functional network connec-

tivity partially explained significant age group differences in the

speeded task performance. In addition, the age-related changes in

functional network connectivity were not mediated by differences

in global brain volume.

The independent components analysis identified a series of

spatially independent components (ICs), and subsequent analyses

Table 2. Within and between age group comparisons of the individual time-course of each component and the load dependent
contrasts for each task phase.

Load-dependent

Stimulus Retention Probe

Young Elder Y.E Young Elder Y.E Young Elder Y.E

1 23.49 20.80 20.96 25.35** 23.49 22.18 23.94 0.22 1.05

5 7.74** 2.46 21.48 2.69 1.44 1.49 20.26 21.53 0.39

7 3.97 3.67 0.02 4.35** 4.60** 3.45 1.74 0.4 21.06

9 4.70** 4.20 1.13 20.90 1.95 2.87 20.74 21.4 21.42

10 4.33** 3.06 1.15 4.35** 4.74** 3.17 0.09 2.21 0.91

11 6.33** 3.08 0.01 7.07** 6.98** 1.89 3.12 2.25 21.09

13 25.05** 22.63 0.66 26.89** 23.42 0.58 23.41 21.60 0.86

14 22.12 0.01 1.29 21.52 0.52 2.25 20.79 20.54 0.17

16 8.43** 5.50** 2.08 1.09 3.15 3.97 22.40 22.23 20.09

17 1.21 2.55 1.52 3.04 2.66 3.48 21.28 0.76 0.03

18 25.45** 22.41 20.77 25.38** 22.36 20.20 20.55 0.68 0.98

20 1.69 2.21 2.48 1.50 5.78** 5.63** 20.75 0.44 0.16

23 4.48** 2.83 0.31 3.43 3.96 0.91 0.69 20.96 21.60

24 25.95** 24.71** 22.17 25.51** 23.66 21.99 21.14 1.20 1.34

26 24.42** 22.62 21.9 26.60** 21.57 0.36 21.96 20.46 20.07

32 20.78 23.21 21.68 1.39 20.48 20.2 0.85 20.55 20.28

33 1.44 1.38 1.83 20.46 1.30 0.34 20.12 1.19 1.58

35 23.39 22.94 21.32 22.04 22.86 21.22 21.52 22.72 20.96

Notes:
**p,0.01 corrected for 300 multiple comparisons. All measures represent t-values when testing for differences from 0 for within group measures and differences
between groups for those comparisons.
doi:10.1371/journal.pone.0044421.t002
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identified ICs whose expression was related to some phase of the

task in at least one age group while controlling for gender. Some of

the ICs were only related to the task in the young age group. This

finding could imply that young adults employ different strategies

than old adults for performing the task [44]. However, these

young-group-specific ICs have strong correlations with ICs that

are task-related to both age groups suggesting they do not

represent a young age group-specific functional network.

We next examined functional network connectivity between

components. Advanced age was associated with decreased

functional network connectivity between all components, in most

cases reducing connectivity to non-significant levels as compared

to young adults. Mediation analyses determined that poorer task

performance (slower speed) was partially the result of age-related

decreases in functional network connectivity between IC7 (SMA/

precentral) and IC23 (mid. cingulate) and between IC13

(precuneus) and IC24 (mid/sup. frontal cortex). In other words,

reduced functional network connectivity between these compo-

nents was in the causal pathway between increased age and

decreased task performance. It is important to point out that

although advancing age has broad ranging effects of functional

network connectivity, not all of these effects translate to

performance decrements. Only the network connections between

these two sets of ICs were related to the speeded task performance.

The SMA/precentral component was strongly related to the

load effects during retention in both age groups and to load

independent effects during stimulus and probe for the young. The

SMA/precentral region has been previously identified in verbal

working memory tasks and is hypothesized to be involved with

sub-vocal rehearsal of verbal information [45,46,47,48]. We

previously identified that speeded task performance is particularly

sensitive to the gray matter volume in this region [24] raising the

question of how sensitive functional connections are to underlying

changes in structure. The SMAs’ connections to cingulate regions,

part of IC 23, have demonstrated an aging effect in a study by Wu

and colleagues (2007) [20]. This same study demonstrated a

significant negative correlation between the connectivity between

these regions and reaction time on a motor task, supporting the

alternate idea that these pre-motor regions are simply related to

motor slowing [49].

Components 1 and 13 appear to be anterior and posterior parts

of the default mode network, as further discussed below.

Supporting this idea is the fact that in both age groups these ICs

demonstrated task-induced deactivation (TID). And the strength of

the TID is greater in the young adults, as previously demonstrated

[21]. This change in TID in the older adults combined with the

negative correlation between these two ICs may hint at different

strategies employed by the two age groups.

The two components 10 and 11 appear to be homologues of

each other encompassing pre-frontal cortical regions in the left and

right hemispheres, respectively. Interestingly, even though both

ICs were task-related, only IC 11 showed strong functional

network connections with other ICs which also differed between

the age groups. Previous work demonstrated a change in the

strength of lateralization of working memory task related activity

with advancing age [50]. In that study both young and old adults

used left prefrontal brain regions; however, older adults had

greater activity in right prefrontal brain regions. In our study,

Table 3. Within and between age group comparisons of the individual time-course of each component and the load independent
contrasts for each task phase.

Load-independent

Stimulus Retention Probe

Young Elder Y.E Young Elder Y.E Young Elder Y.E

1 22.94 24.36 21.84 23.11 21.66 20.91 24.31** 24.35 1.16

5 10.70** 3.61 21.97 21.79 22.18 0.22 20.02 0.00 20.16

7 7.55** 4.33 0.60 2.22 3.80 0.79 5.12** 2.34 21.73

9 5.77** 2.44 20.06 25.57** 23.30 0.83 2.51 21.00 22.31

10 4.97** 3.95 2.55 20.51 2.51 2.24 5.83** 2.27 21.27

11 9.35** 6.76** 2.56 6.58** 5.83** 1.48 11.25** 6.88** 20.70

13 25.55** 24.3 20.84 24.24** 23.60 20.38 22.17 23.44 20.82

14 22.85 20.72 1.09 20.88 0.25 0.76 24.51** 1.18 3.47

16 10.54** 6.39** 0.40 23.88 22.71 1.73 5.12** 3.56 21.76

17 5.07** 2.38 0.96 0.93 2.45 1.62 6.49** 4.02 20.12

18 26.36** 23.77 20.14 23.80 21.98 20.62 20.86 23.89 23.50

20 7.53** 2.61 2.10 20.47 2.20 2.06 2.11 1.51 0.87

23 4.97** 2.90 20.51 3.46 4.22 1.23 8.73** 5.92** 23.03

24 29.93** 28.00** 22.89 24.54** 22.07 20.33 26.39** 26.81** 20.12

26 27.75** 24.51** 20.89 23.63 21.15 20.97 24.95** 24.41 21.51

32 1.84 20.44 21.72 2.66 0.75 20.20 26.36** 0.14 3.88

33 1.53 21.70 21.56 20.37 21.74 0.48 25.11** 20.89 2.75

35 27.28** 21.65 0.62 21.08 23.38 22.00 22.69 0.74 2.31

Notes:
**p,0.01 corrected for 300 multiple comparisons. All measures represent t-values when testing for differences from 0 for within group measures and differences
between groups for those comparisons.
doi:10.1371/journal.pone.0044421.t003
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there were age-group differences in functional network connec-

tivity with the right sided pre-frontal cortex, IC 11, and not with

the left, IC 10, supporting the idea of advancing age affecting the

lateralization of pre-frontal resources.

Interestingly, IC 13 was one of the most interconnected nodes

for both age groups, supporting the idea that precuneus and

superior parietal regions play important roles in successful

performance of the delayed item recognition task [51,52].

Component 13 includes brain regions often associated with the

default mode network [53,54]. It is visually similar to independent

components 50, 53 and 25 derived from 603 participants in the

study by Allen et al. [55], which they describe as comprising the

default mode network. Our IC 13 has a spatial correlation of 0.64

with the DMN template supplied with the ICA software used for

the current study and developed by the same authors. In addition

to spatial similarity, the relationship between this component and

the task demands was negative, supporting the idea that when

attention to the task is required, expression of this component

decreases [56,57,58]. However, our IC13 has positive functional

connectivity values for both age groups with other ICs that have

positive relationships and increasing expression with increased task

demands. This differs from reports of negative relationships

between expression of the DMN and task-positive networks [59].

This suggests that while the areas associated with the DMN do

show overall reduced expression with increased task demand, the

story is a bit more complicated in that the DMN may be more

intricately associated with task performance. The positive func-

tional connection between the DMN and other areas that increase

expression with task demand suggests that the brain areas in the

DMN may contribute to cognitive processes needed for task

performance. Support for this idea is the fact that the strength of

functional network connectivity between IC 13 and the prefrontal

cortex IC 24 significantly mediates the effect of advancing age on

task performance. Therefore, future work into how the DMN and

other areas interact during cognitive tasks may eventually yield

greater insight into the role this network plays in task performance.

One possible underlying cause for age-related decline in

functional connectivity was investigated using a global volumetric

measure, normalized whole brain volume (nWBV). Normalized

whole brain volume significantly differed between age groups and

was related to the functional connectivity strength for all

components predictive of task performance. Mediation analyses

demonstrated that the age effect on the functional connections

related to task performance was not significantly explained by

differences in global brain volume. Therefore, advancing age led

to decreased brain volume and decreased functional connectivity

between brain regions that ultimately affected task performance.

However, there was no evidence to support the hypothesis that

age-related alterations in functional connectivity are the result of

global brain volume changes. Future work will investigate whether

regional brain volume measures are better predictors of functional

connectivity, as opposed to the gross brain wide measure used

here. It is also likely that interruption in the functional connection

between brain regions is the result of regional tissue changes or

Figure 2. The eighteen spatially independent task-related components. The components are numbered using the arbitrary ordering
resulting from the ICA which extracted 36 total components.
doi:10.1371/journal.pone.0044421.g002
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white matter tracts [60]. Diffusion tensor imaging can test whether

the density of the white matter tracks physically connecting these

brain regions predicts functional connectivity strength.

Advanced age decreased the strength of the relationship

between task demands and expression of the ICs. This finding

could result from many of the same physiological issues that

impact voxel-wise general linear modeling analyses in older adults

[19]. Namely, neuro-vascular changes and increased noise in the

BOLD signal decrease the detectability of task-related signal

changes in older adults. Measures of functional connectivity test

the strength of correlation between expressions of different spatial

components within participant. Therefore, any global age-related

or idiosyncratic effects on an individuals’ data will likely affect all

of their components. This makes tests of functional connectivity

robust to individual physiological differences but still sensitive to

the effects of age related increases of noise in the BOLD signal.

The current experiment was conducted within the context of

the overall research model of our laboratory [22,23]. This model

posits that age-related changes in task performance might be

explained by age-related changes in neural activity, which

themselves could result in part from age or AD-related patholog-

ical changes in brain structure or blood flow. The current

approach, using a global measure of brain volume, did not explain

the age related changes in functional connectivity; however,

regional volume measure may be more informative in explaining

the age effect. Furthermore, the model includes cognitive reserve

(CR) which is the partial protection from the negative effects of age

due to individual differences. Cognitive reserve might act by

moderating the impact of age-related neural changes on task

performance and the effect of CR on task performance might be

mediated by alterations in neural activity [11]. Although not tested

in the current study, the strength of functional connectivity

Figure 3. The functional network connectivity between 15 spatially independent task-related components. A) The lines represent the
between age group t-values of functional network connectivity. The mean functional network connectivity for the young B) and old C) age groups is
presented for descriptive purposes showing the functional network connections that significantly differ between age groups. The placement of the
nodes around the circles is related to the order in which the components were extracted with ICA. Therefore, the placement is arbitrary and the
reader should not make any inference on the length of the edges in the graphs, only on the fact that the functional network connections are for the
most part stronger in the young than the elder age groups.
doi:10.1371/journal.pone.0044421.g003
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between brain regions may be related to cognitive reserve. Greater

cognitive reserve may result in increased functional connectivity,

or at least maintained connectivity with advancing age. There is

also the possibility that tests for more complex relationships

between nodes, or network wide complexity measures [61,62,63],

may further elucidate the relationships between functional

connectivity, cognitive reserve, aging and cognitive performance.

These possible associations will be the focus of future research.

The current work uses measures of within-participant functional

network connectivity derived from ICA [16], which differs from

previous multivariate analyses coming from our laboratory. The

adoption of this new technique requires further elaboration.

Barring the similarities and differences between the ICA and

principal components analysis (PCA) algorithms, the largest

difference between previous work and the current approach is

the level of the data that the multivariate analyses are applied to

and how the design matrices are used. The standard statistical

parametric mapping (SPM) approach performs univariate general

linear model analyses to the data for all individuals [64]. This

results in contrast images for each condition for each individual; in

the current situation, these are the load dependent and indepen-

dent effects during the stimulus, retention and probe task phases.

Univariate group analyses typically test within and between group

differences for each voxel in the contrast images for each

condition. The multivariate linear modeling (MLM) [65] ap-

proaches we have previously used rely on identifying the principal

components across group means of contrast images within a

condition to identify the directions of greatest variance between

groups [3]. This usually involves only a few brain images, i.e.

typically fewer than 10 and sometimes as few as 2. The ordinal

trend analysis canonical variance analysis (OrT CVA) again uses

the contrast images from each individual for each condition [66];

however, rather than relying on group mean contrast images, it

uses all image for each subject in each condition. For N subjects

and T task conditions there will be (T-1)*N contrast images, thus,

subject-level variance plays a much bigger role in ORT CVA than

in MLM. In contrast, the ICA analysis used here is applied before

any univariate analyses are performed [38,67]. Therefore,

derivation of the spatial ICs does not involve any first-level design

matrix, but is entirely data driven and preserves much of the

participant level signal variation. The three multivariate tech-

niques lie along a continuum of increased supervised-learning

constraints: the least constrained is ICA, which embodies no

knowledge about experimental design, whereas OrT-CVA

involves some constraints, while still leaving substantial inter-

subject variance to drive the analysis. MLM is the most

constrained analysis with substantial reduction of the data rank

prior to the PCA, leaving only very few data points that are

submitted to the PCA.

Another point to consider is that we applied the group ICA

across young and old age groups, rather than conducting two

separate within group analyses. ICA across the young and old

groups limits the potential inflation of between-group differences

by eliminating the need to match spatial components [68]. A

recent paper demonstrated that the ICA methods used here are

robust to individual differences in amplitude and translations of

spatial components; therefore, individuals do not drive group level

derived independent components [69]. Other work has demon-

strated that group level ICA is sensitive enough to identify a spatial

component present in only 10–15% of the participants [70] and

that components specific to a subset of participants do not induce

erroneous activation in the rest of the participants [67].

The current work only considers the relationship between the

task demands and the components for determining which are task-

related and which are not. No further assessment of how task-

demands affect the strength of functional connectivity is made. It is

plausible that the relationships between task demands and brain

activity fluctuate across time or that the strength of the functional

connectivity between brain regions fluctuates over time. General

linear modeling and the correlation analyses used here average

over such fluctuations; however, alternate approaches exist which

can investigate the effect of task-demands on connectivity strength.

The most straightforward approach is to break up levels of task

difficulty into different experimental runs. Then the functional

connectivity between brain networks or regions can be assessed for

the effects of task demand. A more sophisticated approach uses

Kalman filtering to capture load dependent fluctuations in

connectivity strength. Work by Kang et al. 2011 and Chang and

Glover 2010 demonstrated with resting state data that the strength

of the relationships between brain regions varied significantly over

time [71,72]. Another alternative performs principal components

analysis on trial averaged data from a working memory task [73].

This approach identified covariance patterns and their averaged

temporal progression over the different stages of the memory trials.

An interesting extension to their work is to investigate the

correlations, as estimate of connectivity, between the networks of

Table 4. T-test results for group differences in strength of
functional network connectivity between components and
the mean and standard errors for each group.

t (Y.E) Young Mean (s.e.) Elder Mean (s.e.)

Comp 1–13 4.092** 0.065(0.021) 20.086(0.030)

Comp 5–9 4.796** 0.424(0.033) 0.170(0.035)

Comp 7–9 5.554** 0.344(0.024) 0.114(0.034)

Comp 7–16 6.109** 0.462(0.028) 0.194(0.028)

Comp 7–17 4.886** 0.461(0.026) 0.234(0.040)

Comp 7–20 6.028** 0.573(0.033) 0.220(0.050)

Comp 7–23 7.906** 0.514(0.034) 0.059(0.044)

Comp 9–16 5.108** 0.773(0.026) 0.560(0.029)

Comp 9–17 5.942** 0.282(0.030) 20.014(0.038)

Comp 9–23 7.561** 0.313(0.027) 20.077(0.049)

Comp 11–18 4.003** 0.095(0.026) 20.082(0.034)

Comp 13–14 4.440** 0.172(0.022) 20.004(0.035)

Comp 13–18 5.566** 0.327(0.029) 0.056(0.037)

Comp 13–24 5.289** 0.448(0.037) 0.113(0.048)

Comp 13–26 6.389** 0.458(0.034) 0.100(0.040)

Comp 13–33 3.747** 0.121(0.022) 20.028(0.036)

Comp 16–17 5.050** 0.302(0.029) 0.069(0.031)

Comp 16–23 6.453** 0.220(0.027) 20.096(0.042)

Comp 17–18 4.018** 0.132(0.030) 20.072(0.037)

Comp 17–23 4.164** 0.375(0.021) 0.191(0.047)

Comp 18–23 8.860** 0.143(0.029) 20.311(0.042)

Comp 18–24 5.778** 0.359(0.029) 0.078(0.037)

Comp 18–26 5.463** 0.290(0.024) 0.036(0.046)

Comp 20–23 5.556** 0.420(0.025) 0.175(0.037)

Comp 24–26 3.881** 0.400(0.035) 0.174(0.041)

All measures represent t-values when testing for differences from 0 for within
group measures and differences between groups for those comparisons.
Notes:
**p,0.01 corrected for 153 multiple comparisons.
doi:10.1371/journal.pone.0044421.t004
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Table 6. Mediation analyses for the relationships of age
group on the strength of functional network connectivity
between independent components via global brain volume.

Outcome c a b c9 Indirect effects (95% CI)

r(7,23) 20.43* 20.14* 20.44* 20.37* 20.066 (20.24–0.11)

r(13,24) 20.30* 20.14* 20.30* 20.25* 20.055 (20.24–0.15)

Notes: c = total effect of age group on outcome measure of functional network
connectivity; a = effect of age group on normalized whole brain volume
mediator; b = relationship between normalized whole brain volume mediator
and outcome measure of functional network connectivity; c9 = direct effect of
age group on outcome measure of functional network connectivity; CI = 95%
bootstrap confidence interval for the indirect effect (10,000 stratified
resamples);
*p,0.05; all tests corrected for gender.
doi:10.1371/journal.pone.0044421.t006

Figure 4. Example time courses and their relationship with the task. A) Example time courses from independent components 7 and 23 from
a single participant. The correlation between these two time courses is r = 0.65. B) A zoom in on the first 120 seconds of the two time courses. The
gray underlying bars represent the three task phases. C) A zoom in on one trial shows the three task phases: stimulus, maintenance and probe.
doi:10.1371/journal.pone.0044421.g004

Table 5. Mediation analyses for the relationships of age
group on task performance via the strength of functional
network connectivity between independent components.

Mediator c a b c9 Indirect effects (95% CI)

r(7,23) 0.11* 20.43* 20.15* 0.059 0.047 (0.011–0.088)*

r(13,24) 0.11* 20.30* 20.14* 0.076* 0.030 (0.0080–0.061)*

Notes: c = total effect of age group on speeded task performance; a = effect of
age group on mediator; b = relationship between mediator and speeded task
performance; c9 = direct effect of age group on speeded task performance;
CI = 95% bootstrap confidence interval for the indirect effect (10,000 stratified
resamples);
*p,0.05; all tests corrected for gender.
doi:10.1371/journal.pone.0044421.t005
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brain regions they identified and see how these connections are

affected by task demands. Future avenues of research could

investigate time varying behavior in the current data for age

related differences in brain activity.

To recapitulate, although both age groups used a series of

spatial components in a similar manner across task phases, the

strength and distribution of functional connectivity between these

components differed across the age groups. Differences in the

functional connectivity between multiple brain regions significant-

ly explained a portion of the age-related differences in task

performance. The differences in functional connectivity between

these regions were not explained by age-related changes in global

brain volume. These results suggest that age-related differences in

the coordination of neural activity between brain regions may

partially underlie differences in cognitive performance.
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